
Lecture Notes in Computer Science 5282
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michel R. V. Chaudron Clemens Szyperski
Ralf Reussner (Eds.)

Component-Based
Software Engineering
11th International Symposium, CBSE 2008
Karlsruhe, Germany, October 14-17, 2008
Proceedings

13

Volume Editors

Michel R.V. Chaudron
University Leiden, Faculty of Science
Leiden Institute of Advanced Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: chaudron@liacs.nl

Clemens Szyperski
Microsoft
One Microsoft Way, Redmond, WA 98052, USA
E-mail: clemens.szyperski@microsoft.com

Ralf Reussner
Universität Karlsruhe (TH), Karlsruhe Institute of Technology (KIT)
Institut für Programmstrukturen und Datenorganisation
76128 Karlsruhe, Germany
E-mail: reussner@ipd.uka.de

Library of Congress Control Number: 2008936136

CR Subject Classification (1998): D.2, D.3, B.8, C.4, J.7

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-87890-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87890-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12533800 06/3180 5 4 3 2 1 0

Preface

On behalf of the Organizing Committee we are pleased to present the pro-
ceedings of the 2008 Symposium on Component-Based Software Engineering
(CBSE). CBSE is concerned with the development of software-intensive systems
from independently developed software-building blocks (components), the de-
velopment of components, and system maintenance and improvement by means
of component replacement and customization. CBSE 2008 was the 11th in a
series of events that promote a science and technology foundation for achieving
predictable quality in software systems through the use of software component
technology and its associated software engineering practices.

We were fortunate to have a dedicated Program Committee comprising many
internationally recognized researchers and industrial practitioners. We would like
to thank the members of the Program Committee and associated reviewers for
their contribution in making this conference a success. We received 70 submis-
sions and each paper was reviewed by at least three Program Committee mem-
bers (four for papers with an author on the Program Committee). The entire
reviewing process was supported by the Conference Management Toolkit pro-
vided by Microsoft. In total, 20 submissions were accepted as full papers and 3
submissions were accepted as short papers.

This time CBSE was held as a colocated event of COMPARCH, together with
the 4th International Conference on the Quality of Software-Architectures (QoSA
2008) and two workshops: Workshop on Component-Based High-Performance
Computing and Workshop on Component-Oriented Programming. This year’s
event was organized in Karlsruhe for which our special thanks are due to Ralf
Reussner and his crew. We also wish to thank the ACM Special Interest Group
on Software Engineering (SIGSOFT) for their sponsorship. The proceedings you
now hold were published by Springer and we are grateful for their support. Finally,
we thank the many authors who contributed the high-quality papers contained
within these proceedings. The CBSE organizers also like to thank the supporters
of COMPARCH 2008, namely 1&1 Internet AG and sd&m AG.

As the international community of CBSE researchers and practitioners con-
tinues to prosper, we expect the CBSE symposium series to similarly attract
widespread interest and participation.

August 2008 Michel R.V. Chaudron
Clemens Szyperski

Organization

Conference Chairs

Michel R.V. Chaudron Leiden University, The Netherlands
Clemens Szyperski Microsoft, USA

Steering Committee

Ivica Crnkovic Mälardalen University, Sweden
Ian Gorton Pacific North West National Laboratory, USA
George Heineman Worcester Polytechnic Institute, USA
Heinz Schmidt RMIT University, Australia
Judith Stafford Tufts University, USA
Clemens Szyperski Microsoft, USA

Program Committee

Uwe Aßmann Dresden University of Technology, Dresden,
Germany

Mike Barnett Microsoft Research, USA
Antonia Bertolino CNR Research, Pisa, Italy
Judith Bishop University of Pretoria, Pretoria, South Africa
Ivica Crnkovic Mälardalen University, Vasteras, Sweden
Dimitra Giannakopoulou RIACS/NASA Ames, Moffet Field CA, USA
Ian Gorton Pacific North West National Laboratory, Richland

WA, USA
Lars Grunske University of Queensland, Brisbane, Australia
Richard Hall LSR-IMAG, Grenoble, France
Dick Hamlet Portland State University, Portland OR, USA
George Heineman Worcester Polytechnic Institute, Worcester MA,

USA
Jean-Marc Jézéquel IRISA (INRIA & Univ. Rennes 1), Rennes, France
Bengt Jonsson Uppsala University, Uppsala, Sweden
Joe Kiniry University College Dublin, Ireland
Gerald Kotonya Lancaster University, Lancaster, UK
Magnus Larsson ABB Corporate Research, Vasteras, Sweden
Kung-Kiu Lau University of Manchester, Manchester, UK
Raphael Marvie University of Lille, Lille, France
Michael Maximilien IBM Almaden Research Center, San Jose CA, USA

VIII Organization

Nenad Medvidovic University of Southern California, Los Angeles CA,
USA

Henry Muccini University of L’Aquila, L’Aquila, Italy
Rob van Ommering Philips Research Labs, Eindhoven,

The Netherlands
Ralf Reussner University Karlsruhe, Karlsruhe, Germany
Alessandra Russo Imperial College, London, UK
Christian Salzmann BMW Car IT, Munich, Germany
Douglas Schmidt Vanderbilt University, Nashville TN, USA
Heinz Schmidt RMIT University, Australia
Jean-Guy Schneider Swinburne University of Technology, Melbourne,

Australia
Judith Stafford Tufts University, USA
Asuman Sünbül SAP Research, Palo Alto CA, USA
Clemens Szyperski Microsoft, USA
Massimo Tivoli University of L’Aquila, L’Aquila, Italy
Wolfgang Weck Independent Software Architect, Zürich,

Switzerland
Dave Wile Teknowledge Corp., Los Angeles CA, USA

Major Supporters

1&1 Internet AG, Karlsruhe, Germany
sd&m AG, Munich, Germany

Table of Contents

Performance Engineering

Automating Performance Analysis from Taverna Workflows 1
Rafael Tolosana-Calasanz, Omer F. Rana, and José A. Bañares

An Empirical Investigation of the Effort of Creating Reusable,
Component-Based Models for Performance Prediction 16

Anne Martens, Steffen Becker, Heiko Koziolek, and Ralf Reussner

Deploying Software Components for Performance . 32
Vibhu Saujanya Sharma and Pankaj Jalote

Performance Prediction for Black-Box Components Using Reengineered
Parametric Behaviour Models . 48

Michael Kuperberg, Klaus Krogmann, and Ralf Reussner

Extra-Functional Properties: Security and Energy

Validating Access Control Configurations in J2EE Applications 64
Lianshan Sun, Gang Huang, and Hong Mei

Classification of Component Vulnerabilities in Java Service Oriented
Programming (SOP) Platforms . 80

Pierre Parrend and Stéphane Frénot

Component-Level Energy Consumption Estimation for Distributed
Java-Based Software Systems . 97

Chiyoung Seo, Sam Malek, and Nenad Medvidovic

Formal Methods and Model Checking

Synthesis of Connectors from Scenario-Based Interaction
Specifications . 114

Farhad Arbab and Sun Meng

State Space Reduction Techniques for Component Interfaces 130
Markus Lumpe, Lars Grunske, and Jean-Guy Schneider

Model Checking of Control-User Component-Based Parametrised
Systems . 146

Pavĺına Vařeková and Ivana Černá

X Table of Contents

Verification Techniques

Automatic Protocol Conformance Checking of Recursive and Parallel
Component-Based Systems . 163

Andreas Both and Wolf Zimmermann

Structural Testing of Component-Based Systems . 180
Daniel Sundmark, Jan Carlson, Sasikumar Punnekkat, and
Andreas Ermedahl

Towards Component-Based Design and Verification of a µ-Controller . . . 196
Yunja Choi and Christian Bunse

Run-Time Infrastructures

ESCAPE: A Component-Based Policy Framework for Sense and React
Applications . 212

Giovanni Russello, Leonardo Mostarda, and Naranker Dulay

Experiences from Developing a Component Technology Agnostic
Adaptation Framework . 230

Eli Gjørven, Frank Eliassen, and Romain Rouvoy

A Practical Approach for Finding Stale References in a Dynamic
Service Platform . 246

Kiev Gama and Didier Donsez

Methods of Design and Development

Towards a Systematic Method for Identifying Business Components 262
Antonia Albani, Sven Overhage, and Dominik Birkmeier

Life-Cycle Aware Modelling of Software Components 278
Heiko Koziolek, Steffen Becker, Jens Happe, and Ralf Reussner

A Component Selection Framework for COTS Libraries 286
Bart George, Régis Fleurquin, and Salah Sadou

Opportunistic Reuse: Lessons from Scrapheap Software Development . . . 302
Gerald Kotonya, Simon Lock, and John Mariani

Component Models

A Component Model for Control-Intensive Distributed Embedded
Systems . 310

Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš,
Jan Carlson, and Ivica Crnković

Table of Contents XI

The CoSi Component Model: Reviving the Black-Box Nature of
Components . 318

Přemek Brada

Ada-CCM: Component-Based Technology for Distributed Real-Time
Systems . 334

Patricia López Mart́ınez, José M. Drake, Pablo Pacheco, and
Julio L. Medina

Author Index . 351

Automating Performance Analysis from Taverna

Workflows

Rafael Tolosana-Calasanz1, Omer F. Rana2, and José A. Bañares1

1 Instituto de Investigación en Ingenieŕıa de Aragón (I3A)
Department of Computer Science and Systems Engineering

University of Zaragoza, Spain
rafaelt@unizar.es, banares@unizar.es

2 School of Computer Science, Cardiff University, UK
o.f.rana@cs.cardiff.ac.uk

Abstract. Workflow systems provide support for combining compo-
nents to achieve a particular outcome. Various approaches from software
engineering have been utilized within such systems, such as the use of
design patterns to support composition, and the use of a software en-
gineering lifecycle to support workflow construction and execution. As
components used within a workflow may be implemented by third par-
ties, it is often necessary to be able to determine the impact a particular
component composition will have on the overall execution of a workflow.
A method for predicting the execution time of a given workflow is pro-
posed. First, the method obtains a model from a given workflow in an
automated way. The model obtained is a Reference net – a specific type
of Petri net. Features of Reference nets can subsequently be exploited,
such as the possibility of building hierarchical workflow models which can
facilitate the modelling process. The Reference nets are extended so that
each task in the model is parameterised with a time value, representing
the execution time of the task. We propose several timing profiles: those
obtained from real measurement of the workflow system, from stochastic
and constant values which allow us to test the model behaviour under
specific situations.

Keywords: Workflow Performance Models, Petri Nets.

1 Introduction

During the last decade, workflow systems have been widely used in the business
and scientific communities, primarily for composing applications from third party
components. Identifying the execution time of a workflow, particularly when such
third party components are used, is often an important requirement. As scientific
workflows may involve long running tasks, characterisation of execution time is
often used by a designer to determine the suitability of particular components.
Hence, identifying bounds on execution time of a workflow is an important re-
quirement for supporting component composition within such systems.

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 R. Tolosana-Calasanz, O.F. Rana, and J.A. Bañares

The execution time of workflows can be estimated by constructing a perfor-
mance model of the workflow. Many similarities between workflows and
component-based systems can be established: component-based systems can be
seen as complex systems which are built by assembling basic components, simi-
lar in fact to existing workflow systems. A key difference, especially in scientific
workflows, is that some of the tasks are likely to be executed in parallel, whereas
prediction techniques covered by the Component-Based Software Engineering
(CBSE) do not consider parallelism.

Petri nets have been widely used for modelling complex concurrent systems,
for specifying workflows [1] and even as a development tool for implementing
workflow systems [2]. They provide clear and precise formal semantics and an
intuitive graphical notation. Additionally, many different types of analysis can be
accomplished on a Petri net model, including reachability, deadlock or liveness
analysis. We make use of Reference nets, a special type of High-level Petri net,
along with the Renew tool [3], which can interpret them. Reference nets and
Renew overcome the main limitation of other High-level Petri nets, such as their
static nature, and also support hierarchical and object-oriented modelling. This
hierarchical modelling enables groups of components to be combined for analysis.
This can be particularly useful when modelling workflows that involve a large
number of components. Furthermore, the Renew tool supports simulations of
timed Reference nets, that is, Reference nets with timing extensions. Thus, once
a workflow model is obtained and properly parameterised, its overall execution
time can be estimated. We propose three timing profiles for use with timed
Reference nets: constant values, probability distributions (including stochastic
values) and values obtained from instrumenting the real workflow system.

A method for predicting the execution time of a given workflow is proposed.
First, the method obtains a timed Reference net model from a given workflow
in an automated way and then this model is simulated with a timed profile. We
focus on the use of the Taverna workflow system – which shares many similarities
with other scientific workflow systems such as Kepler and Triana. It is impor-
tant to highlight that, even though Taverna is widely used within the scientific
workflow community, in particular in bioinformatics, general purpose workflows
– which can be composed of third party components – can also be modelled
with the system. In this paper, a particular scientific workflow has been used to
illustrate the process of automatically deriving a performance model from the
workflow description. Subsequent analysis of this single workflow is then used to
explain why such a model is useful.

This paper is organised as follows, in Section 2 a brief background knowledge
about Petri nets and Taverna is given. In Section 3 related work is reviewed
briefly. Section 4 shows how to obtain timed Reference net models from work-
flows in an automated way and, as an example, a model from a currently used
Taverna workflow is obtained. In Section 5, performance figures are provided for
illustrating the technique with an example. Finally, the conclusions and future
work are provided.

Automating Performance Analysis from Taverna Workflows 3

2 Background

An ordinary Petri net can be defined informally as a bipartite directed graph
which consists of places, transitions, arcs and tokens (see [4] for a formal and
more extensive definition). There are many extensions to ordinary Petri nets
such as High-level Petri nets or timed Petri nets which provide higher levels of
abstraction and improve the modelling potential of ordinary Petri nets. We use a
specific type of High-level Petri net, Renew’s Reference nets. Renew [3] is a Ref-
erence net interpreter and a Reference net graphical modelling tool which is also
used in this work for the simulation of our Reference net based models. Renew’s
Reference nets are a special subtype of Net-within-Nets [5]. The characteristics
and behaviour of ordinary Petri nets are also present in Reference nets, but they
provide many other useful extensions. The most distinctive ones are:

– Reference net tokens can also be a Java object or another Reference net, and
all of these nets can communicate with each other by means of synchronous
channels. A synchronous channel can be established only between two nets
and it allows a net to send (invoke) a message to other net in a synchronous
way.

– Reference net transitions can be equipped with a variety of inscriptions such
as expressions, actions or guards. Expression and action inscriptions are or-
dinary expressions evaluated while the net simulator searches for a binding
of the transition, the result of this evaluation can be applied for influencing
the binding of variables that are used elsewhere. Guard inscriptions are ex-
pressions that are prefixed with the reserved word guard, so that a transition
can only be fired when all of its guard inscriptions evaluate to true.

– Reference net arcs can also have inscriptions. By default, an arc without
inscription transports a black token (the token of ordinary Petri nets), but
when arcs have variables as inscriptions, they transport Java objects or other
nets.

– Renew’s Reference nets are dynamic, and in this way differ from other High-
level Petri net approaches. This dynamism is achieved by means of the new
construct that can be part of an expression inscription at a transition, as a
result a new instance of an object net can be created at execution time. This
feature totally overcomes the static nature of other high-level Petri nets. Re-
new’s Reference net token domain is formed by the set of all possible tokens,
including any Java variables or objects and any Reference net instances.

Renew supports timed Reference nets, where the time concept is based on
introducing a global clock used to model time. Then, a time stamp is attached
to each token denoting the time when it becomes available. This time stamp may
be modified by time inscriptions annotated in the arcs. Thus, time inscriptions in
output arcs specify that a token is only available after some time. The output arc
delay may be a constant value, a calculated or random variable. The output arc
delay cannot influence the enabling of a transition, but only the time stamps of
the generated tokens. A delay is added to an arc by adding to the arc inscription

4 R. Tolosana-Calasanz, O.F. Rana, and J.A. Bañares

the symbol and an expression that evaluates to the number of time units, e.g. let
t be a positive integer and x+1 an integer token value, the output arc inscription
x+1@t indicates that the token value x+1 has to be moved after t time units. Time
inscriptions can also be added to input arcs, these kind of inscriptions require
that a token remains available for a given time before enabling the transition.

The Taverna workbench is a tool for editing Simple Conceptual Unified Flow
Lanaguage (SCUFL) scripts, which define workflow as a network of processors
and links, and vizualizing their enactment by a built-in workflow enactment
engine. The SCUFL language is primarily aimed at users who currently use
web forms or scripting languages to interact with web resources. The Taverna
workbench is extensively used in the bioinformatics community, and has also
been integrated within the myExperiment.org portal.

3 Related Work

Extensions to ordinary Petri nets (High-level Petri nets) are commonly used for
implementing workflows. A specific type of High-level Petri nets, the Hierarchi-
cal Petri nets, has been applied [6] for expressing hierarchical workflows in Grid
environments within the KW-f project. One of the most important advantages
of this approach is that the design models obtained can be simplified by means
of composite transitions, representing subworkflows. However, the derived Hier-
archical Petri nets are static, and cannot change once they have been specified.
Other approaches propose QoS workflow models [7] for predicting time, cost and
reliability. Nonetheless, this proposal may require modifying workflow systems
for supporting QoS management and computing the QoS metrics.

In the Performance Engineering community, traditionally, three methods have
been proposed, sometimes in complementary ways, to reveal how a system per-
forms: direct measurement, simulation and analytical techniques. Although all
of them allow system engineers to undertake testing before development, and at
a lower cost, both simulation and analytical methods share the goal of creating
a performance model of the system/device that accurately describes its load and
duration of the activities involved. Performance models are often described in
some formalisms including queuing network models [8], stochastic process al-
gebra [9] or stochastic Petri nets [10] that provide the required analysis and
simulation capabilities. A great number of these studies try to derive Petri net
performance models from UML diagrams [11,10] and to compute performance
metrics such as response time.

One aim of the CBSE field is to enable the prediction of extra-functional
system properties such as performance and reliability. There exist several ap-
proaches which estimate the performance of a component-based system. In [12],
the performance of a system is estimated by specifying the internal components
in a parametric way and dividing the model creation among the developer roles.
In consequence, the specification process requires a deep knowledge of each com-
ponent and no empirical and real measurement of the system is needed. In con-
trast, another interesting approach [13] considers systems’ components as black

Automating Performance Analysis from Taverna Workflows 5

boxes where no internal knowledge of them is known. Therefore, each system
component requires an intensive real measurement of its performance.

On the other hand, the Business Process Execution Language for Web Services
(BPEL 1), has emerged as the de facto standard for workflow implementation
for business processes. The use of BPEL for representing scientific workflows is
still limited. BPEL can be translated into Petri nets as pointed out in [14].

4 Automated Model Construction

Most workflow languages can be described formally by context-free grammars
and, in consequence, workflows may be parsed and translated into other lan-
guages automatically. In particular, they could be translated into Petri nets,
because the formalism of Petri nets, despite some limitations [15], can express
most workflow operations or patterns properly. In this work, this fact is exploited
in order to obtain a Petri net based model from a given workflow. Figure 1 shows
our automated model construction, first there is a parser, a process that receives
a workflow as an input, analyses its structure and builds a parse tree as an out-
put by following well-known parsing techniques [16]. Then, the model constructor
process takes that parse tree and a set of transformation rules (mappings from
the workflow language patterns to the Petri net model patterns) and builds a
timed Reference net model. In some cases, the structure of that obtained Petri
net model can be analysed so that deadlocks could be searched in it by using
some of the existing techniques at Petri net theory such as reachability graph
analysis and tools such as GreatSPN. It is important to note that both the parser
and the model constructor are not part of Renew, in fact, they are completely
different systems. Renew is used in this paper for simulating the obtained model
as it will be shown in Section 5.

One of the advantages of our approach is that Petri net models provide a
visual representation of the aspects related to performance (response time, in
particular) of the real system, that is, a simplified and graphical view of the
original workflow: elements of the workflow that do not affect the execution
time are deliberately suppressed in the model.

In order to obtain models automatically from Taverna workflows, specific
parsing and model constructor components should be developed as well as the
transformation rules (the Taverna workflow language has been formally defined
in [17]). Here, a prototype parser and model constructor were developed. The
parser takes a Taverna workflow and builds a parse tree. The parse tree along
with the transformation rules are used by the model constructor for automati-
cally derive a Petri net based performance model.

Essentially, a Taverna workflow consists of a collection of processors with data
and control links among them. A data link establishes a dependency between
the output of a processor and the input of another one, whereas a control link
between two tasks indicates that a processor can only begin its execution after
some other processor has successfully completed its execution. Processors are
1 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

6 R. Tolosana-Calasanz, O.F. Rana, and J.A. Bañares

Fig. 1. Automated Model Construction Process

implemented either as local Java classes, or as Web Services. The system is also
provided with specific Java-based processors which allow the user to express the
choice pattern. Another interesting feature of Taverna’s workflow language is
its implicit iterations. Thus, when two processors are interconnected by a data
link, the output of a processor is linked to the input of the other. In case the
input is expected to be single, but the output happens to be multiple, for each
component in the multiple output, Taverna invokes the latter processor once.

Therefore, the transformation rules from Taverna’s workflow language to our
timed Reference net based models are:

– A Taverna processor can be modelled by a Petri net transition and its in-
put and output data by the corresponding input and output Petri-net places
(Figure 2a). In contrast, a Java-based processors implementing choice should
be modelled by the Petri net choice pattern shown in Figure 2c. Other ele-
ments such as Taverna processors implementing constant values, such as the
String-type constant processors, do not have to appear in the model as they
only provide constant data in constant time, and it does not determine the
performance of the original workflow.

– A data dependency between two tasks in Taverna can be modelled by con-
necting two transitions with a place and its corresponding directed arcs as in
Figure 2b. The place between the transitions models the data being passed
between the two tasks.

– A control dependency between two tasks can be modelled in the same way
by connecting two transitions with a place and its corresponding directed
arcs as shown in Figure 2b. In contrast, in this case, the place models just
the control dependency.

– Implicit iterations could be modelled explicitly, but there is no real advan-
tage in doing this, and the original workflow structure would be distorted.
Therefore, we prefer to conserve the same structure and not to model them
explicitly.

Later, in Section 5, the model will be parameterised properly for estimating
the execution time of implicit iterations, as well as the execution time of choices
and tasks.

Automating Performance Analysis from Taverna Workflows 7

Fig. 2. Transformations of Taverna’s workflow language elements into High-level Petri
net elements

4.1 Pathway to PubMed Workflow Example

Taverna’s Pathway to PubMed workflow– taken from myexperiment 2– represents
a real workflow example. It takes a lists of terms or words as an input, builds a
query and retrieves publication information from the PubMed database.

