Skip to main content

Mining Gene Expression Profiles and Gene Regulatory Networks: Identification of Phenotype-Specific Molecular Mechanisms

  • Conference paper
Artificial Intelligence: Theories, Models and Applications (SETN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5138))

Included in the following conference series:

Abstract

The complex regulatory mechanisms of genes and their transcription are the major gene regulatory steps in the cell. Gene Regulatory Networks (GRNs) and DNA Microarrays (MAs) present two of the most prominent and heavily researched concepts in contemporary molecular biology and bioinformatics. The challenge in contemporary biomedical informatics research lies in systems biology - the linking of various pillars of heterogeneous data so they can be used in synergy for life science research. Faced with this challenge we devised and present an integrated methodology that ‘amalgamates’ knowledge and data from both GRNs and MA gene expression sources. The methodology, is able to identify phenotype-specific GRN functional paths, and aims to uncover potential gene-regulatory ‘fingerprints’ and molecular mechanisms that govern the genomic profiles of diseases. Initial implementation and experimental results on a real-world breast-cancer study demonstrate the suitability and reliability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001)

    Article  Google Scholar 

  2. Collins, F.S., Green, E.D., Guttmacher, A.E., Guyer, M.S.: ‘A Vision for the Future of Genomics Research. Nature 422(6934), 835–847 (2003)

    Article  Google Scholar 

  3. Kumar, A.: Teaching Systems Biology: An Active-learning Approach. Cell Biol. Educ. 4(4), 323–329 (2005)

    Article  Google Scholar 

  4. Friend, H.F.: How DNA microarrays and expression profiling will affect clinical practice. Br. Med. J. 319, 1–2 (1999)

    Google Scholar 

  5. Bassett, D.E., Eisen, M.B., Boguski, M.S.: Gene expression informatics: it’s all in your mine. Nature Genetics 21(suppl. 1), 51–55 (1999)

    Article  Google Scholar 

  6. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  7. van ’t Veer, L.J., et al.: Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature 415, 530–536 (2002)

    Article  Google Scholar 

  8. Potamias, G., Koumakis, L., Moustakis, V.: Gene Selection via Discretized Gene-Expression Profiles and Greedy Feature-Elimination. In: Vouros, G.A., Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 256–266. Springer, Heidelberg (2004)

    Google Scholar 

  9. Bower, J.M., Bolouri, H.: Computational Modeling of Genetic and Biochemical Networks. Computational Molecular Biology Series. MIT Press, Cambridge (2001)

    Google Scholar 

  10. Arkin, Ross, J.: Computational functions in biochemical reaction networks. Biophys J. 67(2), 560–578 (1994)

    Article  Google Scholar 

  11. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford Univ. Press, New York (1993)

    Google Scholar 

  12. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pac. Symp. Biocomput., pp. 17–28 (1999)

    Google Scholar 

  13. Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pac. Symp. Biocomput., pp. 175–186 (2002)

    Google Scholar 

  14. Kimura, S., et al.: Inference of S-system models of genetic networks using a cooperative co-evolutionary algorithm. Bioinformatics 21(7), 1154–1163 (2005)

    Article  Google Scholar 

  15. Segal, E., et al.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166 (2003)

    Article  Google Scholar 

  16. Guanrao, P.L., Almasri, E., Dai, Y.: Rank-based edge reconstruction for scale-free genetic regulatory networks. BMC Bioinformatics 9, 75 (2008)

    Article  Google Scholar 

  17. Daisuke, T., Horton, P.: Inference of scale-free networks from gene expression time series. Journal of Bioinformatics and Computational Biology 4(2), 503–514 (2006)

    Article  Google Scholar 

  18. Milenkovic, T., Lai, J., Przulj, N.: GraphCrunch: a tool for large network analyses. BMC Bioinformatics 9, 70 (2008)

    Article  Google Scholar 

  19. Wu, C.C., Huang, H.C., Juan, H.F., Chen, S.T.: GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics 20(18), 3691–3693 (2004)

    Article  Google Scholar 

  20. Simon, R., Radmacher, M.D., Dobbin, K., McShane, L.M.: Pitfalls in the Use of DNA Microarray Data for Diagnostic Classification. Journal of the National Cancer Institute 95(1), 14–18 (2003)

    Article  Google Scholar 

  21. Pan, W.: A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18(4), 546–554 (2002)

    Article  Google Scholar 

  22. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  23. Kwoh, K., Ng, P.Y.: ‘Network analysis approach for biology. Cell. Mol. Life Sci. 64, 1739–1751 (2007)

    Article  Google Scholar 

  24. Anisimov, S.V., Christophersen, N.S., Correia, A.S., Li, J.-Y., Brundin, P.: NeuroStem Chip: a novel highly specialized tool to study neural differentiation pathways in human stem cells. BMC Genomics 8, 46 (2007)

    Article  Google Scholar 

  25. Doniger, S.W., Salomonis, N., Dahlquist, K.D., Vranizan, K., Lawlor, S.C., Conklin, B.R.: MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biology 4(1), R7 (2003)

    Article  Google Scholar 

  26. Mlecnik, B., Scheideler, M., Hackl, H., Hartler, J., Sanchez-Cabo, F., Trajanoski, Z.: PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways. Nucleic Acids Res. 33, W633-W637 (2005)

    Article  Google Scholar 

  27. Kulterer, B., et al.: Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8, 70 (2007)

    Article  Google Scholar 

  28. Weniger, M., Engelmann, J.C., Schultz, J.: Genome Expression Pathway Analysis Tool – Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context. BMC Bioinformatics 8, 179 (2007)

    Article  Google Scholar 

  29. Grosu, P., Townsend, J.P., Hartl, D.L., Cavalieri, D.: Pathway Processor: A Tool for Integrating Whole-Genome Expression Results into Metabolic Networks. Genome Research 12(7), 1121–1126 (2002)

    Article  Google Scholar 

  30. Evans, W.E., Relling, M.V.: Moving towards individualized medicine with pharmacogenomics. Nature 429, 464–468 (2004)

    Article  Google Scholar 

  31. Kafetzopoulos, D.: The Prognochip Project: Transcripromics and Biomedical Informatics for the Classification and Prognosis of Breast Cancer. ERCIM News 60 (2005)

    Google Scholar 

  32. Analyti, A., Kondylakis, H., Manakanatas, D., Kalaitzakis, M., Plexousakis, D., Potamias, G.: Integrating Clinical and Genomic Information through the PrognoChip Mediator. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS (LNBI), vol. 4345, pp. 250–261. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Potamias, G., Kanterakis, A.: Supporting Clinico-Genomic Knowledge Discovery: A Multi-strategy Data Mining Process. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 520–524. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John Darzentas George A. Vouros Spyros Vosinakis Argyris Arnellos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanterakis, A., Kafetzopoulos, D., Moustakis, V., Potamias, G. (2008). Mining Gene Expression Profiles and Gene Regulatory Networks: Identification of Phenotype-Specific Molecular Mechanisms. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds) Artificial Intelligence: Theories, Models and Applications. SETN 2008. Lecture Notes in Computer Science(), vol 5138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87881-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87881-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87880-3

  • Online ISBN: 978-3-540-87881-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics