Abstract
In this paper method of design and optimization of stable IIR digital filters with non-standard amplitude characteristics using continuous ant colony optimization algorithm ACO R is presented. In proposed method (named ACO-IIRFD) dynamical changes of parameters in designed filters are introduced. Due to these dynamical changes of filter parameters, design of IIR digital filters with small deviations between designed filter characteristics and assumed characteristics is possible. Three IIR digital filters with amplitude characteristics: linearly-falling, linearly-growing, and non-linearly-growing, which can have application in amplitude equalizers, are designed using proposed method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1992)
Erba, M., Rossi, R., Liberali, V., Tettamanzi, A.G.B.: Digital Filter Design Through Simulated Evolution. In: Proceedings of ECCTD 2001, Espoo, Finland, August 2001, vol. 2, pp. 137–140 (2001)
Slowik, A., Bialko, M.: Evolutionary Design of IIR Digital Filters with Non-Standard Amplitude Characteristics. In: 3rd National Conference on Electronics, Kolobrzeg, June 2004, pp. 345–350 (2004)
Nurhan, K.: Digital IIR filter design using differential evolution algorithm. EURASIP Journal on Applied Signal Processing 8, 1269–1276 (2005)
Nurhan, K., Bahadir, C., Tatyana, Y.: Performance comparison of genetic and differential Evolution algorithms for digital FIR filter design. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 482–488. Springer, Heidelberg (2004)
Karaboga, N., Kalinli, A., Karaboga, D.: Designing digital IIR filters using ant colony optimisation algorithm. Engineering Applications of Artificial Intelligence 17(3), 301–309 (2004)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on SMC-B 26(1), 29–41 (1996)
Bilchev, G., Parmee, I.C.: The ant colony metaphor for searching continous design spaces. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 25–39. Springer, Heidelberg (1995)
Monmarche, N., Venturini, G., Slimane, M.: On how Pachycondyla apicalis ants suggest a new search algorithm. Future Generation Computer Systems 16, 937–946 (2000)
Dreo, J., Siarry, P.: A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continous functions. In: Doringo, M., Di Caro, G., Samples, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 216–221. Springer, Heidelberg (2002)
Socha, K., Doringo, M.: Ant colony optimization for continous domains. European Journal of Operational Research 185(3), 1155–1173 (2008)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Slowik, A., Bialko, M. (2008). Design and Optimization of IIR Digital Filters with Non-standard Characteristics Using Continuous Ant Colony Optimization Algorithm. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds) Artificial Intelligence: Theories, Models and Applications. SETN 2008. Lecture Notes in Computer Science(), vol 5138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87881-0_39
Download citation
DOI: https://doi.org/10.1007/978-3-540-87881-0_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87880-3
Online ISBN: 978-3-540-87881-0
eBook Packages: Computer ScienceComputer Science (R0)