2 http://www.myexperiment.org

8 R. Tolosana-Calasanz, O.F. Rana, and J.A. Bañares

Fig. 3. Taverna’s Pathway to PubMed workflow graphical representation, obtained
from myexperiment.org and a timed Reference net model obtained from it automatically

Figure 3 shows a graphical representation of the workflow and a timed Reference
net model obtained from it automatically. Nevertheless, the potential capability of
Renew’s Reference nets can be further exploited for modelling the
internal structure of a workflow with varying degrees of granularity, obtaining
hierarchical workflow models. In Figure 4, a hierarchical model for the Pathway
to PubMed workflow is depicted. The workflow model can be seen as a sequence
of three main parts: the initial part, the part corresponding to Retrieve abstracts
and the final part. The model expressing that idea is depicted in Figure 4. Each
phase is modelled with the same mechanism which consists of two transitions and
a place that holds the corresponding subtasks (a subworkflow) at each phase. More

Automating Performance Analysis from Taverna Workflows 9

{hd:tl}tl

l

hd

w:new wf_extractPMID;
w:begin(this)

w:end()

w:new wf_mergeAbstracts;
w:begin(this)

w:end()

[key,value]

:getParams(key,value):extractParams(l)

t2

t4

t1 this:extractParams(list)

w

t3

w

w

w:new wf_retrieveAbstracts;
w:begin(this)

t5 w:end()

Retrieve_abstracts

w

w

w

Merge_abstracts

ExtractPMID

t6

t7

t8 t9

list

Fig. 4. Hierarchical Reference net model of Taverna’s Pathway to PubMed workflow

extractPMID

run_eSearch

parametersXML_eFetch

pms@t11

pms@t13

t1

t2

t3

t4

t5 :end()

:begin(pms);

pms@t12

pms

pms

pms:getParams("parametersXML_eFetch",t11)

pms:getParams("run_eSearch",t12)

pms:getParams("extractPMID",t13)

pms

pms

pms

ExtractPMID

Fig. 5. Reference net model of the initial part (initial subworkflow) of Taverna’s Path-
way to PubMed workflow

10 R. Tolosana-Calasanz, O.F. Rana, and J.A. Bañares

specifically, when Transition t2 is fired, a new object net modelling the initial
part of the workflow is created (action w:new wf extractPMID) and its execu-
tion started (by invoking the synchronous channel w:begin(this)). Then, only
when the subworkflow wf extractPMID finishes, Transition t3 is fired. After that,
the Retrieve abstracts middle phase can start its execution. It is important to note
that the arcs and place between Transition t3 and Transition t6 represents the
data dependency between tasks extractPMID and concat abstract ids at the orig-
inal workflow. Transitions t8 and t9 and its synchronous channels in the figure,
related to the simulation aspects of the model, will be described in Section 5.

In consequence, between Transitions t2 and t3, the tasks corresponding to the
initialphase are enacted. The extractPMID group of tasks ismodelledby the object
net depicted in Figure 5. The execution of this net is started at its initial Transition
t1 (when invoked through the synchronous channelbegin).The execution consists
of three tasks,parameterXML eFetch,run eSearchandextractPMID, that are en-
acted one after another and connected by data dependencies. These tasks are mod-
elled by Transitions t2, t3 and t4, respectively, and their data dependencies by the
corresponding arcs and places. The subworkflow ends at Transition t5 which syn-
chroniseswithTransitiont3of the systemnetmodel (Figure4).Thearc inscriptions
are related to the simulation aspects that will be further explained in Section 5.

5 Performance Analysis from Model

In Section 4.1, a timed Reference net model of Taverna’s Pathway to PubMed
workflow was obtained. In this section, the model is fed with a timing
profile and then simulated in Renew and a performance estimation is obtained.
Here the timing aspects of the model are explained – which are key to deriv-
ing the performance model. Each output arc in Figure 5 has a parameterized
time inscription. These parameters are obtained from the synchronous channel
getParams at simulation time. The mechanism works as follows: the system net
at Figure 4 obtains a token as the simulation input. This token consists of a list
of time parameters. These parameters are sent from Transition t1 to Transition
t8 which is going to store them throughout the simulation process (it is impor-
tant to note that Transition t1 and t8 communicate via the synchronous channel
extractParams). Each time parameter is a pair (key, value) where key repre-
sents the name of the task and value represents its associated parameterized
delay, which represents an estimate of the execution time of the task. Then, the
synchronous channel getParams of Transition t9 at the system net is invoked
by each transition modelling a task in the subworkflows (object nets).

After extracting the parameters in the system net, the simulation will continue
at the subworkflow ExtractPMID (Figure 5). In this subworkflow, at Transition
t1, the time stamp associated with the token is 0. After the simulation of task
parametersXMLFetch at Transition t2, it has a value of t11. After run eSearch,
its value is t11 + t12 and at the end of the simulation of this subworkflow, and
at the beginning of the simulation of the next subworkflow (Retrieve abstracts),
the time stamp is t11 + t12 + t13.

Automating Performance Analysis from Taverna Workflows 11

merge_abstract_ids

pms@t32pms@t31

pms@t33

pms@t34

:end()

merge_abstracts

Merge_abstracts

t1

t2 t3

t4

t5

t6

:begin(pms);

merge_dates
pms:getParams("merge_dates",t31) pms:getParams("merge_abstracts",t32)

pms pms

pms:getParams("concat_abstract_ids",t33)
concat_abstract_ids

pms:getParams("merge_abstract_ids",t34)

pms

pms pms

pms pms

pms

Fig. 6. Reference net model corresponding to the final part (or subworkflow) of PubMed

In case a task has several inputs coming from different and parallel execution
flows, the task cannot be executed until all its input data are available. In our
proposal, this fact can be easily modelled by the semantics of timed Reference
nets and its output arc inscriptions. Consider the subworkflow Merge Abstracts
of Figure 6. It has two tasks called merge dates and merge abstracts – mod-
elled by Transitions t2 and t3, respectively – and their outputs go into task
concat abstract ids – modelled by Transition t4. Then, Transition t4 receives
two tokens but it will not be enabled until both tokens will be available and this
will happen when the token with the highest associated delay is available.

5.1 Simulations with Different Timing Profiles

The result of the overall execution time prediction relies on the value of each
time parameter provided at the beginning of a simulation. Different timing pro-
files can be introduced in our model: (i) constant time values, (ii) probability
distributions and (iii) values obtained from real measurement of the workflow
system. Combination of these are also possible.

The constant time value profile could be useful when software engineers have a
particular interest in exploring certain behaviours (i.e. for identifying
possible critical paths and potential bottlenecks) of the workflow at specific
circumstances. The probability distribution based time value profile may be re-
quired when there is little knowledge about the performance of the tasks, the
result in this case will also depend on the probability distribution chosen and its
characterisation. The third profile is based on real measurement by instrument-
ing the workflow system. Some workflow systems such as Taverna provide real

12 R. Tolosana-Calasanz, O.F. Rana, and J.A. Bañares

performance data of each of its tasks when enacting a workflow. Nonetheless,
performance data could also be obtained by manually instrumenting the work-
flow system. This can be achieved by providing a wrapper for each component in
the workflow. The wrapper measures execution time of the component (by using
a timer to measure the time interval between the received execution request, and
the subsequent result that is generated once execution completes). However, such
an approach leads to additional performance overheads, and would necessitate
re-writing of the original workflow. These estimated times may consider factors
such as different input data, component failures, network delays or operating
system and hardware architecture aspects.

5.2 Performance Prediction at the PubMed Workflow

Our PubMed workflow model was fed with a timing profile based on real mea-
surement, provided by execution of the workflow in Taverna. Even though Tav-
erna can provide some real performance data, it does not track the execution
time of the tasks forming part of subworkflows and provides only the sub-
workflow overall execution time. Thus, as no real measurements of the tasks of
subworkflow Retrieval abstracts can be obtained directly from the Taverna en-
actor, that subworkflow was treated in the model as a black box, whereas the
initial and final parts are treated as white boxes, in other words, the hierar-
chical model will simulate the execution of all the tasks of the initial and final
subworkflows but will consider Retrieval abstracts as a single execution unit or
task.

The PubMed workflow takes the input terms and builds a query. This query
consists of a parameter max return that limits the maximum number of PubMed
records to retrieve, by default up to 500. Our experiments were accomplished

Fig. 7. Correlation between workflow data input and Retrieve abstracts execution
time

Automating Performance Analysis from Taverna Workflows 13

Fig. 8. Comparison between 8 real workflow execution times with 8 different inputs
(queries in the end) and their corresponding estimated workflow execution times at
PubMed

on the PubMed workflow with the same input (the term cancer that appears
in many documents), but changing max return values in the range from 0 to
500. For each value of max return, execution times were obtained for each of
the tasks. It was found that the execution time for Retrieve abstracts dominated
the other parts of the workflow, and was the key task influencing the overall
workflow execution time. Additionally, there is a linear correlation between the
max return value and the execution times of tasks as shown in Figure 7.

In consequence, given an input data, this linear correlation can be used for
obtaining the execution time of Retrieve abstracts and the execution times of
the rest of the tasks. In order to know the number of records that the input
data is going to retrieve from PubMed, there is a PubMed component service
that can calculate it at a low execution time. Then, once the timing profile is
obtained, the model can be fed with it and the overall workflow performance
can be estimated. It should be noted that in the workflow there are four implicit
iterations and they are estimated by means of the linear correlation found. In
Figure 8 some real executions of PubMed workflow are compared to their corre-
sponding estimations obtained from the model. Input data 1, 2, 5 and 7 retrieve
500 PubMed records, whereas input data 3, 4, 6 and 8 retrieve 16, 31, 11 and
117 records, respectively.

6 Conclusions

A method for predicting the execution time of a given workflow has been pro-
posed. A performance model from a given workflow is derived in an automated

14 R. Tolosana-Calasanz, O.F. Rana, and J.A. Bañares

way, focusing on the Taverna workflow system. The model obtained is a Refer-
ence net, a specific type of Petri net. The Reference nets are extended with time,
so that each task in the model is parameterised with a time value, representing
the execution time of the task. This model can be interpreted by the Renew
tool and the workflow execution time can be estimated. As this estimation relies
mainly on the time parameters of the tasks, we propose several timing profiles:
profiles obtained from real measurement of the workflow system, stochastic val-
ues and constant values which in addition to performance prediction allow us
to test the model behaviour under specific situations. The process is illustrated
with a real workflow of Taverna: Pathway to PubMed, and the results from the
model are compared with actual executions through the Taverna system.

A particular workflow is described to concretize the approach, which can be
generalised to other systems. Workflow descriptions consist of (i) sequence op-
erations connecting ordered series of tasks; (ii) parallel operations connecting
tasks that will be executed concurrently; (iii) choice operations to select one
execution flow among the alternative ones according to an evaluated condition;
(iv) iteration constructs supporting the repetition of a subworkflow as long as an
associated condition is true. The formalism of Petri nets, despite some limita-
tions [15], can model most of these operations, subsequently the obtained models
can be used in order to analyse and study the workflow performance.

As a future work, some kind of heuristics could be developed for simplifying
the calculation of the execution times of components at the system and it could
be based for instance on certain aspects such as the input data size.

Acknowledgements

The authors wish to thank Prof. Ezpeleta of the University of Zaragoza and the
anonymous reviewers for their suggestions and comments. Besides, this work has
been supported by the research project TIN2006-13301, granted by the Spanish
Ministry of Education and Science. Rafael Tolosana’s work has been supported
by “Programa Europa XXI de Estancias de Investigación” reference number IT
1/08, granted by DGA (CONAID) and CAI.

References

1. Russell, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow control-
flow patterns: A revised view. Technical report, BPM Center Report BPM-06 22,
BPMcenter.org (2006)

2. Tolosana-Calasanz, R., Bañares, J.A., Álvarez, P., Ezpeleta, J.: Vega: a service-
oriented grid workflow management system. In: Meersman, R., Tari, Z. (eds.) OTM
2007, Part II. LNCS, vol. 4804. Springer, Heidelberg (2007)

3. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for petri nets:
Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
484–493. Springer, Heidelberg (2004)

Automating Performance Analysis from Taverna Workflows 15

4. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of
IEEE 77, 541–580 (1989)

5. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.
In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer,
Heidelberg (1998)

6. Alt, M., Hoheisel, A.: Petri Nets. In: Workflows for e-Science, pp. 190–207. Springer,
Heidelberg (2007)

7. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. Web Semantics: Science, Services and Agents
on the World Wide Web 1(3), 281–308 (2004)

8. Menasce, D.A., Gomaa, H.: A method for design and performance modeling of
client/server systems. IEEE Transactions on Software Engineering 26(11), 1066–
1085 (2000)

9. Bernardo, M., Ciancarini, P., Donatiello, L.: Aempa: a process algebraic description
language for the performance analysis of software architectures. In: WOSP 2000:
Proceedings of the 2nd international workshop on Software and performance, pp.
1–11. ACM Press, New York (2000)

10. Bernardi, S., Merseguer, J.: Performance evaluation of uml design with stochastic
well-formed nets. J. Syst. Softw. 80(11), 1843–1865 (2007)

11. Hu, Z., Shatz, S.M.: Mapping uml diagrams to a petri net notation for system
simulation. In: Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering (SEKE 2004), pp. 213–219 (2004)

12. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the palladio component model. In: WOSP 2007: Proceedings of the 6th interna-
tional workshop on Software and performance, pp. 54–65. ACM, New York (2007)

13. Hamlet, D.: Software component composition: a subdomain-based testing-theory
foundation. Softw. Test. Verif. Reliab. 17(4), 243–269 (2007)

14. Aalst, W.M.P., Lassen, K.B.: Translating workflow nets to bpel. Technical report.
In: BETA Working Paper Series, WP145, Eindhoven University of Technology
(2005)

15. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow patterns: On the expressive
power of (petri-net-based) workflow languages. In: Proc. of the Fourth International
Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus,
Denmark, Technical Report DAIMI PB-560, pp. 1–20 (2002)

16. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compiler: Principles, Techniques
and Tools, 2nd edn. Pearson Education, London (2007)

17. Turi, D., Missier, P., Goble, C., Roure, D.D., Oinn, T.: Taverna workflows: Syntax
and semantics. In: E-SCIENCE 2007: Proceedings of the Third IEEE International
Conference on e-Science and Grid Computing, Washington, DC, USA, pp. 441–448.
IEEE Computer Society, Los Alamitos (2007)

An Empirical Investigation of the Effort of Creating
Reusable, Component-Based Models for Performance

Prediction

Anne Martens1, Steffen Becker2, Heiko Koziolek3, and Ralf Reussner1

1Chair for Software Design and Quality
Am Fasanengarten 5, University of Karlsruhe (TH), 76131 Karlsruhe, Germany

2FZI Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany
3ABB Corporate Research, Wallstadter Str. 59, 68526 Ladenburg, Germany

{martens,sbecker,koziolek,reussner}@ipd.uka.de

Abstract. Model-based performance prediction methods aim at evaluating the
expected response time, throughput, and resource utilisation of a software system
at design time, before implementation. Existing performance prediction methods
use monolithic, throw-away prediction models or component-based, reusable pre-
diction models. While it is intuitively clear that the development of reusable mod-
els requires more effort, the actual higher amount of effort has not been quantified
or analysed systematically yet. To study the effort, we conducted a controlled ex-
periment with 19 computer science students who predicted the performance of
two example systems applying an established, monolithic method (Software Per-
formance Engineering) as well as our own component-based method (Palladio).
The results show that the effort of model creation with Palladio is approximately
1.25 times higher than with SPE in our experimental setting, with the resulting
models having comparable prediction accuracy. Therefore, in some cases, the cre-
ation of reusable prediction models can already be justified, if they are reused at
least once.

Keywords: Performance Prediction, Empirical Study, Controlled Experiment.

1 Introduction

As current applications always ask for maximum performance, performance problems
are continuously prevalent in many software systems [20]. Model-based prediction
methods [1] try to tackle these problems during early design phases to avoid the prob-
lem of implementing architectures which are not able to fulfil certain performance
goals. They counter the still popular ”fix-it-later” attitude towards performance prob-
lems. Many of these methods use designer-friendly UML-based models for software
developers, and transform them into formal models (e.g., queueing networks, stochas-
tic Petri-nets, stochastic process algebras), from which performance measures (e.g.,
response times, throughput) can be derived analytically or via simulation.

During the last decade, researchers have proposed several monolithic prediction ap-
proaches (such as SPE [20], uml2LQN [15], umlPSI [2], survey in [1]) and several

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 16–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Component-Based Models for Performance Prediction 17

component-based (CB) prediction approaches (such as CB-SPE [7], ROBOCOP [8],
and Palladio [6], survey in [5]). CB approaches try to leverage the benefits of compo-
nentry in the sense of Szyperski [21] by reusing well-documented component specifica-
tions. This is of particular interest for performance prediction methods, as CB software
designs limit the degree of freedom for implementation by (at least partially) reusing
existing components. This can also lead to higher performance prediction accuracy. In
addition, reusable component prediction models can be composed isomorphically to the
software architecture, thereby lowering the effort of performance modelling.

Palladio features highly parametrised component performance specifications, which
are better suited for reuse than those of other approaches, because they include more
context dependencies (i.e., dependencies to external service calls, usage profile, re-
source environment). The effort for creating such parametrised, CB models is naturally
higher than for throw-away models. However, until now this higher effort has not been
investigated systematically. Therefore, it is an open question when it is justified.

Based on this observation, we conducted a controlled experiment comparing the ef-
fort of applying SPE (as an example for a method with throw-away models) and Palladio
(as an example for a method with reusable models). In this paper, we present the results
for the following question: (Q1) What is the duration of modelling and predicting with
both methods? As we wanted to assess the effort of applying the methods without bias,
we let 19 computer science students apply the methods in an experimental setting. They
analysed two CB software systems and assessed the performance impact of additional
five design alternatives (e.g., introducing caches, replication, etc.). By using tools ac-
companying the methods (SPE-ED and PCM-Bench), they predicted response times
for two different usage profiles. Therefore we assessed the effort for the combination of
applying the method and the corresponding tools.

Our results show that modelling the whole task (that is the initial system and five
additional design alternatives) took in average 1.25 times longer with Palladio than with
SPE. Interestingly, modelling only the initial architecture took in average 1.81 times
longer. The students spent most of the time modelling the control flow and debugging
their models, to make them valid for the analyses tools.

In a second paper [13], we further analysed the accuracy of the predictions achieved
by the students compared to a sample solution. Additionally, we searched for reasons
for the achieved prediction accuracy by analysing the models created during the exper-
iment and evaluating questionnaires filled out by the participants after the experiment.
For reasons of self-containedness, sections 2.3, 3.2 - 3.4, 5.1 and 6 are similar in both
papers, as they describe and discuss the common experiment setting.

The contributions of this papers are (i) the design of an experimental setting for
comparing performance prediction methods, allowing the replication of the study, and
(ii) a first quantification of the effort required to produce reusable prediction models.

This paper is organised as follows. Section 2 presents the basics of model-driven
performance prediction and briefly introduces SPE and Palladio. Afterwards, Section 3
explains the experimental design, before Section 4 illustrates the results. Section 5 dis-
cusses the validity of the empirical study and provides potential explanations for the
results. Related work is summarised by Section 6, while Section 7 concludes the paper
and sketches future work.

18 A. Martens et al.

2 Model-Driven Performance Prediction

2.1 Background

Several model-driven performance prediction approaches have been proposed [1], all of
which follow a similar process model (Fig. 1). First, developers annotate plain software
design models (e.g., UML models) with estimated or already measured performance
properties, such as the execution time for an activity or the number of users concurrently
issuing requests.

Software
Model

Performance
Model

Prediction
Metric

- UML + SPT profile
- Use Case Maps
- ADL
- ...

- Queueing Networks
- Stoch. Petri-Nets
- Stoch. Process Algebra
- ...

- Response Time
- Throughput
- Resource Utilisation
- ...

Transform Solve

Feedback

Fig. 1. Performance Prediction Process

Second, model transformations automatically convert the annotated software models
into established performance formalisms such as queueing networks (QN), stochas-
tic Petri nets (SPN), or stochastic process algebras (SPA). Existing analytical or si-
mulation-based solution techniques then automatically derive and report performance
measures, such as response times for specific use cases, maximum throughputs, or the
utilisation of resources, which is crucial for identifying performance bottlenecks. Devel-
opers compare the predicted results to their requirements and decide whether to change
their design or to start implementation. Only a few approaches implement an automated
feedback of the prediction results into the software design model.

For our experiment, we compared our component-based Palladio method [6] with the
mature, monolithic Software Performance Engineering (SPE) method [20]. We chose
SPE as it has been applied in practice and provides a reasonably usable tool support, un-
like many other approaches [11] solely proposed by academics. The following two sec-
tions briefly describe the two approaches, which both follow the process model sketched
above.

2.2 SPE

The SPE method was the first elaborated, practically applicable comprehensive ap-
proach for early, design-time performance prediction for software systems [19]. SPE
primarily targets software architects and performance analysts during early develop-
ment stages. They identify key scenarios (i.e., use cases critical to the overall system
performance) and set performance goals for the scenarios (e.g., max. response time)
based on the requirements.

Afterwards, developers use a software execution model (Execution Graph, EG) to
describe steps within such a performance-critical scenario. EGs are similar to UML ac-
tivity diagrams and allow annotating each step with resource requirements, for example
the number of needed CPU instructions.

Component-Based Models for Performance Prediction 19

With a so-called overhead matrix, software resource requirements in EGs (e.g., a
database access) can be mapped to system resources (e.g., 10 ms for a hard disk ac-
cess per database access). Several scenarios and the corresponding user arrival rates on
different machines can be combined to form a system execution model.

EGs do not necessarily reflect actual componentisation of a system, but provide an
abstraction of the most performance-relevant steps in a scenario. This is useful for con-
ducting performance analyses as early as possible during the life-cycle of a system,
when many details are still unknown. It also limits the developers’ effort for initial mod-
elling. However, dependencies on the specific project context are not made explicit, but
are mixed with component specifics. Thus, it is usually not possible to readily reuse the
resulting performance models when reusing the software components. Additionally, the
models cannot be used for model-driven development, as their performance-related ab-
straction does not provide enough information for other purposes like code generation.

The SPE methodology has been applied in industrial settings. Several anonymised
case studies are provided in [20].

2.3 Palladio Component Model

The Palladio Component Model (PCM) [6] is a meta-model for specifying and
analysing component-based software architectures with focus on performance
prediction.

This meta-model is divided among the separate developer roles of a component-
based development process: The component developer produces independent, reusable
component specifications. The other roles (software architects, system deployers, do-
main experts and quality-of-service analysts) provide information on the project-
specific context, such as binding of the components, their allocation to hardware and
their usage. The meta-model provides each role with a domain-specific language suited
to capture their specific knowledge [6].

To support the creation of reusable component performance models, the component
specifications are parametrised by influence factors whose later values are unknown to
the component developer. In particular, these are the performance measures of external
service calls, which depend on the actual binding of the component’s required interfaces
(provided by the software architect), the actual resource demands which depend on the
allocation of the components to hardware resources (provided by the system deployer),
and performance-relevant parameters of service calls (provided by the domain expert).

The parametric behavioural specification used in the PCM as part of the software
model is the Resource Demanding Service Effect Specification (RD-SEFF) which is a
control and data flow abstraction of single component services, also similar to UML ac-
tivity diagrams. It specifies control flow constructs like loops, or branches only if they
affect external service calls. Additionally, they abstract component internal computa-
tions in so called internal actions which only contain the resource demand (e.g. reading
100 Bytes from a hard drive) of the action but not its concrete behaviour. Calling ser-
vices and parameter passing are specified using external call actions, which only refer
to the component’s required interfaces to stay independent of the component binding.
Hence, unlike EGs, RD-SEFFs reflect the componentisation of the system and allow
to create component specifications that can be reused in other project contexts. In this

20 A. Martens et al.

Table 1. GQM plan overview

Goal Empirically investigate the effort to create and analyse performance pre-
diction models using Palladio and SPE

Question 1 What is the duration of predicting the performance?
Metric 1.1 Average duration of a prediction avda = avg({dp |p ∈ Pa })

Metric 1.2 Break down of the duration avdacta,i =
normda(avg({dacti,p |p ∈ Pa }))

Hypothesis 1.1 A Palladio prediction needs 1.5 as long
as an SPE prediction

avdPal = 1.5 · avdSPE

Hypothesis 1.2 For both approaches, the largest time fraction is needed to model the system
1 l i

experiment, we thus measure the additional effort required to reflect the componentisa-
tion in the Palladio models (in contrast to the SPE models).

3 Empirical Investigation

For the empirical investigation, we formulated a goal, one question and derived metrics
using the Goal-Question-Metric approach [4]. The goal of this work is:

Goal: Empirically investigate the effort to create and analyse performance pre-
diction models using Palladio and SPE.

For each metric, hypotheses were formulated to support the evaluation of the metrics
and answering the question. The same metrics can also be used when repeating this
experiment. Details are presented in section 3.1.

We conducted the investigation as a controlled experiment. Section 3.2 presents the
experiment’s design, section 3.3 describes the preparation of the participants. The tasks
and the experiment execution are presented in section 3.4 and 3.5, respectively.

3.1 Questions and Metrics

For each metric, we have formulated hypotheses to support the evaluation of the metrics
and answer the question. After an informal explanation, we give a formal description
for the metrics. Table 1 summarises goal, question, metrics, and hypotheses.

Q1: What is the duration of predicting the performance? To evaluate the effort for
making a prediction, we looked at the time needed, i.e. the duration, because time (in
terms of person-days) is the major factor of effort and costs. For an empirical study of
the effort of any software development technique, it is inevitable to include the used
tools. Thus, here we measured the effort for the combination of applying the method
(SPE and Palladio) and the corresponding tools (SPE-ED and PCM-Bench).

Metric 1.1 is the average duration of making a performance prediction. The dura-
tion includes reading the specification (ra), modelling the control flow (cf), adding
resource demands (rd), modelling the resource environment (re), modelling the usage

Component-Based Models for Performance Prediction 21

profile (up), searching for errors (err) and analysing (ana). Metric 1.2 breaks down the
overall duration into the duration of the different activities of a performance prediction
mentioned above.

Our hypothesis 1.1 was that a Palladio prediction needs 1.5 times as long as an SPE
prediction. We based this hypothesis on experience from the field of code reuse cost
models, where a median relative cost of writing for reuse of 1.5 over several studies
was detected by [16, p.29], with a standard deviation of 0.24. Furthermore, hypothesis
1.2 is that the entire modelling, including cf , rd, re, and up, is the largest fraction of
the duration with both approaches, which should be the case as the analysis is auto-
mated. Still, as the tools are not equally matured and Palladio uses simulation, which
takes more time than SPE’s analytical solution, the hypothesis is not beyond doubt. Ad-
ditionally, we did not know whether the results can be readily interpreted by the users,
and we wanted to check this assumption.

In the following, the metrics are defined formally. Each variable is defined only once
and keeps that definition throughout this work. Let A = {SPE, Pal} be the approaches
under study. With a ∈ A, let Pa be the set of participants applying approach a.

Metric 1.1: For each participant p ∈ Pa, the duration dp of making a performance
prediction is measured. The duration is averaged over all participants. To do so, the
function avg is defined as the arithmetic mean of a set of real values.

Metric 1.1: For a ∈ A : avda = avg({dp |p ∈ Pa })

Metric 1.2: Let Act = {ra, cf, rd, re, up, err, ana} be the set of different perfor-
mance prediction activities mentioned above. We measured the duration of each of the
single steps i ∈ Act for each participant p ∈ Pa and named it dacti,p. We averaged it
over all participants and normalised it, i.e. gave it as a percentage of the overall duration
avda.

Metric 1.2: For i ∈ Act, a ∈ A :
avdacta,i = normda(avg({dacti,p |p ∈ Pa }))

3.2 Experiment Design

The study was conducted as a controlled experiment and investigated the effort with
participants who are not the developers of the approaches. The participants of this study
were students of a master’s level course (see section 5.1 for the discussion of student
subjects). In an experiment, it is desirable to trace back the observations to changes of
one or more independent variables. Therefore, all other variables influencing the results
need to be controlled. The independent variable in this study was the approach used
to make the predictions. Observed dependent variables were the duration of making a
prediction and the quality of the prediction to ensure a minimum quality.

The experiment was designed as a changeover trial as depicted in figure 2. The par-
ticipants were divided into two groups, each applying an approach to a given task. In
a second session, the groups applied the other approach to a new task. Thus, each par-
ticipant worked on two tasks in the course of the experiment (inter-subject design) and
used both approaches. This allowed to collect more data points and balanced potential
differences in individual factors such as skill and motivation between the two experi-
ment groups. Additionally, using two tasks lowered the concrete task’s influence and

22 A. Martens et al.

Deploying Software Components for

Performance

Vibhu Saujanya Sharma1 and Pankaj Jalote2

1 Accenture Technology Labs India, IBC Knowledge Park, 4/1 Bannerghatta Road,
Bangalore, India

vibhu.sharma@accenture.com�

2 Dept. of Computer Science and Engineering, Indian Institute of Technology Delhi,
New Delhi, India

jalote@cse.iitd.ac.in

Abstract. Performance is a critical attribute of software systems and
depends heavily on the software architecture. Though the impact of the
component and connector architecture on performance is well appreci-
ated and modeled, the impact of component deployment has not been
studied much. For a given component and connector architecture, the
system performance is also affected by how components are deployed
onto hardware resources. In this work we first formulate this problem of
finding the deployment that maximizes performance, and then present a
heuristic-based solution approach for it. Our approach incorporates the
software architecture, component resource requirements, and the hard-
ware specifications of the system. We break the problem into two sub-
problems and formulate heuristics for suggesting the best deployment in
terms of performance. Our evaluation indicates that the proposed heuris-
tic performs very well and outputs a deployment that is the best or close
to the best, in more than 96% cases.

1 Introduction

Software performance is an important attribute, especially for systems which
handle a large number of transactions. It is imperative for these systems to be
responsive and to be able to serve a large number of clients simultaneously. Per-
formance of such systems depends on its software architecture (particularly the
component and connector view which captures a dynamic structure of the system
[5]), and the characteristics of the individual components in the architecture. The
architecture and the resource requirements of the individual components affect
the way the software system will use the available resources and determines the
average amounts of processing required on different types of hardware resources.
The machine hardware capabilities in turn determine how fast the different pro-
cessing demands can be met, and determine the rate at which the client request

� The first author was a graduate student at Indian Institute of Technology Kanpur,
when this research work was conducted. This forms a part of his Ph.D. thesis [10].

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 32–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deploying Software Components for Performance 33

or jobs will be serviced. Many models have been proposed to evaluate the im-
pact of the component and connector architecture of a system on its performance
[1,11,14].

Another key factor affecting system performance is deployment of the software
components onto the available hardware. For a given component and connector
architecture, how the components are deployed on the available hardware affects
the performance of the system. The ideal deployment is one in which the hard-
ware devices are adequately utilized, and the software components do not have
to face much contention while utilizing the resources, thus resulting in high per-
formance. On the other hand, a bad deployment can severely degrade the system
performance, even with efficient software components and fast hardware. Most
architecture-based performance evaluation approaches focus on modeling the
impact of the component and connector structure on performance, and assume
that deployment is given. Some of them recognize the importance of deployment
in performance and list it as a future area [7,9].

In this paper we address the problem of finding the deployment of software
components in a given component and connector model onto the available hard-
ware so as to maximize performance. For simple systems the best deployment
may be easy to determine as all possible allocations can be examined. But it is
not so for systems with complex software architecture, where a large number of
possible options exist for deploying each component.

We develop heuristic-based solution approaches for this problem in this pa-
per. We break the component deployment problem into two sub problems and
formulate heuristics for suggesting the best component deployment in terms of
performance. We then evaluate the heuristics and compare them using a large
set of randomly generated system configurations and identify the best heuristic
combination. The proposed heuristic combination gives either the best possible
deployment or a deployment very close to the best in more than 96% cases.

In the next section, we look at an example system to appreciate the impact
of component deployment on performance and we define the problem formally
section 3. In section 4 we describe how by modeling the software architectures
using discrete time Markov chains, the total resource demands of components can
be determined. In section 5 we present and evaluate various heuristic solutions
for the component deployment problem. Section 6 gives some examples, and
section 7 concludes the paper.

2 Impact of Deployment on Performance

To appreciate the usefulness of finding solutions to the problem of component
deployment, let’s first investigate the difference that deployment can make to
the system performance. Consider a tiered architecture based system with five
components C1 to C5, as shown in Figure 1. In this system 80% of the requests
which come to C1 also proceed to C2. The other 20% are served and replied

34 V.S. Sharma and P. Jalote

Percentage of user requests that
go from:

C1 to C2 onwards 80%
C2 to C3 onwards 100%
C3 to C4 onwards 50%

C4 to C5 80%

Average resource demands
per visit for tiers (in ms)
Tier CPU

demands
Disk I/O
demands

C1 50 30
C2 60 30
C3 30 70
C4 50 70
C5 50 100

Average communication size per visit (in
Kbs)

Between Request − > Reply < −
Client - C1 5 100
C1 - C2 4 5
C2 - C3 5 5
C3 - C4 2.5 5
C4 - C5 4 5

C1 C2 C3 C4 C5 ClientsClients

Fig. 1. The example tiered architecture

back by C1 itself. Similarly all requests reaching C2 go further on to C3 while
only 50% requests reaching C3 go ahead to C4. Finally 80% of the requests
arriving at C4 require service from C5. We assume that the amount of average
CPU processing and average disk I/O demands associated with these component
running on a standard machine are as given in Figure 1.

Suppose this system is to be deployed on a set of three machines M1, M2 and
M3, each with a single CPU and disk. Also, suppose that the machines M1 and
M2 are standard machines, i.e., their CPU and disk processing is as fast as the
ones used to ascertain the resource demands of the software components, while
M3 has a standard CPU but its Disk processing is twice as fast as those. We
assume that the network link between the clients and M1 has a uplink (i.e. from
clients to M1) capacity of 10Mbps and a downlink capacity of 100Mbps. Further
each of the network connectors between the machines has a capacity of 10Mbps
for uplink and 10 Mbps for downlink traffic for each pair of machines. The
information regarding the average communication size per visit for the software
tiers is given in Figure 1. Note that only the communication between adjacent
tiers across different machines amounts to network traffic.

Lets assume that a software designer suggests the deployment of components
as C1 and C3 at M1, C2 at M2 and C4 and C5 at M3, possibly aiming to deploy
the components which need to perform the most disk I/O per component visit
at the machine with the faster disk. Consider another deployment where we put
C1 on M1, C2 on M2 and C3, C4, C5 on M3.

Using the two deployments, we construct two different performance models
of the system using the approach described in [11]. We solve the performance
models for a client range of 1 to 100 each with an average thinktime of 1 seconds
and plot the average throughput and response time of the two systems using the
designer’s deployment and our deployment respectively. The results are shown
in Figure 2. We can clearly see that the deployment of the software compo-
nents has a significant impact on performance. In this example, the deployment
given by the designer causes the maximum throughput of the system to be lim-
ited to about 70% of what the system could provide if the other deployment is
used.

Deploying Software Components for Performance 35

Fig. 2. The average response times and average throughputs for the two deployments

3 The Deployment Problem

We state the component deployment problem formally here. Let C1, C2, ..., Cn

be n software components of a given software architecture. Each component
Ci has its per visit resource requirements (cpui, diski, NWi) associated with it.
Consider that cpui and diski denote the component’s average CPU processing
and the average disk I/O requirements per visit respectively, and NWi denotes
a vector containing the average amount of network traffic that the component
generates towards other components, per visit.

The software system has to be deployed on a system of m machines M1, M2,
..., Mm. For each machine Mj we have the speed ratings of its CPU and disk
given as rcj and rdj respectively, which signify the multiplicative factors by which
these devices are faster than those used to measure the per visit demands of the
components. Similarly the capacities of the network links in the system are given.
If L(j) denotes the set of components deployed on the machine Mj, the deploy-
ment problem is to find each of the L(j)’s, such that the overall performance is
maximized.

Note that Little’s Law [13] implies that the average response of a system is
inversely proportional to its throughput and thus maximizing throughput implies
minimizing the response time. At first, this seems to indicate that one needs
to construct the equivalent performance model for the system for evaluating
and comparing different deployments. However this is not mandatory. It is well
known that the maximum or limiting throughput that a system can support
is dependent on the most heavily loaded resource of the system [11,13]. So the
problem of maximizing the limiting throughput of the whole system reduces to
the problem of minimizing the highest total service requirement on the resources
which constitute the system. Thus instead of creating an elaborate performance
model, only the value of highest resource requirement per job from among all
the devices is needed, to compare different component deployments. The lesser
this value, the better the deployment.

For a system with n components and m machines, there are a total of mn

possible deployments to choose from and selecting the deployment that provides
the best performance. This makes the problem hard to solve. A restricted form of

36 V.S. Sharma and P. Jalote

the general deployment problem has been studied as the task-processor allocation
problem (TAP). A task is an entity that consumes some processing time on the
machine when executed, and the goal of TAP is to maximize performance by
assigning a set of tasks to a set of machines. However, even this simpler problem is
NP-hard in general [3,6]. There do exist a few approximation algorithms for TAP,
which reach within some bound of the performance of the optimal deployment.
A simple algorithm is to deploy or schedule the tasks one by one (arbitrarily)
such that a task is always assigned to the least utilized machine. This greedy
algorithm provides a good approximation to the optimal performance [3].

There are a few recent related approaches such as the optimization approach
in [8] which forms a cost function, and then uses it to find the optimal allocation
of resources to distributed applications. However that work focuses primarily
on grid-based systems. The approach presented in [9] allows a user to specify
an architectural configuration and initiates the process of actual deploying the
components, while assuring the validity of the specified configuration. Their ap-
proach can then dynamically monitor the new deployment for comparing its per-
formance with the old configuration. This is very different from the deployment
problem that we study here. In [7] the focus is primarily on runtime reconfig-
uration and changes in the system while minimizing down-time and does not
consider the performance aspects. Significantly, both of these approaches ([7,9])
consider incorporating performance aspects while deploying components as fu-
ture work. Overall, deploying components for maximizing system performance
is an important problem and to the best of our knowledge it has not been duly
explored till now. In fact it will become even more important with the advent
of web-services and service-oriented architecture, with many organisations de-
ploying systems which are inherently distributed in nature, making deployment
a key issue.

Before we move on to the solution, one should note that the general deploy-
ment problem is different from TAP because of two reasons. Firstly, software
components are inherently different from simple ‘tasks’ in that they utilize some
CPU and perform some disk I/O, and send and receive messages, for each job
that they service. Hence unlike a ‘task’ which only has a (single type of) pro-
cessing demands, a component has in fact at least two types of requirements
or demands (CPU processing and disk I/O) on each machine. Secondly, in a
component-based system, the load (or resource demand) that the component
puts on the resources it uses is not just the component resource demands, but
it also depends on its usage as governed by the software architecture of the sys-
tem. A software component may be executed more than once or even less than
once on an average for servicing a job, depending on the software architecture
and thus the actual values of the resources that the components demand from
the machine they are deployed on, are not immediately clear and need to be
calculated. One needs to model the software architecture to calculate the usage
of components, and we address this in the next section.

Note that besides the communication time, network I/O among components
often leads to CPU as well as disk I/O demands. If bandwidth is high,

Deploying Software Components for Performance 37

communication time can be small and network I/O reflects itself primarily in
the CPU and I/O demands of the component. For this study, we assume that
the machines on which the components are to be deployed, are connected by
high bandwidth connectors and the communication time is small in magnitude
compared to the CPU and disk I/O times for each job. Thus, we consider CPU
and disk as primary resources in the system.

4 Determining Total Component Demands Using a
DTMC Model

Understanding the total resource demands generated by a software component
on the hardware resources is important while deploying them. Note that this
may not be the same as per visit resource requirements as a component may be
visited many times during a job. To compute the total resource demands, we
model the software architecture of a system using a discrete time Markov chain
(DTMC). DTMCs have been used in literature, for the purpose of modeling and
evaluation of component based systems [2,11] for reliability and performance
estimation.

A DTMC represents a stochastic process with discrete state and index space
whose dynamic behavior is such that ‘probability distributions for its future de-
velopment depend only on the present state and not on how the process arrived
in that state’ [13]. A DTMC is characterized by its states and transition proba-
bilities among the states. While modeling software architectures using DTMCs,
either a single state or a set of states of the DTMC represent the software compo-
nent in execution at any point in time. Transitions between states are governed
by the transfer of control from one component to the other and appropriate prob-
abilities are assigned according to the behavior of the system [10,11]. Reaching
an absorbing state i.e. a state from which there is no transition to other states,
indicates the successful completion of a job. Other states are termed transient.
For example, Figure 3 shows the DTMC model for the tiered architecture spec-
ified earlier in Figure 1. This is a DTMC model with two states for each tier,
with the upper one representing forward flow of the client request, and the lower
one showing the flow of the reply back towards the client [10,11].

One can use DTMCs to calculate the visit counts to each of the states. As
explained in [13] the expected total number of visits per job to any transient

S0

S1 S2 S4 S5

Sf

 1

1 0.8 1 0.5 0.8

S1’ S2’ S4’ S5’

11 1 11

0.20.2

1

S3

0.5

S3’

Fig. 3. Representing the tiered architecture using a DTMC

38 V.S. Sharma and P. Jalote

state, starting from an initial state can be calculated using the transition prob-
ability matrix of the DTMC. Hence by modeling the system as a DTMC we can
find out the average number of times Vi, a component Ci will be visited for a
each job. The average visit counts characterize the average usage per job of the
components. If the per visit CPU and disk I/O requirements for component Ci

are cpui and diski respectively, the total CPU and disk I/O demands per job
for this component will be: tcpui = Vi × cpui and tdiski = Vi × diski [10]. Thus,
the total resource demands per job of each component incorporate the effect of
the usage of the component due to the system’s software architecture and the
problem now reduces to deploying a set of components with known total resource
demands onto a set of machines with known device speed ratings. However, the
problem is still different from TAP in that unlike tasks, there are two types of
demands (CPU and disk I/O) associated with each component. For a discussion
on estimation of average component resource demands, refer [10,11].

Note that using DTMCs is not critical to this approach. If one already has
the visit counts to different components then they can be used directly while
calculating the total CPU processing and disk I/O requirements per job for the
components. Next, we present some of the possible heuristics for solving this
problem and compare them.

5 Heuristics for Deploying Components

A brute force approach, for deploying components so as to find the deployment
with the best performance, would consider all possible deployments for each
component. This approach is obviously computationally too expensive. Hence
heuristics are necessary. An approach for deploying components is to pick one
component at a time for deployment on any of the machines (as was done for
assigning tasks to processors in the simple approximation algorithm for TAP
[3]). In this case, deciding which machine a particular component should be
deployed on, will be based on the resource utilizations of the machines due to
the components that have already been deployed and the resource demands of
this component.

Thus the effectiveness of the final deployment will clearly depend on the or-
der in which components are considered for deployment as well as on how the
deployment is actually done. Therefore, we divide the problem of deploying com-
ponents for maximizing performance into two sub problems. (A) Deciding the
best deployment when components are presented in a given order, and (B) Se-
lecting the order in which the components should be presented for deployment.
We consider different heuristics and compare them based on how many times
do the suggested orderings result in the best deployment or close to the best
deployment, finally selecting the heuristic that performs the best.

5.1 Deciding Deployment for a Given Component Ordering

We first consider the subproblem of deploying a given ordering of components
onto available hardware. By an ‘ordering’, we mean a sequence in which

Deploying Software Components for Performance 39

components are considered for deployment on the machines. Note that in the
absence of backtracking, the order in which components will be deployed will
affect the performance. We propose two heuristics for deploying the components
one by one onto the available machines, with a goal to reach the best deploy-
ment. These heuristics use the speed rating of the hardware, and the component
resource demands per job to decide where a component should be deployed. We
label the heuristics as D1 and D2.

Both these heuristics deploy the given ordering of software components one
by one. The heuristics process each component only once (there is no backtrack-
ing). For each component, both the heuristics first do a ‘mock-deploy’ of the
software component, in which the component is deployed on each machine one
by one, and machine specific information in recorded. The heuristics finally de-
cide where to deploy the component based on this information. Note that after
deployment of a component, the total CPU and disk execution times of the cor-
responding machine will change. For a machine Mj with speed ratings rcj and
rdj and with the set L(j) of software components deployed onto it, the aggre-
gate average CPU execution and disk I/O execution times are given by [10]:
tmcpuj =

∑
i∈L(j) (tcpui/rcj) and tmdiskj =

∑
i∈L(j) (tdiski/rdj) .

Before explaining the heuristics, we also introduce some terms. We define in-
dividual component makespan makeC as the value of its CPU or disk demands
per job, whichever is greater. We define machine makespan, makeM as its to-
tal CPU or disk execution times (due to the deployed components), whichever
is greater. Similarly the system makespan, makeS is defined as the maximum
value of makeM from among all the machines in the system at the time of eval-
uation. Specifically if tcpui and tdiski are the average resource demands per job
for a component i, and tmcpuj and tmdiskj are the average CPU execution
and disk I/O times for a machine j , then: makeCi = MAX{tcpui, tdiski},
makeMj = MAX{tmcpuj, tmdiskj}, makeS = MAX{Set of all makeMjs}.
A system with a lower value of makeM is always desirable and will have a better
performance in general.

The Heuristics. The first heuristic that we call D1, records the (resulting)
value makeM for each machine, if a component were to be deployed on that
machine. Then it picks the machine with the least value of makeM for deploying
that component. In case of the second heuristic, D2, the value recorded at each
deployment step is the resulting sum of CPU and Disk times for each machine,
if a particular component were to be deployed on that machine. The machine
with the least value of this sum is picked for deploying that component. These
heuristics are given in Figure 4.

Experimental Evaluation. For the purpose of evaluation of these heuristics,
a number of machine-software component sets are needed. We call each such set
as a system configuration. Each such configuration is specified by the number
of machines, the number of software components to deploy, a set of CPU and
disk speed ratings for each machine, and the resource demands per job for each

40 V.S. Sharma and P. Jalote

Fig. 4. The Heuristics D1 and D2

component. As the order in which the components were given to be deployed,
has a significant impact on the ‘goodness’ of the deployment, we decided to
evaluate both the heuristics for all possible orderings of components for each
configuration. For a configuration with n components, this set of all possible
orderings is of size Factorial(n) or n!.

We used perl scripts to generate a large set of 1000 random configurations.
The number of machines was fixed to be 3 and the number of components as
6 and the device ratings and component demands were randomly generated for
each configuration. The values of device speed ratings were either 1 or 2, and
the component per job resource demands were between 1 and 50 ms in each
dimension. Note that for simplicity, we did not create and solve the DTMC
models for each of the configurations. Instead we randomly generated the per
job resource demands for each component. One can however also generate these
random configurations by assigning random transition probabilities among the
components and then solving the DTMC model to find the per job resource
requirements for the components.

We conducted an experiment wherein each of these configurations was taken
one at a time and then both the heuristics were used to deploy each of the 720
possible orderings of the 6 components. This exhaustive analysis, though time
consuming, allowed us to point out if a particular heuristic performs better or
worse than the other. On trying out all the orderings of each configuration, we
recorded the values of system makespan for the deployment that resulted from
each ordering both for D1 and well as D2. For comparing D1 and D2 on the basis
of the average percentage of orderings they reach close to the (best) deployment
giving the best performance for each of the 1000 configurations, we created an-
other set of scripts that exhaustively tried out all possible deployments of the
components onto the machines. Note that the number of all possible deploy-
ments for m machines and n components is given by mn, as there are m ways
of deploying each of the n components. In this case, it resulted in 36=729 pos-
sible deployments for each configuration. The value of the least possible system
makespan, makeSbest

, (which will result in the best performance) was recorded
for each of the configurations, and then compared with corresponding system
makespan values for deployments due to D1 and D2. We define the deviation
of a deployment from best deployment as the difference between the values of
system makespan due to the deployment (makeSdep

) and the system makespan

Deploying Software Components for Performance 41

Fig. 5. Percentage deviations from the best deployment for D1 and D2 over all order-
ings of each configuration

due to the best deployment. The lesser this percentage deviation, the closer the
particular deployment is to the best deployment. Thus it is an indicator of how
good a particular deployment is. Mathematically the percentage deviation of a
deployment from the best deployment is given by:

%dev. from best deployment =
makeSdep

− makeSbest

makeSbest

× 100

We then found how close the deployments due to D1 and D2 were from the
best deployments, across all orderings of each of the 1000 configurations. The
Figure 5 shows the average percentage of orderings across all configurations,
resulting in deployments having the different percentage deviations from the
best deployment, for both D1 and D2. One can see that D1 performs better
than D2 and outputs the best deployments almost twice the number of times (out
of all possible orderings) on an average. Moreover for majority of orderings the
deviations from best deployment in case of D1 are much lesser than D2. Hence, we
chose D1 as the deployment heuristic for a given component ordering. However
the issue of choosing the appropriate ordering of components still remains and
we discuss this next.

5.2 Selecting the Ordering of Components for Deployment

From the experiment explained in the last section, we found that the order in
which components are picked for deployment using the chosen heuristic affects
‘goodness’ of the deployment to a large extent. The best deployment results only
for some of the orderings, and so it is important to select the orderings carefully.
Here we discuss some heuristics for choosing the orderings of software compo-
nents for deployment. For finding out the effectiveness of the ordering heuristics,
we used the large set of system configurations generated in the previous experi-
ment. The proposed orderings were used along with the deployment heuristic D1
to find the deployments for each of the 1000 configurations and the value of sys-
tem makespan for those deployments were noted. We examined if the suggested

42 V.S. Sharma and P. Jalote

heuristic deployments resulted in the best makespan. If not then the difference
between the best and the corresponding makespans was found to determine how
close the performance of the deployment suggested by these heuristics lies to
that of the best deployment.

The Heuristics. We formulated four heuristics for ordering components based
on their average resource demands per job. The first two heuristics are based
on ordering the components with their maximum resource demands in a sorted
order. In other words we first ascertain the value of makeC for each component
and then sort them according to these. The first heuristic which we shall call
O1, does this sorting in the ascending order and the second heuristic, O2, was
the reverse, i.e., the maximum demands sorted in descending order. In essence
O1, aims at deploying components with smaller demands first, while the use of
O2 deploys the components with large demands first.

Heuristics O3 and O4:

For each component one by one {

Choose this as starting component

Till all components are deployed {

Deploy the current component using Heuristic D1

Find the most loaded resource (CPU or Disk I/O) in the system
For O3: Current component = Component with least demand in the

dimension of the most loaded resource
For O4: Current component = Component with highest demand in the

dimension of the most loaded resource

}

Save the ordering along with the resulting system makespan

Reset the deployment

}

Output the ordering which results in the least system makespan

Fig. 6. The Heuristics O3 and O4

While O1 and O2 are static in nature, the next two heuristics are dynamic in
nature in that they use the information from the intermediate steps in the de-
ployment process to pick up components and thus result in a on-the-fly ordering
of components. Both these heuristics which we shall call O3 and O4, choose the
orderings while trying a mock deploy of the components. These heuristics pick
up the next component to deploy based upon the resource having the highest
system-wide makespan. In case of O3, the next component to be deployed is
chosen such that it has the minimum demand per job in the dimension of the
current highest makespan resource. For O4, the next component is the one hav-
ing the highest demand per job in the dimension of the current highest makespan
resource. So if during the deployment the current highest makespan resource is
the CPU at any machine, O3 will choose the component with the least total
CPU demands and O4 will choose one with the highest total CPU demand per
job, from among the remaining components.

Deploying Software Components for Performance 43

% Deviation from best deployment for deployments using O4 followed by D1

N
o

 o
f

C
o

n
fi

g
u

ra
ti

o
n

s

73.9%

15.3%

7.6%

2.3%
0.8% 0.1%

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

0 (0,5] (5,10] (10,15] (15,20] (20,25] (25,30] (30,35] (35,40] (40,45] (45,50] > 50

Fig. 7. Deviation from best deployment for deployments using O4 followed by D1

However the problem of choosing the first component remains. So we decided
to let O3 and O4 start with each of the components as the first component
and proceeded with the heuristic thereon. Thus each O3 and O4 will internally
generate a set of ‘n’ orderings (each starting with a different component) and
then choose the best out of these. The details of these heuristics are shown in
Figure 6.

Experimental Evaluation. As mentioned before, we used same set of ran-
domly generated configurations as before and then found out how close the
deployments (using D1) due to the orderings suggested by the different ordering
heuristics, lie with respect to the best deployment. This is captured using the
percentage deviation of the different deployments from the best possible deploy-
ment. The evaluation results showed that while both O1 and O2 were not good
at outputting the best ordering, O2 was better than O1 in general. While order-
ings due to O1 achieved the best deployment for only 3.5% of the configurations,
for O2, this value was at about 40 %. It was seen that while the deployments
resulting from the orderings by O1 had high deviations from the best deploy-
ment for the bulk of the configurations, for O2 the opposite was true. On an
average, for the configurations where these heuristics did not achieve the best
deployment, the deployments due to orderings suggested by O1 and O2 have a
mean deviation of about 20% and 10% respectively from the best deployment.

Next we evaluated O3 and O4. It was found that for the orderings suggested
by O3, the best deployment was reached only about 15% of the configurations -
much worse than the simpler O2. The mean deviation from the best deployment
for the configurations, where the deployment due to the orderings given by O3
that did not reach the best deployment, was about 11.2%.

On the other hand O4 was a clear winner among all the ordering heuristics.
The orderings suggested by the heuristic result in the best deployment in nearly
74% of the configurations (739 out of 1000). Figure 7 shows that even for the
configurations, where it fails to reach the best deployment, the deviation from

44 V.S. Sharma and P. Jalote

the best deployment is less than 10% in more than 96% cases. The mean devi-
ation from the best deployment for O4 (followed by D1), for the configurations
where it failed to reach the best deployment was only about 5.3%. These results
suggest that O4 is indeed a good choice for a heuristic for ordering components.
Thus we suggest the use of the heuristic combination that we shall call O4D1,
for deploying software components onto available hardware for maximizing per-
formance.

6 Applying the Heuristics

As described in the last section, based on the results, we select O4 and D1 as the
deployment heuristics so as to maximize performance. In this section we further
discuss the performance of this heuristic combination, which we call O4D1, for
deploying systems with different architectural configurations. We consider two
different software architectures. The first one being a 5-tiered architecture (which
we call Arch1), as shown in Figure 1 and the second one, a 5 component general
software architecture (which we call Arch2), a DTMC representation of which
is shown in Figure 8. Note that this example system has been taken from [12],
where it was used in context of a performance and reliability study. This DTMC
model assumes one state per software component. We assume that the per visit
resource demands of the components for both Arch1 and Arch2 as shown in
Figure 1 (with Comp1 corresponding to C1, and so on). Moreover the available
hardware for these architectures is again same as described in Section 2. For
simplicity, we assume that the connectors between the machines are sufficiently
fast and the effect of network I/O is factored in the CPU and disk I/O demands
of the components. We used O4D1 to then output the deployment for both of
these. The outputted deployments for Arch1 and Arch2 are shown in Table 1.

Simultaneously, we also generated all possible deployments for Arch1 as well
as Arch2. In this case the number of all possible deployments was 35 = 243.
The maximum possible or limiting throughput that the system can deliver was

Fig. 8. DTMC model for the architecture Arch2

Table 1. Suggested Deployments for the two Architectures using O4D1

Architecture On M1 On M2 On M3
Arch1 {C1} {C2} {C3, C4, C5}
Arch2 {Comp1} {Comp2, Comp4} {Comp3, Comp5}

Deploying Software Components for Performance 45

Fig. 9. The performance of the heuristic deployment for Arch1 and Arch2

recorded for both the architectures, for the deployment given by O4D1, as well
as for all possible deployments. We show these throughput values for the two
architecture configurations using median box-plots as shown in Figure 9.

These plots show that for both the architectures, O4D1 indeed outputs a
deployment that maximizes performance. Moreover, if a random deployment is
chosen for these configurations, the performance on an average will be pretty bad
as compared to that of the O4D1 suggested deployment. Another observation is
that with everything else remaining the same, the architecture of system has a
big impact on the performance and hence on the best possible deployment, thus
reinforcing the need for factoring in the effect of software architecture.

7 Conclusion

Component deployment is a very important factor affecting the performance
on any software system. For a given software architecture and hardware re-
sources, there are a huge number of possible component deployments, with dif-
ferent deployments resulting in different overall performance. Thus finding the
deployment that results in the best performance becomes important. However
the prevalent performance analysis approaches overlook this problem and thus
it is left to the software designer to try to select the best deployment manually
from among the exponential possibilities.

In this paper we formulated and studied the problem of deploying software
components onto available hardware such that the system performance is max-
imized. We stated the problem formally in terms of the systems’s software ar-
chitecture, component resource requirements, and the hardware specifications.
We then explored various heuristic solutions for this problem. Our approach is
based on first representing the software architecture of a given system using a
DTMC model, the solution of which along with other hardware and software
specifications gives us the necessary input parameters for the heuristics for find-
ing the best deployment. We divided the problem into two subproblems, the
first one concerned with deploying a given sequence or ordering of components

46 V.S. Sharma and P. Jalote

so as to maximize performance, and the second one for choosing the appropriate
component ordering for deployment. We explored different heuristics for both of
these.

We conducted a set of experiments, wherein 1000 randomly generated system
configurations were created and the heuristics were compared based on the good-
ness of the deployment they propose. Based on these experiments, we found out
the heuristic combination that performed the best, O4D1, chooses the order of
components by using information from the deployment process itself. The com-
ponent deployment is then found, so that at each deployment step, the system
makespan is as small as possible. This combination yielded very good results,
outputting the best deployment for about 74% of the 1000 randomly generated
system configurations and reached close to the best in more than 96% cases.

Our heuristic-based approach can be used at the time of deploying a new
systems, as well as finding new deployments for existing systems wherein either
the hardware or the software components have changed or the changes are in the
system’s software architecture itself. Moreover this approach can also be used in
an online fashion by autonomous systems to automatically adapt the deployment
to any addition, deletion or change that take place in the system as it operates.
Note that we have not explored asynchronous event-based systems here and
we assume that the component-based systems which need to be deployed are
synchronous in nature. We have not incorporated situations with dependencies
between components in this study and also have not considered the performance
impact of middleware, containers or virtual machines here. Though we consider
the effect of network I/O in the CPU and disk usage of the components, we
assumed that network delays are negligible in this study. Different deployments
would result in different amounts of network transfer delays, which if significant,
would affect overall performance and the approach may be extended in future
to incorporate this. Costs may also be incorporated, turning this into an opti-
mization problem. Other approaches such as genetic algorithms [4] could also
possibly be used to search through the deployments and find the best ones. In
real-life systems, certain deployments may not be feasible, and heuristics may
be adapted so as to avoid those deployments. Component deployment may also
affect other attributes like reliability and availability, and another avenue for
future work is to automatically find a deployment that optimizes these different
quality attributes.

References

1. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Trans. Software Eng. 30(5),
295–310 (2004)

2. Goseva-Popstojanova, K., Trivedi, K.S.: Architecture-based approach to reliability
assessment of software systems. Performance Evaluation 45(2-3), 179–204 (2001)

3. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Techni-
cal Journal 45, 1563–1581 (1966)

Deploying Software Components for Performance 47

4. Harman, M.: The current state and future of search based software engineering.
In: FOSE 2007: 2007 Future of Software Engineering, Washington, DC, USA, pp.
342–357. IEEE Computer Society, Los Alamitos (2007)

5. Jalote, P.: An Integrated Approach to Software Engineering, 3rd edn. Springer,
New York (2006)

6. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 46(3), 259–271 (1990)

7. Matevska-Meyer, J., Hasselbring, W., Reussner, R.H.: Software architecture de-
scription supporting component deployment and system runtime reconfiguration.
In: Proceedings of the Ninth International Workshop on Component-Oriented Pro-
gramming (WCOP), at ECOOP 2004, pp. 14–18 (2004)

8. Menascé, D.A., Casalicchio, E.: A framework for resource allocation in grid comput-
ing. In: DeGroot, D., Harrison, P.G., Wijshoff, H.A.G., Segall, Z. (eds.) MASCOTS,
pp. 259–267. IEEE Computer Society, Los Alamitos (2004)

9. Mikic-Rakic, M., Medvidovic, N.: Architecture-level support for software com-
ponent deployment in resource constrained environments. In: Proceedings of the
IFIP/ACM Working Conference on Component Deployment (CD), London, UK,
pp. 31–50. Springer, Heidelberg (2002)

10. Sharma, V.S.: Performance and Reliability Analysis of Software Architectures.
Doctoral Thesis, Department of Computer Science and Engineering, IIT Kanpur,
Kanpur, India (2007)

11. Sharma, V.S., Jalote, P., Trivedi, K.S.: A performance engineering tool for tiered
software systems. In: Proceedings of the 30th IEEE Annual International Computer
Software and Applications Conference (COMPSAC), pp. 63–70. IEEE Computer
Society, Los Alamitos (2006)

12. Sharma, V.S., Trivedi, K.S.: Reliability and performance of component based soft-
ware systems with restarts, retries, reboots and repairs. In: Proceedings of the 17th
IEEE International Symposium on Software Reliability Engineering (ISSRE 2006),
pp. 299–310. IEEE Computer Society, Los Alamitos (2006)

13. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. John Wiley and Sons, New York (2001)

14. Williams, L.G., Smith, C.U.: Performance evaluation of software architectures.
In: WOSP 1998: Proceedings of the 1st international workshop on Software and
performance, pp. 164–177. ACM Press, New York (1998)

Performance Prediction for Black-Box Components
Using Reengineered Parametric Behaviour Models

Michael Kuperberg, Klaus Krogmann, and Ralf Reussner

Chair for Software Design and Quality, University of Karlsruhe, Germany
{mkuper,krogmann,reussner}@ipd.uka.de

Abstract. In component-based software engineering, the response time of an
entire application is often predicted from the execution durations of individual
component services. However, these execution durations are specific for an exe-
cution platform (i.e. its resources such as CPU) and for a usage profile. Reusing
an existing component on different execution platforms up to now required re-
peated measurements of the concerned components for each relevant combina-
tion of execution platform and usage profile, leading to high effort. This paper
presents a novel integrated approach that overcomes these limitations by recon-
structing behaviour models with platform-independent resource demands of byte-
code components. The reconstructed models are parameterised over input
parameter values. Using platform-specific results of bytecode benchmarking, our
approach is able to translate the platform-independent resource demands into pre-
dictions for execution durations on a certain platform. We validate our approach
by predicting the performance of a file sharing application.

1 Introduction

To meet user requirements, software must be created with consideration of both func-
tional and extra-functional properties. For extra-functional properties such as perfor-
mance (i.e., response time and throughput), early analysis and prediction reduce the
risks of late and expensive redesign or refactoring in case the extra-functional require-
ments are not met. Performance of component-based applications is predicted on the
basis of performance of underlying components.

The performance of component-based applications depends on several factors [2]:

a) the architecture of the software system, i.e. the static “component assembly”
b) the implementation of the components that comprise the software system
c) the runtime usage context of the application (values of input parameters etc.) and
d) the execution platform (hardware, operating system, virtual machine, etc.)

Conventional performance prediction methodologies do not consider all four fac-
tors separately [4,24] or limit themselves to real-time/embedded scenarios [7]. To make
the influence of these factors on performance explicit (or even quantifiable), these ap-
proaches would need to re-benchmark each component, or even the entire application
each time one of the four factors changes. Instead, separating these factors is beneficial
for efficient performance prediction in the following scenarios:

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 48–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance Prediction for Black-Box Components 49

– Redeployment of an application to an execution platform with different character-
istics, i.e. into a new deployment context.

– Sizing of suitable execution platform to fulfill changed performance targets for an
existing software system, for example due to changes in the usage context (i.e.,
number of concurrent users, increased user activity, different input).

– Reuse of a single component in another architecture or architectural changes in
an existing software system, i.e. changes in the assembly context of a component.

In this paper, we present a novel integrated approach that makes these factors explicit
and quantifiable.

Our first contribution is a validated reverse engineering approach that uses
machine learning (genetic programming) on runtime monitoring data for creating plat-
form-independent behaviour models of black-box components. These models are pa-
rameterised over usage context and deployment context.

Our second contribution is the performance prediction for these behaviour models,
which predicts platform-specific execution durations on the basis of bytecode bench-
marking results, allowing performance prediction for components and also entire
component-based applications. Re-benchmarking an application for all relevant com-
binations of usage and deployment contexts is thus not necessary anymore.

We validate our approach by reconstructing a performance prediction model for a file
sharing application and subsequently predict the execution duration of the application,
depending on usage context and deployment context. To the best of our knowledge, this is
the first validated bytecode-based performance prediction approach. We describe how our
approachmaintainstheblack-boxpropertyofcomponentsbyworkingwithouttheirsource
code and without needing the full inner details of their algorithms and implementations.

The paper is structured as follows: in Section 2, we describe related work. In Section
3, an overview of our approach is given and its implementation is described. Using a
case study of a file-sharing application, we evaluate our approach in Section 4. The lim-
itations and assumptions of the presented approach and its implementation are provided
in Section 5, before the paper concludes in Section 6.

2 Related Work

This paper is related to reverse engineering of performance models, bytecode-based
performance prediction, and search-based software engineering [12].

Reverse engineering of performance models using traces is performed by Hri-
schuk et al. [14] in the scope of “Trace-Based Load Characterisation (TLC)”. In prac-
tice, such traces are difficult to obtain and require costly graph transformation before
use. The target model of TLC is not component-based.

Using trace data to determine the “effective” architecture of a software system
is done by Israr et al. in [16]. Using pattern matching, this approach can differentiate
between asynchronous, blocking synchronous, and forwarding communication. Similar
to our approach, Israr et al. support components and have no explicit control flow, yet
they do not support inter-component data flow and do not support internal parallelism
in component execution as opposed to the approach presented in this paper. As in TLC,
Israr et al. use Layered Queueing Networks (LQNs) as the target performance model.

50 M. Kuperberg, K. Krogmann, and R. Reussner

Regression splines are used by Courtois et al. in [9] to recognise input parameter
dependencies in code. Their iterative approach requires no source code analysis and
handles multiple dimensions of input, as does the approach described by us. However,
the output of the approach in [9] are polynomial functions that approximate the be-
haviour of code, but which are not helpful in capturing discontinuities in component
behaviour. The approach is fully automated, but assumes fixed external dependencies
of software modules and fixed hardware.

Search based approaches such as simulated annealing, genetic algorithms, and ge-
netic programming have been widely used in software engineering [12]. However, these
approaches have not been applied to reverse engineering, but to problems like finding
concept boundaries, software modularization, or testing.

Daikon by Ernst et al. [11] focusses on detection of invariants from running pro-
grams, while our approach aims at detecting parametric propagation and parametric
dependencies of runtime behaviour w.r.t performance abstractions. Analysis is in both
approaches supported by genetic algorithms.

Performance prediction on the basis of bytecode benchmarking has been pro-
posed by several researchers [13,23,25], but no working approach has been presented
and no libraries or tools are available. Validation has been attempted in [25], but it was
restricted to very few Java API methods, and the actual bytecode instructions were nei-
ther analysed nor benchmarked. In [18], bytecode-based performance prediction that
explicitly distinguishes between method invocations and other bytecode instructions
has been proposed.

Obtaining execution counts of bytecode instructions is needed for bytecode-based
performance prediction, and has been addressed by researchers (e.g. [5], [19]) as well
as in commercial tools (e.g. in profilers, such as Intel VTune [10]). ByCounter [19]
counts bytecode instructions and method invocations individually and it is portable,
light-weight, and transparent to the application. ByCounter works for black-box com-
ponents and its Java implementation will be used in this paper.

Execution durations of individual bytecode instructions have been studied inde-
pendently from performance prediction by Lambert and Brown in [20], however, their
approach to instruction timing was applied only to a subset of the Java instruction set,
and has not been validated for predicting the performance of a real application. In the
Java Resource Accounting Framework [6], performance of all bytecodes is assumed to
be equal and parameters of individual instructions (incl. names of invoked methods)
are ignored, which is not realistic. Hu et al. derive worst-case execution time of Java
bytecode in [15], but their work is limited to real-time JVMs.

Cost analysis of bytecode-based programs is presented by Albert et al. in [1], but
neither bytecode benchmarks not actual realistic performance values can be obtained,
since the performance is assumed to be equal for all bytecode instructions.

3 Reverse Engineering and Performance Prediction

An overview of our approach is summarised in Fig. 1, and Sections 3.1-3.6 provide
detailed descriptions of its steps. Our approach consists of two parts, separated in Fig. 1
by the dashed line. The first (upper, light) part A produces behavioural performance

Performance Prediction for Black-Box Components 51

Timing Values per
Bytecode Instruction

Executable
Component
Bytecode

Bytecode
counting

Monitoring of input and
output data at interface-level

Bytecode
instrumentation

Machine
Learning

Parameterised
Behavioural
Component

Model

Bytecode
Benchmarking

Create behavioural parameterised component model
(1x per component)

Benchmark execution system
(1x per execution system)

Performance
Prediction

1

2

3

5

6

4

A

B

Fig. 1. Overview on the approach

models for black-box components. These models are platform-independent because
they do not contain platform-specific timing values. Such timing values are produced
by the second part of our approach (cf. (lower, darker) part B of Fig. 1), which uses
bytecode benchmarking as described in Section 3.5.

Part A of our approach works on components and for component-based applica-
tions, for which only binary code and no source code may be available. In Step 1, the
considered component is executed in a testbed (e.g. derived from running representative
applications) and executed bytecode instructions and method invocations are counted.
In Step 2 (which can be executed concurrently with Step 1), inputs and outputs of the
considered component are monitored at the interface level.

Machine learning in Step 3 then (i) estimates the parametric dependencies between
input data and the number of executions for each bytecode instruction and (ii) finds
data and control flow dependencies between provided and required service, which is
important for components since output of one service will be the input of another one.

Step 4 uses results from machine learning in Step 3 and constructs a behavioural
component model which is parameterised over usage context (input data), external ser-
vices and also over the execution platform. Such a model includes how input data is
populated through an architecture, a specification how often external services are called
with which parameters, and how an execution platform is utilised.

Part A of our approach is executed once per component-based application.

In Step 5 (part B), bytecode instructions are benchmarked on the target execu-
tion platform to gain timing values for individual bytecode instructions (e.g. “IADD
takes 2.3 ns”). These timing values are specific for the used target platform, and the
benchmarking step is totally independent of the previous steps of our approach. Hence,
benchmarking must be executed only once per each execution platform for which the
performance prediction is to be made.

The results of part A and part B are inputs for the performance prediction (Step
6), which combines performance model and execution platform performance measures
to predict the actual (platform-specific) execution duration of an application executed
on that platform.

52 M. Kuperberg, K. Krogmann, and R. Reussner

The separation of application performance model and execution platform perfor-
mance model allows to estimate the performance of an application on an execution
platform without actually deploying the application on that platform, which means that
in practice, one can avoid buying expensive hardware (given a hardware vendor pro-
viding benchmarking results) or also avoid costly setup and configuration of a complex
software application.

3.1 Counting of Bytecode Instructions and Method Invocations

To obtain runtime counts of executed bytecode instructions (cf. Fig. 1, Step 1), we use
the ByCounter tool, which is described in detail in [19] and works by instrumenting the
bytecode of an executable component. We count all bytecode instructions individually,
and also count method invocations in bytecode, such as calls to API methods.

The instrumentation with the required counting infrastructure is transparent, i.e. the
functional properties of the application are not affected by counting and all method sig-
natures and class structures are preserved. Also, instrumentation runs fully automated,
and the source code of the application is not needed.

At runtime, the inserted counting infrastructure runs in parallel with the execution of
the actual component business logic, and does not interfere with it. The instrumentation-
caused counting overhead of ByCounter is acceptable and is lower than the overhead
of conventional Java profilers. As said before, the instruction timings (i.e. execution
durations of individual instruction types) are not provided by the counting step, but by
bytecode benchmarking in Step 5.

32x IADD
425x ISTORE
734x ILOAD
943x IMUL
45x IINC
53x ...

010010001100001110101010
101101011110000011110110
010001010011001001000100
110000001000010001101100
011011111111101111010110
011100010011011101001000

Monitoring
Data

Bytecode
Instrumentation and

Execution

Monitoring

Monitoring

1

2

2

Fig. 2. Data extraction from executed black-box components

The counting results (cf. Fig. 2, Step 1) are counts for each bytecode instruction and
found method signature, and they are specific for the given usage context. The counting
is repeated with different usage contexts of the considered component service, but on
the same execution platform. Counting results are saved individually for each usage
context and later serve as data on which machine learning is run (cf. Fig. 1, Step 3).

3.2 Data Gathering from Running Code

To capture the parametric dependencies between the application input and output, our
approach monitors at the level of component interfaces (cf. Fig. 1, Step 2). We gather
runtime information about component behaviour by executing the component in a
testbed or executing the entire application (cf. Fig. 2, Step 2).

Performance Prediction for Black-Box Components 53

To obtain representative data, the execution of the monitored component services
must be repeated for a set of representative inputs to the application (recent overview
on test data generation can be found in [21]). The datasets obtained from monitoring
serve as the input for the machine learning (Fig. 1, Step 3) to learn the parametric
dependencies between input and output.

For each component service call (provided or required), our tool monitors the input
parameter values of each component service call and the properties of the data that is
returned by that service call. Monitored data properties are:

– for primitive types (i.e. int, float etc.): their actual values
– for all one-dimensional arrays (e.g. int[], String[]), Collection, or Map

types: the number of their elements
– for one-dimensional arrays of primitive type (e.g. int[]), also aggregated data,

such as number of occurrences of values in an array (e.g. the number of ‘0’s and
‘1’s in an int[])

– for a multi-dimensional array (e.g. String[][]): its size, plus results of indivi-
dual recording of each included array (as described above)

For each provided service, we additionally monitor which required services are
called by it how often and with which parameters. The described data monitoring and
recording can be applied to component interfaces without a-priori knowledge about
their semantics, and without inspecting the internals of black-box components. Support-
ing and monitoring complex or self-defined types (e.g. objects, structs) requires domain
expert knowledge to identify important properties of these data types. Still, generic data
types are used very often, and our approach can handle these cases automatically.

3.3 Machine Learning for Recognition of Parametric Dependencies

Our approach utilises machine learning for estimating the bytecode counts on the basis
of input data and for recovering functional dependencies in the monitored data. We use
the Java Genetic Algorithm Package JGAP [22] to support machine learning (a gen-
eral introduction for genetic programming, a special case of genetic algorithms, can be
found in [17]). For our approach, we combine genes representing mathematical func-
tions to express more complex dependencies. Simple approaches like linear regression
could be applied as well, but cannot handle non-continuous functions or produce little
readable approximations by polynomials.

For every gathered input data point (e.g. size of an input array, or value of a primitive
type) a gene representing that parameter in the resulting model is introduced. In addition
to default JGAP genes (e.g. mathematical operations for power, multiplication, addition,
constants), we introduced new genes to support non-continuous behaviour (e.g. jumps
caused by “if-then-else”) as JGAP allows defining of additional genes.

Learning Counts of Bytecode Instructions and Method Invocations
Genetic programming tries to find the best estimation of functions of bytecode counts
over input data. If an algorithm uses less ILOAD instructions for a 1 KB input file than
for a 100 KB file, the dependency between input file size and the number of ILOAD
instructions would be learned.

54 M. Kuperberg, K. Krogmann, and R. Reussner

Our approach applies genetic programming for each used bytecode instruction. A
simple example of the resulting estimation for the ILOAD instruction is IF (filesize >
1024) THEN (filesize · 1.4 + 300) ELSE (24000)). For bytecode instructions and
method invocation counts, learning such functions produces more helpful results as
mere average counts, because non-linear dependencies can be described appropriately,
and also because these results are not specific to one execution platform.

Learning Functional Dependencies between Provided and Required Services
Genetic programming is also applied for discovering functional dependencies between
input and output data monitored at the component interface level. Informal examples
of such dependencies are “a required service is executed for every element of an input
array”, “a required service is only executed if a certain threshold is passed” (data de-
pendent control flow), or “the size of files passed to a required component service is
0.7x the size of an input file” (data flow).

To recover such dependencies from monitoring data, genetic programming builds
chromosomes from its genes to express a function matching the monitored data as much
as possible. The deviation between learned function and monitored data is used as “fit-
ness function” during learning. Thereby, genetic programming is selecting appropriate
input values and rejecting others, not relevant for the functional dependency. Finally,
the resulting function is an approximation of a component’s internal control and data
flow, where each dependency is represented by an own chromosome.

3.4 Parameterised Model of Component Behaviour

The target model (named “Parameterised Behavioural Component Model” in Fig. 1) is
an instance of the Palladio Component Model [3]1. The model instance has a represen-
tation for the static structure elements (software components, composition and wiring;
not described here) and a behavioural model for each provided service of a component
(an example is shown in Fig. 3).

A component service’s behaviour model consists of internal actions (i.e. algorithms)
and external calls (to services of other components). For internal actions (cf. left box in
Fig. 3), reverse-engineered annotations for each bytecode instruction specify how often
that instruction is executed at runtime, depending on component service’s input param-
eters. The parameterised counts that form these annotations are platform-independent
and do not contain platform-specific timing values.

For external calls (e.g. add and store in Fig. 3), the model includes dependencies
between component service input and external call parameters, with one formula per
input parameter of an external call (e.g. a = input1 * 2 in Fig. 3). Also, the num-
ber of calls to each required (external) service is annotated using parameterisation over
input data (cf. “Number of loops” grey box in 3).

3.5 Benchmarking Java Bytecode Instructions and Method Invocations

For performance prediction, platform-specific timings of all bytecode instructions and
all executed API methods must be obtained, since the reverse engineered model from

1 See http://www.palladio-approach.net

Performance Prediction for Black-Box Components 55

Internal Algorithm
Bytecodes
IADD: 10 x input1 + 30
ISTORE: IF(input2 < 100)
 30 ELSE 125
IINC: 0.0013 * input1
...

External Call
Service: int add(int a, int b)
a = input1 * 2
b = IF(input2 > 1) THEN 100
 ELSE input1^input2 * 0.3
return = ...

External Call
Service: byte[] store(byte[] file)
file = input1^1024
return = ...

Number of Loops
IF (input2 * 3 > 10)
 THEN 20
 ELSE input2

void doSth(int input1, int input2)
int add(int a, int b)

byte[] store(byte[] file)
Component

Fig. 3. Behavioural model of the provided service void doSth(int input1, int
input2)

part A in Fig. 1 only contains their (estimated) counts. As timings for bytecode
instructions and API methods are not provided by the execution platform and no ap-
propriate approach exists to obtain them (cf. Section 2), we have implemented our own
benchmark suite, which is an essential contribution of this paper.

We illustrate our approach by first considering the example of the Java bytecode
instruction ALOAD. This instruction loads an object reference onto the stack of the Java
Virtual Machine (JVM). To measure the duration of ALOAD, a naive approach would
insert one ALOAD between two timer calls and compute the difference of their results.
However, writing such a microbenchmark in Java source code is not possible, since
there is no source code-level construct which is compiled exactly to ALOAD.

Furthermore, the resolution of the most precise Java API timer (System.nano
Time()) of ca. 280ns is more than two orders of magnitude larger than the duration
of ALOAD (as shown by our microbenchmarks results). Hence, bytecode microbench-
marks must be constructed through bytecode engineering (rather than source code writ-
ing) and must consider the timer resolution.

Using bytecode engineering toolkits like ASM [8], we could construct microbench-
marks that execute a large number of ALOAD instructions between two timer calls.
However, to fulfill the bytecode correctness requirements which are enforced by the
JVM bytecode verifier, attention must be paid to pre- and postconditions. Specifically,
ALOAD loads a reference from a register and puts it on the Java stack. However, at the
end of the method execution, the stack must be empty again. The microbenchmark must
take care of such stack cleanup and stack preparation explicitly.

In reality, creating pre- and postconditions for the entire Java bytecode instruction
set is difficult. Often, “helper” instructions for pre-/postconditions must be inserted
between the two timer calls. In such a case, “helper” instructions are measured to-
gether with the actually benchmarked instructions. Thus, separate additional “helper”
mircobenchmarks must be created to be able to subtract the duration of “helper” in-
structions from the results of the actual microbenchmarks. Making sure all such depen-
dencies are met and resolved is a challenging task.

56 M. Kuperberg, K. Krogmann, and R. Reussner

Due to space restrictions, we cannot go into further details by describing the design
and the implementation of our microbenchmarks. In fact, we have encapsulated the
benchmarking into a toolchain that can be used without adaptation on any JVM. End
users are not required to understand the toolchain unless they want to modify or to
extend it. Selected results of microbenchmarks for instructions and methods will be
presented in Section 4 in the context of a case study which evaluates our approach and
thus also the microbenchmark results.

3.6 Performance Prediction

Step 6 performs an elementwise multiplication of all N relevant instruction/method
counts ci from step 4 with the corresponding benchmark results (execution durations)
ti from step 5. The multiplication results are summed up to produce a prediction P for
execution duration:

∑N
i=0 ci · ti =: P . The parametrisation over input can be carried

over from ci to the performance prediction result P , for example by computing that an
algorithm implementation runs in (n·5000+m·3500) ns, depending on n and m which
characterise the input to the algorithm implementation.

4 Evaluation

We evaluated our approach in a case study on the PALLADIOFILESHARE system, which
is modeled after file sharing services such as RapidShare, where users upload a number
of files to share them with other users. In PALLADIOFILESHARE, the uploaded files are
checked w.r.t. copyright issues and whether they already are stored in PALLADIOFILE-
SHARE. For our case study, we consider the upload scenario and how PALLADIOFILE-
SHARE processes the uploaded files.

The static architecture of PALLADIOFILESHARE is depicted in Figure 4. The com-
ponent that is subject of the evaluation is PalladioFileShare (the composite component
shaded in grey), which provides the file sharing service interface and itself requires two
external storage services (LARGEFILESTORAGE is optimized for handling large files
and SMALLFILESTORAGE is for handling small files).

PALLADIOFILESHARE component is composed from five sub-components. The
BUSINESSLOGIC is controlling file uploads by triggering services of sub-components.
COMPRESSION (a Lempel-Ziv-Welch (LZW) implementation) allows to compress up-
loaded files, while HASHING allows to produce hashes for uploaded files. EXISTING-
FILEDB is a database of all available files of the system; COPYRIGHTEDFILESDB
holds a list of copyrighted files that are excluded from file sharing.

Fig. 5 shows the data dependent control flow of the BUSINESSLOGIC component
which is executed for each uploaded file. First, based on a flag derived from each up-
loaded file, it is checked whether the file is already compressed (e.g., a JPEG file). An
uncompressed file is processed by the COMPRESSION component.

Afterwards, it is checked whether the file has been uploaded before (using EXIST-
INGFILEDB and the hash calculated for the compressed file), since only new files are to
be stored in PALLADIOFILESHARE. Then, for files not uploaded before, it is checked
whether they are copyrighted using COPYRIGHTEDFILESDB. Finally, non-copyrighted

Performance Prediction for Black-Box Components 57

PalladioFileShare

Compression

Hashing

ExistingFilesDB

LargeFileStorage

BusinessLogic

CopyrightedFilesDB

SmallFileStorage

Fig. 4. Component Architecture of PALLADIOFILESHARE

Compress file

fileType==FileType.TEXT

fileType==FileType.COMPRESSED

Get file hash

Check copyright

File in DB? No

Inform the user

File in DB? Yes

Accept file

Copyrighted? No

Reject file

Copyrighted? Yes

Store large file

Store small file

compressedFile.length <=
SIZE_OF_LARGE_FILES

compressedFile.length >
SIZE_OF_LARGE_FILES

call for another component

Fig. 5. Activity of BusinessLogic for each file per request (depicted here for readers convenience
only; not seen by the tooling)

files are stored, either by LARGEFILESTORAGE for large files (if the file size is larger
than a certain threshold) or SMALLFILESTORAGE otherwise.

4.1 Machine Learning for Recognition of Parametric Dependencies

In the case study, we monitored the behaviour of BusinessLogic in 19 test runs, each
with different input data (number of uploaded files, characterisation of files (text or
compressed), and file sizes). The test runs were designed to cover the application input
space as far as possible. In the rest of this section, we show some interesting excerpts
from the complete results.

As the names of input parameters are used hereafter, we use the signature of the file
sharing service, void uploadFiles(byte[][] inputFiles,int[] file

58 M. Kuperberg, K. Krogmann, and R. Reussner

Types). In the signature, inputFiles contains the byte arrays of multiple files for
upload and fileTypes is an array indicating corresponding types of the files, e.g.
FileType.COMPRESSED or FileTypes.TEXT (i.e., uncompressed).

Data dependent control flow: Use of Compression component for multiple files
In the BusinessLogic sub-component, the number of calls of the Compress compo-
nent depends on the number of uncompressed files (FileType.TEXT) uploaded.
Genetic programming (JGAP) found the correct solution for the number of calls: in-
putFiles.length - fileTypes.SUM(FileType.TEXT), where SUM is aggregated data from
the monitoring step. The search time was less than one second.

Learning of Bytecode Instruction Counts
For estimating the functional dependencies of bytecode counts, two input variables were
monitored: (i) X1 as the size of each file and (ii) X2 as flag showing whether the input
was already compressed (X2=1) or not (X2=0).

As the behaviour of data compression algorithm strongly depends on the inner char-
acteristics of the compressed data (and not only on its size and type), 100% precision
of learned functions cannot be expected in the general case. Optimal solutions were
found only for a few bytecode counts; in most cases, results of machine learning are
good estimators. An optimal solution was found within about 1 sec. for bytecode in-
structionICONST M1 : X1 + X1 + 3.0.

For a more complex case such as the bytecode ICONST 0, after evolving 15,000
generations, the following approximation (which could be simplified by a subsequent
step) was found:

0.1 + (((X1/(89.0 + 241.0 + 100.0)) ∗ X1) + (((343.0 ∗ X2) + (IF (267.0 >=
10.0)THEN(1.3)) + (241.0 + (X1/(241.0 + (343.0 ∗ X2) + 100.0)) + 100.0)) ∗
X1)+((IF (X1 >= 0.024766982)THEN((267.0∗X2)))∗X2))+(241.0+(200.0+
((89.0+(((((X1/(X1+241.0+100.0))+30.0+241.0)+X2+1.9)∗X2)∗X2)+
100.0) ∗ ((IF (267.0 >= 10.0)THEN((1.3 ∗ X2))) + X1 + 241.0)) + 400000.0))

The complexity of these functions will be hidden from the user in the performance
prediction toolchain.

When to use LargeFileStorage or SmallFileStorage
For answering this question, monitoring data from uploads with just one file was anal-
ysed. A set of eleven different input files (different file types, different size) was used
as test data. JGAP found an optimal solution: If the file size is larger than 200,000
(bytes), a file with the same size like the file passed to the Hashing component is passed
to LargeFileStorage, else nothing is stored with LargeFileStorage (an opposite depen-
dency was found for the usage of SmallFileStorage). The search time was less than
five seconds. The implementation-defined constant ‘200,000’ was not always identified
correctly, due to the limited number of input files, yet the recovered function did not
contradict the monitoring data.

We tested an additional run of JGAP where the monitoring data was disturbed by
calls of uploadFiles that did not lead to a storage write because the file already existed
in the database (one out of eleven calls did not lead to a write). Such effects depending

Performance Prediction for Black-Box Components 59

on component state are visible at the interface level only as statistical noise that cannot
be explained based on interface monitoring data. In this case the optimal solution could
still be found, but within more time: less than 20 seconds (in average). In this case the
confidence in the correctness (“fitness function” calculated by JGAP) of the result de-
creased. The average behavioural impact of uploads where no storage takes place can
be captured by computing the long-term probability of such uploads independently of
the uploaded files.

Estimation of the compression ratio
As the compression ratio of LZW strongly depends on the data characteristics (e.g.
entropy, used encoding), no optimal solution exists to describe the compression ratio.
Therefore, JGAP produces a large variety of approximations of the compression ratio.
A good approximation found after 30 seconds had the following form: 0.9∗0.5∗(X3−
(0.9 ∗ 0.5 ∗ (X3 − (0.9 ∗ (0.9 ∗ 0.5 ∗ X3) ∗ 1.0))))) where X3 is the size of the file
input for the Compression component, which was found to be significant.

4.2 Benchmarking of Bytecode Instructions and Method Invocations

We have benchmarked bytecode instructions and methods (as described in Section 3.5)
on two significantly different execution platforms to make performance prediction for
the redeployment scenario (cf. Section 1). The first platform (“P1”) featured a single-
core Intel Pentium M 1.5 GHz CPU, 1 GB of main memory, Windows XP and Sun JDK
1.5.0 15. The second platform (“P2”) was an Intel T2400 CPU (two cores at 1.83GHz
each), 1.5GB of main memory and Windows XP Pro with Sun JDK 1.6.0 06.

All microbenchmarks have been repeated systematically and median of measure-
ments has been taken for each microbenchmark. Fig. 6 is an excerpt of the results of
our microbenchmark for P1 and P2. It lists execution durations of 9 bytecode instruc-
tions among those with highest runtime counts for the compression service.

Due to the lack of space, full results of our microbenchmarks cannot be presented
here, but even from this small subset of results, it can be seen that individual results
differ by a factor of three (ARRAYLENGTH and ICONST_0). Computationally expen-
sive instructions like NEWARRAY have performance results that depend on the passed
parameters (e.g. size of the array to allocate), and our benchmarking results have shown
that the duration of such instructions can be several orders of magnitude larger than that
of simpler instructions like ICONST_0.

The most important observation we made when running the microbenchmarks was
that the JVM did not apply just-in-time compilation (JIT) during microbenchmark exe-
cution, despite the fact that JIT was enabled in the JVM. Hence, prediction on the basis
of these benchmarking must account for the “speedup” effect of JIT optimisations that
are applied during the execution of “normal” applications.

Some steps in Fig. 5 (such as “Get file hash”) make heavy use of methods provided
by the Java API. To benchmark such API calls and to investigate whether their exe-
cution durations have parametric dependencies on method input parameters, we have
manually created and run microbenchmarks that vary the size of the hashed files, algo-
rithm type etc. Due to aforementioned space limitations, we cannot describe the results

60 M. Kuperberg, K. Krogmann, and R. Reussner

ALOAD ARRAYLENGTH ANEWARRAY BALOAD ICONST_0 IF_ICMPLT IINC ILOAD ISTORE
P1 1.95 5.47 220.42 6.98 1.41 5.08 3.10 3.21 3.45
P2 3.77 2.01 178.79 3.49 1.68 4.30 3.01 2.10 3.05

Fig. 6. Excerpt of microbenchmark results for platforms P1 and P2: instruction durations [ns]

of API microbenchmarks here. To simplify working with the Java API, we are currently
working towards automating the benchmarking of Java API methods.

4.3 Performance Prediction

After counting and benchmarking have been performed, our approach predicts the
execution durations of the activities in Fig. 5. From these individual execution dura-
tions, response time of the entire service will be predicted. These prediction results are
platform-specific because underlying bytecode timings are platform-specific.

First, for source platform P1, we predict the duration of compressing a text file (ran-
domly chosen) with a size of 25 KB on the basis of bytecode microbenchmarks, yielding
1605 ms. Then, we measure the duration of compressing that file on P1 (124 ms) and
calculate the ratio R := bytecode−based prediction

measurement . R is a constant, algorithm-specific,
multiplicative factor which quantifies the JIT speedup and also runtime effects, i.e. ef-
fects that are not captured by microbenchmarks (e.g. reuse of memory by the compres-
sion algorithm). R’s value on P1 for the compression algorithm was 12.9.

Hence, R serves to calibrate our prediction. In our case study, R proved to be
algorithm-specific, but platform-independent and also valid for any input to the consid-
ered algorithm. Using R obtained on platform P1, we have predicted the compression
of the same 25 KB text file for its relocation to platform P2: 113 ms were predicted, and
121 ms were measured (note that to obtain the prediction, the compression algorithm
was neither measured nor executed on P2 !). We then used the same calibration factor
R for predicting the duration of compressing 9 additional, different files on platform
P2 (these files varied in contents, size and achievable compression rate). For each of
these 9 files, the prediction accuracy was within 10% (except one outlier which was
still predicted with 30% accuracy).

This shows that the calibration factor R is input-agnostic. Also, R can be easily
obtained in the presented relocation scenario because an instance of the application
is already running on the “source” execution platform P1 (note that the prediction of
performance on P1 is only needed for relocation, as the real performance on P1 is
available by measuring the already deployed application).

The performance of the hashing action in Fig. 5 was predicted by benchmarking
the underlying Java API calls, whereby a linear parametric dependency on the size of
input data was discovered. The JIT was carried out by the JVM during benchmarking
of these API calls, which means that R does not need to express the JIT speedup. For
example, hashing 36747 bytes of data on P2 was predicted to 1.71 ms while 1.69 ms
were measured, i.e. with < 2% error. Similar accuracy for predicting hashing duration
is obtained for other file sizes and types.

The total upload process for the above 25KB text file on P2 was predicted to take
115 ms, and 123 ms were measured. Upload of 37 KB JPEG (i.e. already compressed)

Performance Prediction for Black-Box Components 61

file took 1.82 ms, while 1.79 ms were predicted. For all files used in our case study, the
prediction of the entire upload process for one file had an average deviation of < 15%.

Ultimately, our bytecode-based prediction methodology can deal with all four factors
discussed in Sec. 1: execution platform (as demonstrated by relocation from P1 to P2),
runtime usage context (as demonstrated by the prediction for different input files), ar-
chitecture of the software system (as we predict for individual component services and
not a monolithic application), and the implementation of the components (as our pre-
dictions are based on the bytecode implementation of components). From these results,
we have concluded that a mix of upload files can be predicted if it is processed sequen-
tially. However, for capturing effects such as multithreaded execution, further research is
needed to study performance behaviour of concurrent requests w.r.t. bytecode execution.
In the next section, we discuss the assumptions and the limitations of our approach.

5 Limitations and Assumptions

For the monitoring step, we assume that a representative workload (including input
parameter values) can be provided, for example by a test driver. This workload has
to be representative for both current and planned usage of the component. For running
systems, this data can be obtained using runtime monitoring; otherwise, a domain expert
judges which scenarios are interesting or critical, and she should select or specify the
corresponding workloads ([21] provides an overview on test data generation).

To predict performance on a new (or previously unknown) execution platform, our
approach does not need to run the application there, but must run the microbenchmark
suite on the new platform. Hence, we assume that either this is possible for the predict-
ing party, or that the microbenchmark results are provided by a third party (for example,
by the execution platform vendor).

One of the current limitations of our approach is that it is not fully automated. For
example, the parts A and B in Fig. 1 are not integrated for an automated perfor-
mance prediction. Also, API calls must be measured manually to consider parametric
dependencies and complicated parameter conditions; hence, only a limited number of
API calls can be supported realistically.

In the data gathering step of our approach, asynchronous communication (e.g. mes-
sage-based information exchange) is not supported by the used logging framework.
Hence, if there is asynchronous communication inside the component under investi-
gation, monitored results will be misleading. This limitation will be addressed in next
versions of our implementation.

To support the black-box component principle (end-users do not have to deal with
code), monitoring should be performed in an automated way. In general, collecting dozens
of metrics for input and output data is not justified by the requirements of our approach. At
the moment, we assume that all input and output data is composed from primitive types or
general collection types like List. In more elaborate cases, a domain expert can specify
important data characteristics manually to improve the monitoring data base.

In the machine learning step, heavily disturbed results (i.e. those having causes not
visible at the interface-level) lead to decreased convergence speed and smaller proba-
bility of finding a good solution.

62 M. Kuperberg, K. Krogmann, and R. Reussner

6 Conclusions

In this paper, we have presented a performance prediction approach supporting black-
box software components by creating platform-independent parametric performance
models. The approach requires no a-priori knowledge on the components under in-
vestigation. By explicitly considering parameters in the performance model, the ap-
proach enables prediction for different execution platforms, different usage contexts,
and changing assembly contexts.

In the described approach, bytecode is monitored at runtime to count executed
bytecode instructions and method calls, and also for gathering data information at
component interface level to create the parametric performance model. Then, byte-
code instructions and methods are benchmarked to obtain their performance values
for a certain platform. The advantage of separating behaviour model from platform-
specific benchmarking is that the performance model must be created only once for
a component-based application, but can be used for predicting performance for any
execution platform by using platform-specific benchmark results.

We evaluated the presented approach using a case study for the Java implementation
of a file-sharing application. The evaluation shows that the approach yields accurate
prediction results for (i) different execution platforms and (ii) different usage contexts.
In fact, the accuracy of predicting the execution duration of the entire upload process
after redeployment to a new execution platform lies within 15% for all considered usage
contexts (i.e. uploaded files), and even within 5% in all but three contexts. The average
accuracy is therefore also very good.

For our future work, we plan to automate the entire approach and to merge bytecode
counting in Step 1 of our approach with data monitoring and recording in Step 2. The
manual execution of the approach took ca. five hours for the case study. Also, we plan
to automate creating microbenchmarks for methods, which currently must be created
by hand and also do not cover the entire Java API. We also plan to consider parameters
at bytecode level both for bytecode microbenchmarks and method microbenchmarks.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Experiments in Cost Analysis
of Java Bytecode. Electr. Notes Theor. Comput. Sci. 190(1), 67–83 (2007)

2. Becker, S., Happe, J., Koziolek, H.: Putting Components into Context - Supporting QoS-
Predictions with an explicit Context Model. In: Reussner, R., Szyperski, C., Weck, W. (eds.)
WCOP 2006 (June 2006)

3. Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for Model-Driven
Performance Prediction. Journal of Systems and Software (in press, 2008) (accepted
manuscript)

4. Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting Component-Based Performance Engi-
neering into Practice. In: Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.C. (eds.)
CBSE 2004. LNCS, vol. 3054, pp. 233–248. Springer, Heidelberg (2004)

5. Binder, W., Hulaas, J.: Flexible and Efficient Measurement of Dynamic Bytecode Metrics.
In: GPCE 2006, pp. 171–180. ACM, New York (2006)

6. Binder, W., Hulaas, J.: Using Bytecode Instruction Counting as Portable CPU Consumption
Metric. Electr. Notes Theor. Comput. Sci. 153(2), 57–77 (2006)

Performance Prediction for Black-Box Components 63

7. Bondarev, E., de With, P., Chaudron, M., Musken, J.: Modelling of Input- Parameter Depen-
dency for Performance Predictions of Component-Based Embedded Systems. In: Proceed-
ings of the 31th EUROMICRO Conference (EUROMICRO 2005) (2005)

8. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to implement adapt-
able systems. Adaptable and Extensible Component Systems (2002)

9. Courtois, M., Woodside, C.M.: Using regression splines for software performance analysis.
In: WOSP 2000, Ottawa, Canada, September 2000, pp. 105–114. ACM, New York (2000)

10. Donnell, J.: Java Performance Profiling using the VTune Performance Analyzer (Retrieved
2007-01-18) (2004)

11. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming 69(1-3), 35–45 (2007)

12. Harman, M.: The Current State and Future of Search Based Software Engineering. In: Future
of Software Engineering, 2007. FOSE 2007, May 23-25, 2007, pp. 342–357 (2007)

13. Herder, C., Dujmovic, J.J.: Frequency Analysis and Timing of Java Bytecodes. Technical
report, Computer Science Department, San Francisco State University, Technical Report
SFSU-CS-TR-00.02 (2000)

14. Hrischuk, C.E., Murray Woodside, C., Rolia, J.A.: Trace-based load characterization for gen-
erating performance software models. IEEE Transactions Software Engineering 25(1), 122–
135 (1999)

15. Hu, E.Y.-S., Wellings, A.J., Bernat, G.: Deriving Java Virtual Machine Timing Models for
PortableWorst-Case Execution Time Analysis. In: Meersman, R., Tari, Z. (eds.) OTM-WS
2003. LNCS, vol. 2889, pp. 411–424. Springer, Heidelberg (2003)

16. Israr, T., Woodside, M., Franks, G.: Interaction tree algorithms to extract effective archi-
tecture and layered performance models from traces. Journal of Systems and Software, 5th
International Workshop on Software and Performance 80(4), 474–492 (2007)

17. Koza, J.R.: Genetic Programming – On the Programming of Computers by Means of Natural
Selection, 3rd edn. MIT Press, Cambridge (1993)

18. Kuperberg, M., Becker, S.: Predicting Software Component Performance: On the Relevance
of Parameters for Benchmarking Bytecode and APIs. In: Reussner, R., Czyperski, C., Weck,
W. (eds.) WCOP 2007 (July 2007)

19. Kuperberg, M., Krogmann, M., Reussner, R.: ByCounter: Portable Runtime Counting of
Bytecode Instructions and Method Invocations. In: BYTECODE 2008 (2008)

20. Lambert, J., Power, J.F.: Platform Independent Timing of Java Virtual Machine Bytecode
Instructions. In: Workshop on Quantitative Aspects of Programming Languages, Budapest,
Hungary, March 29-30 (2008)

21. McMinn, P.: Search-based software test data generation: a survey. Software Testing, Verifi-
cation and Reliability 14(2), 105–156 (2004)

22. Meffert, K.: JGAP - Java Genetic Algorithms Package (last retrieved: 2008-03-18),
http://jgap.sourceforge.net/

23. Meyerhöfer, M., Meyer-Wegener, K.: Estimating Non-functional Properties of Component-
based Software Based on Resource Consumption. Electr. Notes Theor. Comput. Sci. 114,
25–45 (2005)

24. Smith, C.U., Williams, L.G.: Performance Engineering Evaluation of Object- Oriented Sys-
tems with SPEED. In: Marie, R., Plateau, B., Calzarossa, M.C., Rubino, G.J. (eds.) TOOLS
1997. LNCS, vol. 1245, Springer, Heidelberg (1997)

25. Zhang, X., Seltzer, M.: HBench:Java: an application-specific benchmarking framework for
Java virtual machines. In: JAVA 2000: Proceedings of the ACM 2000 conference on Java
Grande, pp. 62–70. ACM Press, New York (2000)

http://jgap.sourceforge.net/

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 64–79, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Validating Access Control Configurations in J2EE
Applications

Lianshan Sun, Gang Huang*, and Hong Mei

Key Laboratory of High Confidence Software Technologies, Ministry of Education, China
School of Electronics Engineering and Computer Science, Peking University, 100871, China

sunlsh@sei.pku.edu.cn, huanggang@sei.pku.edu.cn, meih@pku.edu.cn

Abstract. Access control is a means to achieve information security. When we
build large-scale systems based on commercial component middleware plat-
forms, such as those compliant to J2EE, a usual way to enforce access control is
to define Access Control Configurations (ACCs) for components in a declara-
tive manner. These ACCs can be enforced by the J2EE security service to grant
or deny access requests to components. However, it is difficult for the develop-
ers to define correct ACCs according to complex and sometimes ambiguous
real-world access control requirements. Faults of ACCs in large-scale J2EE ap-
plications may inevitably occur due to various reasons, for example ad hoc mis-
takes of the developers. This paper identifies three kinds of faults specific to
ACCs of J2EE applications as incompleteness, inconsistency, and redundancy,
presents validation algorithms for identifying these faults according to access
control requirements, illustrates these faults and the validation algorithms with
an online bank application.

Keywords: J2EE Security, Access Control, Validation.

1 Introduction

Component-Based Software Engineering is focused on developing software intensive
systems from pre-fabricated and reusable components [1]. It has achieved great suc-
cess in software engineering highlighted by the proliferation of commercial compo-
nent middleware platforms, such as those compliant to J2EE. Although commercial
middleware platforms are valuable in constructing large-scale component based sys-
tems, there are still concerns on the quality of the systems built on them [2, 3, 4]. This
paper is on how to assure the quality of J2EE access control configurations.

Access control is the process of mediating every request to resources and data
maintained by a system and determining whether the request should be granted or
denied [5]. It is a widely used means to achieve information security, especially con-
fidentiality and integrity [6]. In the J2EE, Role-Based Access Control (RBAC) model
[7] is adopted and its implementation mechanism is provided as the J2EE security
service [8, 9]. In RBAC, the users of a system are assigned one or more roles. Each
role has a set of rights. Rights of a user are the union of sets of rights of all roles that

* Corresponding author.

 Validating Access Control Configurations in J2EE Applications 65

user currently belongs to [7]. From the perspective of business, a role represents a
class of users or user groups in organizations according to their function, seniority,
and context in which they are active [10]. Consequently, the Access Control Re-
quirements (ACRs) of an organization should specify what roles can do what business
operations on resources under some conditions. From the perspective of technology, a
role is actually a set of method permissions, each of which describes the right of per-
forming a method of a component. By adopting J2EE security service, access control
concern can be well separated from the functional ones. The developers can focus on
functionalities first and then implementing ACRs via defining proper Access Control
Configurations (ACCs) for components in a declarative manner, i.e. assigning method
permissions to each role identified in organizations.

However, due to the gap between ACCs and ACRs, the complex structure of J2EE
applications, the knowledge and intelligence limits of human being, and many other
reasons, the ACCs in J2EE applications may contain various faults in terms of ACRs.
For the J2EE applications, these faults may induce unexpected risks, for example
information leakage, denial of service, and low performance. Therefore, it is neces-
sary to validate ACCs against ACRs to identify possible faults.

ACCs are actually access control policies (ACPs) [5] in the J2EE applications.
Current researches focus on verifying general ACPs against some formally-specified
properties [11, 12, 13], testing ACPs [14], but often neglect the influence of how and
where the ACPs are hooked into applications. In J2EE applications, component con-
tainers are responsible for hooking ACPs at different places. Multiple ACCs hooked
at different component methods may conflict or coordinate in implementing one
ACR. In that, except for the faults possibly occurred in general ACPs, ACCs in J2EE
applications may contain some special faults. This paper identifies three kinds of
faults specific to ACCs of J2EE applications: incompleteness, inconsistency, and
redundancy. This paper presents validation algorithms to identify these faults accord-
ing to ACRs automatically. By using the algorithms, analysts are relieved of the hard
and challenging work of manually validating voluminous ACCs.

In the rest of this paper, we first present how the way that ACPs are hooked into
J2EE applications leads to faults specific to ACCs and illustrate three kinds of faults
in an online bank application, which is used as the case throughout the paper. We then
introduce the validation algorithms in details and demonstrate them in the online bank
application. Later, we discuss our work in a bigger picture. Finally, we introduce
related work, conclude the paper and present the outlook on the future.

2 Faults Specific to ACCs in J2EE Applications

As shown in figure 1, in a modern access control system, requests to a resource are
intercepted at a policy enforcement point (PEP) and forwarded to a policy decision
point (PDP). The PDP then evaluates the requests against ACPs stored somewhere,
and returns the evaluation results, for example “allow” or “deny” to the PEP, which
will finally allow or deny the access requests to resource. In J2EE applications, the
protected resources are component methods; and component container serves as PEP;
J2EE security service serves as PDP, ACPs are actually ACCs defined in deployment
descriptor of components.

66 L. Sun, G. Huang, and H. Mei

Fig. 1. Conceptual Architecture of Access Control System (reprinted and simplified from [15])

Researchers have recognized that various faults may occur in ACPs and have also
provided verification, validation and testing techniques to identify these faults [11, 12,
13, 14]. For example, ACPs may violate some organization specific authorization
constraints; multiple ACPs defined for protecting one resource may allow or deny
some users simultaneously due to the inappropriate conflict-resolution algorithms.
The previous work is focused on faults of general ACPs, but the influence of how and
where ACPs are hooked into applications is always neglected.

However, faults in ACPs of J2EE applications, i.e. ACCs, may come from not only
the policies themselves but also where policies are hooked into the applications, i.e.
where the PEPs are placed.

J2EE applications are composed of interconnected components across multiple
tiers and running in various containers, which are responsible for hooking J2EE secu-
rity service to specific components or component methods [8]. In J2EE applications,
ACCs are defined in deployment descriptors of components. Some ACCs tell how a
component can acquire a principal on behalf of a user who is playing some roles and
which roles are allowed for a component method. When no ACCs are defined for a
component method, any access to it will be allowed.

In J2EE applications, users can perform a business operation by calling one or
more component methods implementing it directly or indirectly via other component
methods. All these component methods interconnect with each other via invocation
relationship and form one or more access paths to the business operation. In that,
implementing ACRs for protecting business operations on resources is to define
ACCs for some component methods on access paths to block all unauthorized users
while to allow all authorized users.

The developers can configure any components on the access paths on their discre-
tion, i.e. setting PEPs to hook ACPs. For example, some applications may only define
ACCs for web tier components while other applications may define ACCs for even all
component methods on the access paths. On the one hand, multiple ACCs can be
defined for implementing one ACR. On the other hand, multiple ACRs can be imple-
mented by multiple ACCs.

However, discretion of the developers is not always reliable and various faults may
be introduced, especially in large-scale component-based systems. In short, multiple
ACCs defined for different component methods (whose containers serve as PEPs)
may conflict or coordinate with each other in terms of ACRs. Defining or maintaining
some ACCs may incur unexpected impact on other ACCs and consequently the secu-
rity of the whole system. This means that the J2EE applications may include some
specific faults in ACCs. We identify three kinds of faults as follows. They are incom-
pleteness, inconsistency, and redundancy.

 Validating Access Control Configurations in J2EE Applications 67

Incompleteness means that the developers may leave some access paths to a busi-
ness operation without control for accidental mistakes. In this case, unauthorized
users may access the business operation via the security hole.

Sometimes, multiple components on one access path to a business operation are
configured for implementing an ACR. In fact, when the developers define ACCs to
allow some roles to access a component method, any component methods called by
the method should be accessible for the role.

Inconsistency of ACCs means that some roles may be allowed by some ACCs
while denied by others to access a business operation. That is, the business operation
may be not available for some legitimate users.

Sometimes, the developers deliberately define configurations for multiple compo-
nents to achieve better security [16]. However, these ACCs may not always necessary
for protecting one business operation, i.e. implementing an ACR.

Redundancy means that the developers may define redundant ACCs to implement
an ACR. The redundancy may lead to unnecessary performance overhead and some-
times may introduce potential security risks by allowing redundant roles to access
component methods. Redundant roles allowed to resources will violate the least privi-
lege principle (no one shall have more privileges than needed for performing their
duties) [17] and thus will lead to potential security risks.

In essence, these faults originate from the mismatch between resources to be pro-
tected in organization -- business operations, and resources actually protected in soft-
ware applications -- component methods. To identify these faults, it is necessary for
the developers to have all the knowledge of the structure of J2EE applications. When
the scale of J2EE applications increases, the developers will need an automatic tool to
perform the validation than to do it manually.

2.1 An Illustrative Example

To explain the possible faults of ACCs more clearly and to demonstrate our algo-
rithms in the next section, we build a new online bank application on top of the duke’s
bank application, which is used by an imaginary bank--the duke’s bank and is devel-
oped by Sun MicrosystemsTM to exemplify J2EE technologies [8]. The new online
bank application is still used by the duke’s bank to support new business transactions
and ACRs as follows.

The duke’s bank divides its customers into two roles, including VIPCustomer and
NormCustomer, and supports three new business operations, including B1 (transfer-
ring funds across banks), B2 (transferring funds within the duke’s bank), and B3 (que-
rying histories of transactions). There are three ACRs. First, customers in the role
VIPCustomer can transfer funds between accounts across banks or within the duke’s
bank. Second, customers in the role Normcustomer can only transfer funds between
accounts within the duke’s bank. Third, all customers can query transactions of their
accounts in the duke’s bank.

Some components in the online bank application and the interactions between them
are shown in fig. 2. To transfer funds between accounts within the duke’s bank, cus-
tomers in the role VIPCustomer and NormCustomer can call the component method
TxCtrl.internalTrans via the web tier component: the VIPInterface and the
NormInterface respectively.

68 L. Sun, G. Huang, and H. Mei

To transfer funds between accounts across banks, customers in the role VIPCus-
tomer can call the component methods ToBank-1.Transfunds or ToBank-n.Transfunds
via the VIPInterface and consequently the TxCtrl.extTrans. Multiple components,
such as ToBank-1, and ToBank-n, are introduced to conform to regulations of differ-
ent banks. In both cases, TxLogger.Log is called to record the information of transac-
tions for future retrieval.

Fig. 2. Fragments of the Online Bank Application

To query histories of transactions of an account in the duke’s bank, customers in
both roles VIPCustomer and NormCustomer can call the component method
TxCtrl.queryTx via two web tier components the VIPInterface and the NormInterface
respectively.

Currently, J2EE applications use the configuration file Web.xml and ejb-jar.xml to
specify several aspects of an application, such as the dependencies between compo-
nents, transactions, and security policy. The ACCs are declared within the elements
<Security-Constraints> in web.xml or the elements <method-permission> in ejb-
jar.xml. A possible implementation of the three ACRs of the online bank application
is as follows.

<!--Configurations in WEB.xml -->
1. <security-constraint>
2. <web-resource-collection>
3. <web-resource-name>VIPInterface</web-resource-name>
4. <url-pattern>/VIP/*</url-pattern>
5. </web-resource-collection>
6. <auth-constraint>
7. <role-name> VIPCustomer </role-name>
8. </auth-constraint>
9. </security-constraint>
10. <security-constraint>
11. <web-resource-collection>
12. <web-resource-name>NormInterface</web-resource-name>
13. <url-pattern>/Norm/*</url-pattern>
14. </web-resource-collection>
15. <auth-constraint>
16. <role-name> VIPCustomer,NormCustomer </role-name>
17. </auth-constraint>

 Validating Access Control Configurations in J2EE Applications 69

18. </security-constraint>
19. <login-config>
20. <auth-method> BASIC </auth-method>
21. </login-config>
<!--Configurations in ejb-jar.xml -->
22. <method-permission>
23. <role-name> VIPCustomer </role-name>
24. <method>
25. <ejb-name> TxCtrl </ejb-name>
26. <method-name>*</method-name>
27. </method>
28. <method>
29. <ejb-name> ToBank-1 </ejb-name>
30. <method-name> * </method-name>
31. </method>
32. <method>
33. <ejb-name> ToBank-n </ejb-name>
34. <method-name> * </method-name>
35. </method>
36. </method-permission>
37. <method-permission>
38. <role-name> NormCustomer </role-name>
39. <method>
40. <ejb-name> TxCtrl </ejb-name>
41. <method-name> * </method-name>
42. </method>
43. <method>
44. <ejb-name> TxLogger </ejb-name>
45. <method-name> * </method-name>
46. </method>
47. </method-permission>

List 1. An Example of Access Control Configurations of the Online Bank Application

List 1 is fragments of the deployment descriptor of the online bank application. It
configures roles allowed to access each component method in figure 1. Lines 1-18
allow customers in the role VIPCustomer to access VIPInterface and NormInterface;
and lines 22-36 allow them to access all methods of the component TxCtrl, ToBank-1,
and To-Bank-n. In this way, Customers in the role VIPCustomer are assigned with
sufficient privileges for perform all three business operations B1, B2, and B3.

Lines 10-18 allow customers in the role NormCustomer to access the web tier
component NormInterface; and lines 37-47 allow them access all methods of the
components TxCtrl and TxLogger. In this way, customers in the role NormCustomer
are assigned with sufficient privileges to perform business operations B2 and B3.

Unfortunately, ACCs defined in List 1 do not work as expected. Some faults are
buried in them. For example, the ACC defined for TxLogger.Log at lines 38, 43-46
allow only the role NormCustomer to access the component method TxLogger.Log. It
blocks the requests from the components ToBank-1 and ToBank-n, which are on be-
half of the role VIPCustomer to transfer funds from the duke’s bank to other banks.
That is, ACCs in List 1 are inconsistent.

70 L. Sun, G. Huang, and H. Mei

Furthermore, the ACC defined for TxCtrl.extTrans at lines 23-27 is redundant be-
cause any request to it issued by customers not in the role VIPCustomer will be de-
nied by the ACCs defined for ToBank-1 and ToBank-2. This redundant ACC leads to
unnecessary performance overhead.

In addition, the ACCs defined for TxCtrl.extTrans at lines 38-42 allow the role
NormCustomer to access all methods of TxCtrl for simplicity in defining ACCs. Al-
though the ACCs can satisfy all three ACRs, a redundant ACC allows the role Norm-
Customer to access the method TxCtrl.extTrans. In that, malicious customers in the
role NormCustomer can inject program to call the method TxCtrl.extTrans.

At last, lines 1-18 define ACCs for both web tier components, which are user-
interfaces of all access paths to all business operations. In that, ACCs defined in List 1
are complete.

As discussed above, it is difficult for the developers to manually and completely
identify and cure all faults of ACCs, or to justify their correctness even in such a sim-
ple example. We argue that in large-scale component based systems, which may in-
clude hundreds of business operations and thousands of components methods to be
configured, the faults of ACCs are often inevitable and very difficult to be manually
identified and cured by the developers.

3 Validation: Algorithms and Demonstration

Validation is an activity of software quality assurance [18]. In this section, we present
validation algorithms for three kinds of faults specific to ACCs of J2EE applications.
This section first shows the prerequisites for validating ACCs against ACRs, then
introduces the algorithms for identifying different kinds of faults of ACCs, and finally
demonstrates the algorithms with the online bank application.

3.1 Prerequisites for Validation

To enable the validation of the ACCs of J2EE applications against ACRs, some pre-
requisites are needed.

First, the ACRs as the foundation of validation should certainly be available. ACRs
specify what roles can access what business operations on which resources.

In order to access the J2EE applications properly, users need to play some legiti-
mate roles, each of which is a set of privileges that a user can possess to perform
his/her duties. A role can be denoted as r. The set R= {r1,r2,…rm, , m>0} denotes all
roles of J2EE applications and Rs denotes a subset of R. The business operations on
resources allowed for a role r are actually user-visible functions, which should have
been captured as functional requirements of the J2EE applications. An ACR can be
specified as a pair of the allowed roles Rs and a business operation f, i.e., acr = {Rs ,
f}. All ACRs in a J2EE application can be denoted as ACRs= {acr1,…,acrn , n>0}.
Some requirements specification methods have already contain such requirements
though they are defined in other formats [10, 19]. We believe they can be easily de-
rived from these requirements specifications.

Second, the ACCs of J2EE applications as the objects to be validated should also
be available. An ACC can be denoted as acc = {Rs m}, where m is the component

 Validating Access Control Configurations in J2EE Applications 71

method that can be accessed by the roles in Rs. In this paper, one acc only controls the
access to one method acc.m. A section of <method-permission> in the deployment
descriptor of J2EE applications actually defines one or more ACCs. All ACCs in a
J2EE application form a set ACCs = {acc1,…,acck, k>0}, which can be obtained easily
from the deployment descriptor of J2EE applications. For a component method m, the
ACC defined for it can be referred as m.acc. A traversal on ACCs of the J2EE appli-
cation is enough to get the m.acc from m.

For an acr, a user may perform the business operation acr.f via multiple access
paths. Any ACCs defined for methods on these paths contribute to the acr. To vali-
date ACCs against the acr, all access paths to acr.f should be constructed from the
architecture of J2EE applications including components interconnected with each
other via invocation relationship. The architecture of J2EE applications should be
available for validating ACCs. The architecture of J2EE applications can be obtained
with various means and in different settings. For example, when we develop the ap-
plication with only in-house components, the architecture is actually an artifact of
design. When we develop the application with the Off-The-Shelf (OTS) components,
dependencies between OTS component interfaces are available. By viewing the de-
pendencies between two component interfaces as roughly the invocation relations
among all methods of two interfaces, an inaccurate architecture is also available.
Sometimes, this inaccurate architecture can be adjusted with information mined from
source codes by algorithms of source code analysis [20] or by information reflected
from the runtime system [21].

With ACRs, ACCs and the architecture of J2EE applications as inputs, the devel-
opers can start to validate ACCs against ACRs, that is, to check their completeness,
consistency, and redundancy in implementing ACRs.

To validate ACCs against a given acr, it is necessary to find out all the ACCs im-
plementing the acr, that is, to identify all methods involved in using the business
operation acr.f because it is easy to find out the ACC defined for a component
method. These methods can be classified into two categories. One category includes
methods implementing acr.f. We call methods in this category as target methods of
acr.f. We denote target methods of the business operation f as TM(f)= {m1,…mp,
p>0}. TM (f) can be acquired automatically when traceability links between func-
tional requirements and component methods are available [22], or can be acquired
from manual analysis by the developers when traceability links are not available.

The other category includes methods directly or indirectly calling or called by tar-
get methods of acr.f. To acquire methods in the second category, we define two func-
tions. One is path(tm), which will be used to compute access paths to a target method
tm of a business operation f; the other is called(tm), which will be used to compute
component methods called by a target method tm. The functions path (tm) and
called(tm) traverse the architecture of J2EE applications to extract access paths to tm
and component methods called by tm. For an acr, by applying path () and called() to
each method tm in TM (acr.f), we can easily acquire all component methods related to
the business operation acr.f. Consequently, all ACCs related to the acr can be
acquired by traversing the set ACCs.

72 L. Sun, G. Huang, and H. Mei

3.2 Analyzing Completeness

For an acr, the business operation acr.f is protected completely only when each access
path to it is controlled by at least one acc. In this sense, we can say that the ACCs for
an acr are complete. The following algorithm traverses all access paths to acr.f and
identifies all uncontrolled paths of them as the set UncontrolledPath.

1. Algorithm Completeness(acr)
2. Begin
3. UnControlledPath = Φ ;
4. For each m in TM(acr.f)
5. For each path in path(m) ;
6. For m = path.head to path.tail
7. If (m.acc!= NIL)
8. Go to next path; // the path is under control
9. End
10. UncontrolledPath += { path };
11. End
12. End
13. End

In the above algorithm, the statement executed most frequently is line 7. It com-
putes m.acc from a method m by performing a traversal on ACCs of the J2EE applica-
tion. We assume that the number of all component methods is N and the number of
elements of ACCs is M, which is certainly less than N. We assume that the average
number of component methods implementing a business operation is C. In addition,
the average number of component methods called by one component method is two.
In that, the computation complexity of our algorithms can be denoted by the formula
T(N) = O(C×N×log2(N)), where log2(N) is the average length of an access path with-
out considering possible loop.

3.3 Analyzing Consistency

For an acr, in order to allow all legitimate roles to access the business operation acr.f
properly, all ACCs defined for component methods on all access paths to target meth-
ods of acr.f and component methods called by them directly or indirectly should work
harmoniously. On the one hand, when the developers define ACCs to allow some
roles to access component methods calling directly or indirectly the target methods of
acr.f, they actually want to allow these roles to access acr.f. In that, roles allowed by
each of these ACCs should be a subset of acr.Rs. If all roles allowed by these ACCs
together form a real subset of acr.Rs, but not exactly the acr.Rs, these ACCs will block
some legitimate roles for acr.f.

On the other hand, when the developers define an acc for a component method
called by the target methods of acr.f, they have to ensure acr.Rs is a subset of acc.Rs
to allow that users in all legitimate roles can access the acr.f properly. In general, for
the two endpoints of an invocation relationship, roles allowed for the caller should be
allowed for the callee. In this way, when the caller is accessed by legitimate roles, it
can in turn call its callee to respond the requests without authorization error. The
following algorithm identifies all inconsistent candidates of ACCs of an acr as the set
InConsistent, and all blocked legitimate roles as the set Role-Overlooked.

 Validating Access Control Configurations in J2EE Applications 73

1. Algorithm Consistency(acr)
2. Begin
3. InConsistent=Φ ; roles = Φ ;
4. For each tm in TM(acr.f)
5. For each path in path(tm)
6. preacc = NIL;
7. For m = path.head to path.tail
8. If(m.acc == NIL)
9. break;
10. If m.acc.roles ⊄ acr.roles
11. InConsistent += {m.acc };
12. roles += m.acc.roles;
13. End
14. If(preacc.roles ⊄ acc.roles)
15. InConsistent +={preacc,acc};
16. preacc = m.acc;
17. End
18. If(roles∩acr.roles) ≠ acr.roles
19. Role-overlooked = acr.roles-roles;
20. For each chain in Called(tm)
21. For m= chain.head to chain.tail
22. preacc = NIL;
23. If(acr.roles ⊄ m.acc.roles);
24. InConsistent += { m.acc };
25. End
26. If(preacc.roles ⊄ acc.roles)
27. InConsistent+={preacc,m.acc};
28. preacc = m.acc;
29. End
30. End

Similar to the algorithm Completeness(acr), the computation complexity of the al-
gorithm Consistency(acr) is also T(N) = O(C×N×log2(N)).

3.4 Analyzing Redundancy

Multiple ACCs can be defined to implement one acr. Sometimes, removing some of
ACCs will not influence the degree to which the acr is satisfied. In this sense, we can
say these ACCs are redundant for the acr. Sometimes, it is important to remove re-
dundant ACCs because they may induce unnecessary performance overhead or even
may introduce potential security risks by allowing roles to access methods not re-
quired for their duties.

According to an acr, only roles in acr.Rs are allowed to access the business opera-
tion acr.f via its target methods. If two ACCs defined for a target method of acr.f or
its callers allow same set of roles to access acr.f, then they are candidates of redun-
dant ACCs for the acr. One of them could be removed. If the set of roles allowed by
an ACC defined for a target method or its callers is not a sub set of acr.Rs, then some
redundant roles are allowed to access acr.f.

Any invocations from target methods of acr.f to other component methods are actually
on behalf of one or more roles in acr.Rs. In that, if an ACC defined for component

74 L. Sun, G. Huang, and H. Mei

methods, which is called directly or indirectly by target methods of acr.f only allows
acr.Rs, we can say that it is a candidate of redundant ACC.

The following algorithm identifies candidates of redundant ACCs for an acr as the
set RedundantACC. In particular, it identifies some redundant roles allowed for acr.f
as RedundantRole.

1. Algorithm Redundancy(acr)
2. Begin
3. RedundantACC = Φ ; roles = Φ ;
4. RedundantRole = Φ ;
5. For each tm in TM(acr.f)
6. For each path in path(tm)
7. preacc = NIL;
8. For m = path.head to path.tail
9. If((acc=m.acc))== NIL)
10. break;
11. If(acc.roles<=preacc.roles)
12. RedundantACC+={preacc};
13. roles += acc.roles;
14. End
15. preacc = m.acc;
16. End
17. If(roles∩acr.roles) ≠ roles
18. RedundantRole += roles - acr.roles;
19. For each chain in Called(tm)
20. For m= chain.head to chain.tail
21. If(m.acc.roles == acr.roles);
22. RedundantACC += {m.acc};
23. End
24. End
25. End

Similar to the algorithm Completeness(acr), the computation complexity of the al-
gorithm Redundancy(acr) is also T(N) = O(C×N×log2(N)).

It is noteworthy that, a candidate of redundant ACC can be removed only when it
is unnecessary for all access paths passing the component method it protects. For a
redundant ACC candidate c1 of an ACR a1, when c1 does not appear in the set of Re-
dundantACC of other ACRs but c1.m is calling or called directly or indirectly by
target methods of other ACRs, we can say c1 is a fake redundant ACC for a1. In fact,
we can only identify part of fake redundant ACCs. Sometimes, redundant ACCs may
come from deliberate design decisions. For example, the developers may decide that
components at each tier of J2EE applications should be configured with access con-
trol capability. When necessary, the developers need to filter out the fake redundant
ACCs manually.

3.5 Validating the Online Bank Application

One acr of the online bank application is {VIPCustomer, B1}. It denotes that only
customers in the role VIPCustomer can transfer funds from the duke’s bank to other
banks. We can apply the above algorithms to validate whether the ACCs defined in

 Validating Access Control Configurations in J2EE Applications 75

List 1 are complete, consistent and redundant or not against the acr. Target methods
of B1 include ToBank-1.TransFunds and ToBank-n.TransFunds. Access paths passing
them include {VIPInterface, TxCtrl.extTrans, ToBank-1.TransFunds} and {VIPInter-
face, TxCtrl.extTrans, ToBank-n.TransFunds }. Component methods called by them
include only { TxLogger.Log}

According to the algorithm Completeness(acr), List 1 defines ACCs in lines 23,
and 28-35 for ToBank-1.TransFunds and ToBank-n.TransFunds to allow customers in
the role VIPCustomer. In that, ACCs defined in List 1 are complete for protecting the
business operation B1.

According to the algorithm Consistency(acr), the ACC defined in lines 1-9 allows the
role VIPCustomer to access VIPInterface. In turn, roles allowed for TxCtrl.extTrans
include VIPCustomer and NormCustomer according to ACCs defined in lines 23-27 and
lines 38-42 in List 1. Obviously, roles allowed by the ACC for TxCtrl.extTrans are not
subsets of roles allowed by ACCs for both ToBank-1.TransFunds, and ToBank-
n.TransFunds. In that, these ACCs are inconsistent in implementing the acr. In addition,
roles allowed by the ACC defined for TxLogger.Log in lines 43-47 include only Norm-
Customer, which is not a superset of roles allowed by the ACCs defined for both To-
Bank-1.TransFunds, and ToBank-n.TransFunds. An authorization error will occur when
customers in the role VIPCusomter transfer funds across banks. In that, these ACC are
inconsistent too in implementing the acr.

According to the algorithm Redundancy(acr), the ACC defined by lines 1-9, 24-27
is redundant relative to ACCs defined by lines 28-35. Furthermore, the ACC defined
by lines 39-42 allows redundant role NormCustomer for the component method
TxCtrl.extTrans. However, the ACC defined by lines 1-9 will not be removed when a
design decision is that each tier of J2EE applications should be controlled independ-
ently. At last, the acc for TxCtrl.extTrans is removed.

4 Discussion

The main contributions of this paper include the identification of three types of faults
specific to ACCs in J2EE applications and the definition of validation algorithms for
each of them. These algorithms are somewhat straightforward because we focus on
the feasibility of the validation. In real settings, many concerns need to be considered
and the validation engine may be much more complex than the algorithms presented.
For example, validation engine needs to clarify how the identified candidates of faults
can be cured and how the validation engine can acquire necessary inputs when acti-
vated at different phases of development.

In J2EE applications, when a component method m1 with the principal acquired
from its caller fails to call its downstream components due to authorization error. That
is, some roles allowed by m1.acc are not allowed by the ACCs of the component
methods called by m1. This is actually an instance of inconsistency fault, which can be
identified by the algorithm Consistency(). Recognizing the inconsistency, the devel-
opers can use the <run-as> element of the deployment descriptor to assign a role r to
the component c with the method m1 to allow it to invoke its downstream components
properly. In this case, the developers cure the inconsistency of ACCs by employing

76 L. Sun, G. Huang, and H. Mei

the <run-as> element. We can develop an algorithm for checking whether the incon-
sistent ACCs identified by the algorithm Consistency() have been cured by the <run-
as> element in deployment descriptor or not. In fact, many reasons can lead to faults
of ACCs and consequently various design decisions may be involved in fixing the
faults identified. For example, both employing the <run-as> element and changing
roles allowed to access methods can cure some faults of inconsistency. We argue it is
possible to automatically recommend remedies for fixing these faults. However, it is
very difficult, if no possible, to ensure the correctness of the remedies.

In real applications, users may be required to play multiple roles at the same time
for performing some business operations. Due to the inability of J2EE deployment
descriptor in specifying multiple roles that have to be activated simultaneously, the
developers may deliberately define inconsistent ACCs to rule out users not activating
some required roles step by step. However, in this case, security risks are inevitably
introduced. A more secure solution is to define a new role which subsumes the privi-
leges owned by all required roles. In this case, users can activate only the new role for
performing the business operations.

The ACCs specified as the deployment descriptor of J2EE applications can be de-
veloped and maintained at different phases of component-based software engineering.
Accordingly, our algorithms are applicable at different phases where the ACRs and
ACCs are available. In particular, the architecture of J2EE applications can be ac-
quired at different phases from different sources, such as from detailed design model
at design phases, and then enriched by source code analysis [20] at deployment time
and by reflected information at runtime [21]. At different phases, our algorithms can
identify the faults of ACCs in terms of ACRs an automatic manner.

In general, ACRs can be specified based on instances, for example location or time
of requests, or based on the roles played by users. Furthermore, the developers of
J2EE applications can use customized security or J2EE security to implement ACRs.
In particular, they can use J2EE security in a programmatic manner or declarative
manner. Algorithms in this paper validate only the declarative ACCs conforming to
role-based access control model [7] against role-based ACRs. Declarative security in
J2EE applications can only control access requests across component boundaries
because the container of components takes the responsibility of enforcing the ACCs.
The declarative security is very suitable for the integration of reusable components,
which are black box for assembler. To this end, the intra-component call is not con-
sidered in our algorithms.

At last, we argue that the faults of access control configurations we identified in
J2EE applications may also occur in applications based on other component middle-
ware platforms, which adopt and implement role-based access control model, such
as .NET. We can identify the faults of ACCs in those applications in a similar way as
in J2EE applications.

5 Related Work

ACCs in J2EE applications are actually the role-based ACPs enforced by the underly-
ing access control mechanism--the J2EE security service [8, 9]. ACPs have grown
from simple matrices to non-trivial specifications as sophisticated configurations in

 Validating Access Control Configurations in J2EE Applications 77

distributed system [15, 23]. The increasing complexity of these policies correspond-
ingly demands strong quality assurance techniques.

Many researches have been done to verify whether or not the policies conforming
to some properties. For example, Jajodia et al checked whether two or more ACPs
grant or deny an access simultaneously and whether all access have been granted or
denied [24]. Naumovich and Centonze [25, 26] evaluated the “location consistency”
between function-based ACPs and data-based ACPs. Hansen et al [12] demonstrated
how to use finite model checking to conformance testing between security policies
expressed in form of LTL claims and their implementation in RBAC framework.
Fisler et al. [13] developed a tool called Margrave that uses multi-terminal binary
decision diagrams to verify user-specified properties and perform change-impact
analysis on ACPs. Martin et al [14, 27] introduced idea of mutation test into verifica-
tion of ACPs to assess the quality of policy properties used to verify ACPs. In addi-
tion, some organization level authorization constraints [11] need to be enforced when
specifying ACPs. For example, two roles should not be allowed to access a resource.
Some researchers have provided facilities to validate and test ACPs for their viola-
tions to authorization constraints [28].

However, these researches do not consider how the places where the ACPs are
hooked into the software applications influence the verification of ACPs. In that,
these approaches fail to identify faults originated from the correlation of multiple
ACPs hooked at different places in the software applications in implementing an
ACR, i.e. protecting a business operation. As an exception, Pistoia et al [29] assumed
methods allowed for roles are correct and then utilize the call graph of methods in a
program, which is protected by access control policies to verify whether the roles
assigned to a user is insufficient or redundant for executing the program. They con-
struct the call graph of a program by source code analysis tool DOMO, which can
identify both inter-component call and intra-component call in J2EE applications.

In contrast to verifying the properties of ACPs, our algorithms validate ACPs
against high-level ACRs while considering the places where the policies are hooked
in J2EE applications. Taking software architecture of J2EE applications including
components interconnected via method invocation relationship as input, our valida-
tion algorithms automatically evaluate whether ACCs are complete, consistent or
redundant or not for implementing an ACR. Here, the ACRs are supposed to be cor-
rect and serve as the base for reasoning and adapting the ACCs. In real settings, ACRs
may include some faults. When viewing the ACRs as high-level ACPs, the developers
can apply existing validation and testing techniques on ACRs, for example work in
[12, 13, 24, 28]. Massacci et al [30] identify and resolve the conflicts of ACRs with
functional requirements.

6 Conclusion and Future Work

This paper identifies three kinds of faults specific to ACCs in J2EE applications – an
instance of component based software, including incompleteness, inconsistency and
redundancy. The problematic ACCs may harm the security and performance of J2EE
applications. This paper presents algorithms for validating the ACCs of J2EE applica-
tions against ACRs in an automatic manner. Our algorithms utilize the architecture of

78 L. Sun, G. Huang, and H. Mei

J2EE applications to validate multiple ACCs defined for different component meth-
ods in J2EE applications. Our algorithms reduce the work required for the analysts to
validate the ACCs in large-scale J2EE applications, in which hundreds of business
operations need to be protected and thousands of component methods need to be con-
figured for protecting the business operations.

In the future, we plan to integrate the validation algorithms into our architecture
centric development tool suite and apply it in more real J2EE applications. Further-
more, in contrast to validating ACCs against ACRs after ACCs are produced as this
paper does, we plan to generate complete, consistent and non-redundant ACCs from
ACRs by a model driven approach.

Acknowledgements. This work is sponsored by the National Basic Research Program
(973) of China under Grant No. 2002CB312000, the High-Tech Research and Devel-
opment Program (863) of China under Grant No. 2006AA01Z156, the National Natu-
ral Science Foundation of China under Grant No. 60528006 and the Fok Ying Tung
Education Foundation.

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn. Ad-
dison Wesley, London (2002)

2. Lan, L., Huang, G., et al.: Architecture Based Deployment of Large-Scale Component
Based Systems: The Tool and Principles. In: Heineman, G., Crnkovic, I., Schmidt, H.W.,
Stafford, J.A., Szyperski, C., Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 123–
138. Springer, Heidelberg (2005)

3. Liu, Y., Gorton, I.: Performance Prediction of J2EE Applications Using Messaging Proto-
cols. In: Heineman, G., Crnkovic, I., Schmidt, H.W., Stafford, J.A., Szyperski, C., Wall-
nau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 123–138. Springer, Heidelberg (2005)

4. Lau, K.K., Ukis, V.: Defining and Checking Deployment Contracts for Software Compo-
nents. In: Gorton, I., Heinemann, G.T., Crnkovic, I., Schmidt, H.W., Stafford, J.A.,
Szyperski, C., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 1–16. Springer, Hei-
delberg (2006)

5. Samarati, P., di Vimercati, S.C.: Access Control: Policies, Models, and Mechanisms. In:
Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196. Springer,
Heidelberg (2001)

6. BS799-1: Information Security Management—Part 1: Code of Practice for Information
Security, British Standards Institution, London (1999)

7. Sandhu, R.S., Coyne, E.J., et al.: Role-based access control models. Computer 29(2), 38–
47 (1996)

8. Sun Microsystems, The Java EE 5 Tutorial,
http://java.sun.com/javaee/5/docs/

9. Sun Microsystems, Enterprise JavaBeans Specification v3.0,
http://java.sun.com/products/ejb/

10. Crook, R., Ince, D.C., et al.: Modelling access policies using roles in requirements engi-
neering. J. Information & Software Technology 45(14), 979–991 (2003)

11. Ahn, G.J.: The RCL 2000 language for specifying role-based authorization constraints,
Ph.D. thesis, George Mason University, Fairfax, Virginia (1999)

 Validating Access Control Configurations in J2EE Applications 79

12. Hansen, F., Oleshchuk, V.: Conformance Checking of RBAC Policy and Its Implementa-
tion. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp.
144–155. Springer, Heidelberg (2005)

13. Fisler, K.S., Krishnamurthi, L., et al.: Verification and change-impact analysis of access-
control policies. In: Proc. of ICSE 2005, pp. 196–205. ACM Press, New York (2005)

14. Martin, E., Xie, T.: A fault model and mutation testing of access control policies. In: Proc.
of WWW 2007, pp. 667–676 (2007)

15. Moses, T.: eXtensible Access Control Markup Language (XACML) version 1.0. Technical
report, OASIS (February 2003)

16. Ilechko, P., Kagan, M.: Authorization concepts and solutions for J2EE applications,
http://www.ibm.com/developerworks/websphere/library/
techarticles/0607_ilechko/0607_ilechko.html

17. Vimercati, S., Paraboschi, S., et al.: Access control: principles and solutions. Software -
Practice and Experience 33, 397–421 (2003)

18. Adrion, W.R., Branstad, M.A., et al.: Validation, Verification, and Testing of Computer
Software. ACM Computing Surveys (CSUR) 14(2), 159–192 (1982)

19. Giorgini, P., Massacci, F., et al.: Modeling Security Requirements Through Ownership,
Permission and Delegation. In: Proc. of ICRE 2005, pp. 167–176. IEEE Computer Society
Press, Los Alamitos (2005)

20. Grove, D., Chambers, C.: A Framework for Call Graph Construction Algorithms. ACM
Trans. Program. Lang. Syst. 23(6), 685–746 (2001)

21. Huang, G., Mei, H., et al.: Runtime recovery and manipulation of software architecture of
component-based systems. Autom. Softw. Eng. 13(2), 257–281 (2006)

22. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE
Transactions on Software Engineering 27(1), 58–93 (2001)

23. Vo, H.D., Suzuki, M.: An Approach for Specifying Access Control Policy in J2EE Appli-
cations. In: Proc. of APSEC 2007, pp. 422–429 (2007)

24. Jajodia, S., Samarati, P., et al.: A logical language for expressing authorizations. In: Proc.
of 1997 IEEE Symposium on Security and Privacy, pp. 31–42 (1997)

25. Naumovich, G., Centonze, P.: Static Analysis of Role-Based Access Control in J2EE Ap-
plications. SIGSOFT Software Engineering Notes 29(5), 1–10 (2004)

26. Centonze, P., Naumovich, G., Fink, S.J., et al.: Role-Based Access Control Consistency
Validation. In: Proc. of the ISSTA 2006, pp. 121–132. ACM Press, New York (2006)

27. Martin, E., Xie, T., et al.: Assessing Quality of Policy Properties in Verification of Access
Control Policies. Technical Report. North Carolina State University Raleigh, NC, USA
(2007)

28. Sohr, K., Ahn, G.J., et al.: Specification and Validation of Authorisation Constraints Using
UML and OCL. In: de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 64–79. Springer, Heidelberg (2005)

29. Pistoia, M., Fink, S.J., et al.: When Role Models Have Flaws: Static Validation of Enter-
prise Security Policies. In: Proc. of ICSE 2007, pp. 478–488. IEEE Computer Society, Los
Alamitos (2007)

30. Massacci, F., Zannone, N.: Detecting Conflicts between Functional and Security Require-
ments with Secure Tropos: John Rusnak and the Allied Irish Bank, Technical Report DIT-
06-002, University of Trento (2006)

Classification of Component Vulnerabilities in

Java Service Oriented Programming (SOP)
Platforms�

Pierre Parrend and Stéphane Frénot

INRIA Amazones / CITI, INSA-Lyon, F-69621, France
Tel.: +334 72 43 71 29, Fax. +334 72 43 62 27

{pierre.parrend,stephane.frenot}@insa-lyon.fr

Abstract. Java-based systems have evolved from stand-alone appli-
cations to multi-component to Service Oriented Programming (SOP)
platforms. Each step of this evolution makes a set of Java vulnerabil-
ities directly exploitable by malicious code: access to classes in multi-
component platforms, and access to object in SOP, is granted to them
with often no control.

This paper defines two taxonomies that characterize vulnerabilities
in Java components: the vulnerability categories, and the goals of the
attacks that are based on these vulnerabilities. The ‘vulnerability cat-
egory’ taxonomy is based on three application types: stand-alone, class
sharing, and SOP. Entries express the absence of proper security features
at places they are required to build secure component-based systems.
The ‘goal’ taxonomy is based on the distinction between undue access,
which encompasses the traditional integrity and confidentiality security
properties, and denial-of-service. It provides a matching between the vul-
nerability categories and their consequences. The exploitability of each
vulnerability is validated through the development of a pair of malicious
and vulnerable components. Experiments are conducted in the context
of the OSGi Platform. Based on the vulnerability taxonomies, recom-
mendations for writing hardened component code are issued.

1 Introduction

Java execution environments evolve from stand alone applications to
component-based systems to Service Oriented Programming (SOP) Platforms [1].
Component-based systems introduce multi-application execution. Service
Oriented Programming (SOP) Platforms add a strong runtime dynamicity of com-
ponent linkage, thus supporting more customizable applications. While new fea-
tures are added, each of these evolutions turns potential vulnerabilities into
directly exploitable flaws. Access to component class represents a first important
threat. It makes class vulnerabilities directly exploitable by other components.
SOP broaden this threat by enabling direct access to objects provided by these

� This work is partially funded by the ANR-07-SESU 007 LISE Project.

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 80–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Classification of Component Vulnerabilities in Java SOP Platforms 81

components, with often no restriction. This makes object vulnerabilities
exploitable. We present a classification of vulnerabilities of components, so as to
help developers identify and mitigate this threat and build secure component-
based systems.

Experiments are conducted on the Java/OSGi SOP Platform [13]. They aim
at identifying vulnerabilities that can actually be exploited by malicious com-
ponents that are installed on a system, as well as additional preconditions. Is
considered as an exploitable vulnerability any feature which use leads to a be-
havior that break explicit or implicit security policies for the system [8].

In most cases, the condition of exploitation is that vulnerabilities must be
present in the code that is made available to other components. This is what we
call Public Code. This concept is introduced in the Parnas and Wang component
model [14], cited by [4].

The following of the paper is organized as follows. Section 2 presents related
works. Section 3 describes the vulnerability categories, and provides the related
taxonomies. The rationale and experiment of this study is provided in Section
4. Section 5 concludes this work.

2 Related Works

As a part of the Java ecosystem, the Java language itself has been designed with
a strong emphasis on security. However, as no system is entirely secure, pitfalls
and behaviors exist that turn out to be actual vulnerabilities, in particular in
the context of multi-component systems and Service Oriented Programming.

2.1 Attack Vectors against the Java/OSGi SOP Platform

Hackers can attack Java/OSGi applications by exploiting two main attack vec-
tors: platform vulnerabilities, and component vulnerabilities. Platform vulnera-
bilities can be exploited to indirectly attack other components. The only
requirement for exploiting them in a default, non secure Java/ OSGi platform
implementation, is to install a bundle that calls dangerous or faulty platform
code. This often implies that it is published in a known bundle repository, and
sometimes that it is signed. A security analysis of the Java/OSGi Platform is
given in [15]. 32 vulnerabilities are identified. They lead to Denial-of-Service
(through platform crash or performance breakdown) and to undue access to
code. Most vulnerabilities (18 out of 32) are bound with the JVM, such as the
lack of CPU and memory isolation between components, the Runtime API, the
presence of dangerous functionalities such as native code execution, thread cre-
ation, reflection. Others (14 out of 32) are bound with the OSGi Platform itself,
such as bundle fragments, bundle management, and lack of control on Service-
Oriented-Programming. All of these vulnerabilities lead to attacks against the
Platform that can be exploited to harm other components. Other vulnerabilities
are specific to given implementations of the JVM [2], or to specific embedded
platforms such as the CLDC [3].

82 P. Parrend and S. Frénot

Component vulnerabilities can be exploited to directly attack other compo-
nents. They are due to java language properties [7] that can be misused to achieve
a malicious goal.

2.2 Known Vulnerabilities in Java/OSGi Components

After platform vulnerabilities, the second kind of vulnerabilities that can plague
Java-based component systems is the presence of flaws in the components them-
selves. They can be exploited as soon a malicious component can be installed in
a Platform where components share code with each other.

Several works provide hints related to some attacks against Java-based sys-
tems, without taking a systematic approach. Java features that can lead to vul-
nerabilities are presented by Long [12]: type safety limitations, public fields, inner
classes, serialization, reflection, JVM Tool Interface, debugging and management
tools can be exploited to abuse Java-based applications. More weaknesses are
mentioned by the Last Stage of Delirium Research Group [18], such as unsafe
type conversion, class loader attacks, bad implementation of system classes. An-
other specific attack consists in executing arbitrary code through forced type
mismatch [5]. It is based on memory errors that can mainly be forced through
physical access to the machine. These vulnerabilities form the first set of oc-
curences on which our experiments are based.

The first systematic set of candidate vulnerabilities that flaw Java Extensible
Component Platforms is provided by the Findbugs tools Vulnerability List 1 [6].
The Malicious Code Vulnerability category identifies 12 code patterns that can
lead to exposition and modification of object internal data to another potentially
untrusted code element, such as returning references to mutable objects or array
or storing data in class variable that are not properly encapsulated.

The second systematic set of candidates vulnerabilities that flaw Java Ex-
tensible Component Platforms is provided by the ‘Sun Java Security Coding
Guidelines’ [17]. Each guideline matches a code flaw that can be exploited by
untrusted code to perform malicious actions. For instance, abuse of inheritance,
faulty validation and copy of method parameters or returned objects, security
checks by-passing and serialization/de-serialization of sensitive data are refer-
enced. Sun Java Security Coding Guidelines are completed by Charlie Lai’s Java
Insecurity Subtleties [9]. These two lists of vulnerabilities form the second set
of occurences on which our experiments are based. More are detailed in the
Appendix A.1.

These references provide useful support both to train developers and for sup-
porting vulnerability identification through static analysis. However, several crit-
icisms can be issued. First, none of these works provides a classification that is
structured or complete. Secondly, they do not provide information relative to the
exploitability of these vulnerabilities: are they present but harmless, or is any
installed component able to exploit them all with little to no additional effort?

1 http://findbugs.sourceforge.net/bugDescriptions.html

Classification of Component Vulnerabilities in Java SOP Platforms 83

3 Vulnerabilities in SOP Platforms

Vulnerabilities in Java/OSGi components pertain to three categories: Stand-
Alone components, Class Sharing, and Object Sharing. The last category is
made exploitable by the Service Oriented Programming (SOP) paradigm. Two
taxonomies characterize at best their properties: Categories of the vulnerabil-
ities, and goals of attacks that exploit them. These taxonomies are obtained
by classifying the 39 distinct vulnerabilities that we identified through biblio-
graphical review and through our own experience. Two examples that highlight
abuse risks are given in the Appendix A.1: Malicious Inversion of Control and
Synchronized Code.

3.1 Vulnerability Classes

Classes of vulnerabilities are defined according to the preconditions that must
be enforced to exploit them. These preconditions are: No access to the code
(Stand-Alone component), access to classes (Shared Classes), access to objects
(Shared Objects or SOP). These component vulnerabilities are referenced in
two vulnerability catalogs: the Malicious Bundles catalog [15], which identifies
vulnerabilities that can be exploited through malicious components and are im-
plied by platform features, and the Vulnerable Bundles catalog [16], which iden-
tifies vulnerabilities that are implied by component features, mostly based on
Java language properties [7]. Following features of the Java/OSGi Platform lead
to component vulnerabilities: the reflection API, SOP services, and fragments.
Other entries of the Malicious Bundles catalog are not considered here, since
they concern the implementation of the platform and the isolation mechanisms
it enforces, and not the way components are coded.

So as to provide an overview of the relative importance of each vulnerability
category, their cardinality is extracted.

The total number N of vulnerabilities that we identify in Java/OSGi com-
ponents is: 6 vulnerabilities from the Malicious Bundles catalog, and all 33
vulnerabilities from the Vulnerable Bundles catalog.

N = 6 + 33 = 39
The number NSA of vulnerability in stand alone components is 1, which

matches the use of serialization. When not properly protected, it provides access
to any entity that is able to read the serialized data, for instance through the net-
work or the file system. This vulnerability may not be restricted to component
platforms.

NSA = 1
Vulnerabilities that pertain to the Shared Classes vulnerability category can

be exploited provided that two conditions are met. First, victim code must be
loaded by the same ClassLoader as the attack CODE, OR be shared among
ClassLoaders. In the Java/OSGi case, this concerns exported packages as well
as bundle fragments and their hosts. Secondly, the code must be launched by
the application. In OSGi, this is for instance done through the bundle activa-
tor, or when methods are called. These vulnerabilities occur mainly when static

84 P. Parrend and S. Frénot

fields exists in the code, and when reflection, inheritance and fragments can be
exploited.

NCL = 18
Some vulnerabilities require the execution of a given method, which can be

achieved either through static access or through SOP, depending on the imple-
mentation. This is the case e.g. for synchronization problems. They can therefore
not be classified in one or the other category, though for simplicity one can con-
sider them to be SOP vulnerabilities, because they are much more likely to be
exploitable in this case.

NS = 2
The vulnerabilities that pertain to the Object Sharing category can be exe-

cuted provided that a malicious component can be installed, and that access to
objects is granted. This is typically the case in SOP Platforms. For instance,
in OSGi, it is possible to access all objects that are registered as services. The
number NSOP of vulnerabilities in the Object Sharing category is:

NSOP = 18
Figure 1 provides an overview of the vulnerability categories in a SOP Plat-

forms.

Fig. 1. Vulnerability types in a SOP Platform

3.2 Vulnerability Implementations

Vulnerability lists are usually given without regard to their actual likeliness.
The following taxonomy provides for each system configuration the set of vul-
nerabilities that can be exploited without further effort. Each vulnerability cat-
egory extends the others: Stand Alone Application vulnerabilities can also be
exploited in case of Class Sharing system, and Class Sharing vulnerabilities can
be exploited in the context of SOP.

Table 1 present the taxonomy for vulnerability categories according to the
vulnerability category they pertain to.

Classification of Component Vulnerabilities in Java SOP Platforms 85

Table 1. Taxonomy: Implementations of the Component Vulnerabilities in Java/OSGi
SOP Platform

Attack Vector Implementation Occurences
Component
Interactions

Stand Alone
App.

Serialization 1

Class Sharing Exposed Internal
Representation

Mutable element in
static variable

2

Reflection 3
Fragments 2
No suitable control 2

Avoidable Calls to
the Security Man-
ager

At instanciation 4

In method call 5
Class Sharing
or SOP

Synchronization 2

SOP Exposed Internal
Representation

Returns reference
to mutable element

2

No suitable control 4
Flaws in Parameter
Validation

Unchecked parame-
ter

3

Checked parameter
without copy

1

Checked and copied
parameter

4

Non final parameter 2
Invalid Workflow 1

Stand Alone Applications. Stand alone applications do not enable to run third
party code. The only code-level vulnerability that can be exploited in this case
is the access to internal data that is made available through serialization. This
flaw can be prevented by avoiding serialization, or by properly protecting, for
instance through cryptography, the serialized data.

Other vulnerabilities may of course also exist, but they are related with the
application behavior itself, not with the code properties, and are therefore not
of interest here.

Class Sharing. Platforms that support Class Sharing are typically component-
based systems. Each component can make classes available, and have depen-
dencies to others. In the OSGi Platform, for instance, this feature is supported
by the Module Layer. Class Sharing makes two main category of vulnerabilities
open for exploits: Exposed Internal Representation and Avoidable Calls to the
Security Manager. In some specific cases, the Synchronization vulnerability can
also be exploited.

Exposed Internal Representation enables malicious components to ac-
cess data inside victim components. In the Class Sharing case, it enables to

86 P. Parrend and S. Frénot

execute code that should remain hidden, and to access static class members2.
Four sub-categories exist: Mutable element in static variable, Reflection, Frag-
ments and No suitable control.

– Mutable element in static variable vulnerabilities consist in giving access to
third party components to fields that are both static and final, but which
content can nonetheless be modified. This occurs when the fields either con-
tain arrays, or mutable classes. Mutable classes are any classes that store
data that the client object can modify. For instance, implementations of the
Set and Collection interfaces are mutable. The only way to prevent this
vulnerability to be exploited is to ban such constructs from public variables
of public code classes.

– The Reflection sub-category consists in exploiting the Reflection API to
access and exploit the content of the victim component. It encompasses
code observation, component data modification when this data is static, and
launching hidden method . The protection against these vulnerabilities are
of two types. First, clean encapsulation can prevent unwanted access, since
reflection does not allow to access fields and execute methods when visibility
modifiers (public, protected, default, and private) forbid it. Secondly, Java
Permissions can be set to prevent untrusted components from using the
Reflection API.

– Fragments vulnerabilities exploit the OSGi-specific fragments. Fragments
are used to provide configuration data and code to OSGi bundles, e.g. for
supporting context specific behaviors such as internationalization. Fragment
code is executed in the same ClassLoader as its Host bundle. This enable
them to have full access to the code, and to share this access with other
components by exporting it. Three implementations exist for this vulnera-
bility category. First, a fragment can access the classes inside its host bundle.
It can call classes that do not pertain to public code. Next, the split pack-
age feature enable to gain access to package protected classes, fields and
methods, if the fragment contains a package with the same name as the
targeted package in the host. Lastly, private inner classes, which are made
package protected at compilation, are thus available from the fragment. Pro-
tection against fragments consists in setting BundlePermission:HOST and
BundlePermission:FRAGMENT to trusted components only.

– No suitable control vulnerabilities enable to influence the behavior of the
application through class access. In particular, shutdown hooks3 can be ex-
ploited to keep a handle on an object after all references have been destroyed
in the application. This enables in particular the execution of code after com-
ponents have been uninstalled. The protection against the shutdown hook
attack can be obtained by preventing untrusted components to set such
hooks, e.g. through Java Permissions.

2 Class members are fields and methods.
3 Shutdown hooks are methods that are executed during the shutdown process of the

virtual machine. They can be set at any moment.

Classification of Component Vulnerabilities in Java SOP Platforms 87

Avoidable Calls to the Security Manager enables malicious components
to by-pass security checks that occur in the code. These vulnerabilities are either
exploited by overriding the code that contains the check, or by taking advantage
of methods that are executed in spite of the presence of a Security Manager (or
any similar check).

Two types of vulnerabilities are identified: avoidable checks ‘at instantiation’,
which allows to create protected objects, and avoidable checks ‘in method call’,
which allows to perform protected actions.

– The avoidable checks at instantiation category consists either in not using a
constructor that contains security checks to create objects, or in overriding
it in a sub-class. Object creation without constructor can be achieved either
through the clone() method, or through de-serialization, when these two
mechanisms are not protected. The protection consists in performing the
same security checks in all constructors, in the clone() method if the class
is cloneable, and in the readObject()method if the class is serializable.
Avoiding security checks through overriding simply consist in re-writing the
methods that contain the checks. This is possible either if a constructor
exists that does not contain checks, or if the checks are performed in other
methods. Consequently, these methods should always be final to prevent
exploitation.

– The avoidable checks in method call category consists in performing actions
that should be prevented by the security policy. The simplest way to achieve
this is to override a method that contains a security check by a self-defined
one. Executing methods of objects which creation has aborted due to secu-
rity reasons is also possible: the finalize()method is always executed, even
through the constructor could not be properly executed. Calls on the object,
which is in a such case often only partially initialized, can typically reveal
internal data. The protection here is to perform security checks at the very
beginning of the creator method (constructor or other), to prevent data to
be set before the security check. The last vulnerability that avoids security
checks consists in executing sensible operations on behalf on untrusted com-
ponents. This is done through doPrivileged() calls. A specific case can oc-
cur with security checks that depends only on the local ClassLoader, such as
java.lang.Class.forName and java.lang.Class.newInstance. The pro-
tection against these two vulnerabilities is to never execute sensitive opera-
tions on behalf of others.

Synchronization vulnerabilities threaten Java/OSGi Platforms with freez-
ing: if a synchronized method call does not return, all subsequent calls keep
waiting for the lock to be released. Exploiting these vulnerabilities requires either
that the synchronized call freezes by itself, or that the malicious component is
able to interfere with its execution, for instance by providing a malicious service
on which the victim method relies. So as to make attack through Shared Classes
possible, these methods must be launched through a static method call, either di-
rectly (the synchronizedmethod is also static) or indirectly (the synchronized

88 P. Parrend and S. Frénot

method is called by a static method). Attack is triggered when this malicious ser-
vice freezes and thus blocks the synchronized call. Two implementations exist:
either a full method is synchronized, or a code block inside a method. This vul-
nerability occurs without regard to the location of the synchronized keyword
inside the component: they are not restricted to public code. The ways to pre-
vent them is to ban synchronized code from components, or to ensure that only
trusted and non-freezing components are called by synchronized statements.

Service Oriented Programming (SOP). Service Oriented Programming Plat-
forms support the dynamic registration and discovery of local services, i.e.
objects that are characterized by the interface they implement. In the OSGi
Platform, for instance, this feature is supported by the Service Layer. Service
Oriented Programming provides full access to the service objects, which means
that both read and write access is granted. The vulnerabilities that plague SOP
are the following: Exposed Internal Representation, Flaws in Parame-
ter Validation, and Invalid Workflow. Moreover, the exploitation of Syn-
chronization vulnerabilities is much easier, since synchronized methods can be
targeted without requiring a static access.

Exposed Internal Representation enables, as in the Class Sharing case,
malicious components to access data inside victim components. In the SOP case,
these vulnerabilities enable malicious code to access and thus modify data that
should be kept internal to the object. Two vulnerability categories exist: Returns
reference to mutable element and No suitable control.

– The Returns reference to mutable element category occurs when a method
returns these very mutable elements. If a proper copy is not performed before
giving a reference of a mutable object to a third party component, this latter
is able to modify it. Malicious or accidental conflicts can then occur between
the modifications that take place inside the vulnerable component, and the
modifications that are performed by the caller. The protection consists in
copying the mutable element before returning it. This can only be achieved
if the considered mutable element does not itself contain mutable elements.
Otherwise, the copy process would be overly complex and error prone.

– The No suitable control category in the Object Sharing vulnerability class
enables information leak from one component to another. It encompasses
the absence of wrapper (no encapsulation), an excessive visibility for the
members4 or classifier5. The protection against ill-coded public classes vul-
nerabilities consists in a proper encapsulation of all variables. Another vul-
nerability is the leak of configuration, system, or application sensitive data
through exceptions. Exception handing should therefore either be performed
internal to the component, or only provide generic data that contain at most
references to user input to keep the message informative without revealing
the internal component state.

4 Class members are fields and methods.
5 Classifiers are classes and interfaces.

Classification of Component Vulnerabilities in Java SOP Platforms 89

Flaws in Parameter Validation enables malicious or ill-coded components
to call methods from other ones while passing objects as parameter that are
either not supported or lead to unexpected code behavior.

Four sub-categories exist: ‘Unchecked parameter’, ‘Checked parameter with-
out copy’, ‘Checked and copied parameter’, and ‘Non final parameter’.

– The Unchecked parameter category occurs when the method parameters are
not checked before use. It contains three vulnerabilities: accidentally un-
supported values that cause the program to behave in an erratic manner,
malicious Java code, and malicious native code. In this latter case, the caller
can forge and provide arbitrary malicious code. In particular, parameters
that are defined as interfaces or as non final classes are vulnerable. The pro-
tection against such abuses consists in checking both the value and the actual
type of the parameters. Public class methods should only accept parameters
which types are final classes, so as to prevent malicious inheritance. Lastly,
no native code should be executed on behalf of other components.

– The Checked parameter without copy vulnerability consists in performing
the validation of the parameter, but without previously copying it to a local
variable. If the object is modified in the caller component after the validation
occurs, it can take arbitrary values, including those which are rejected by
the validation process. The absence of parameter copy makes parameter
validation useless because of TOCTOU (Time of Check to Time of Use)
attacks. The suitable protection consists of course in copying the parameter
object before its validation.

– The Checked and copied parameter category highlights the restriction of the
parameter copy process: unless an object is serializable and thus explicitly
states which fields are transient and are thus not required during copy,
copying it is not necessarily straightforward. Two types of vulnerabilities
exist. The first one is the presence of fake clone methods or copy constructor,
which are provided by the malicious parameter itself: a copy statement is
present in the code, but does not perform as expected. The protection against
this problem is to use trustworthy copy methods only, such as those provided
by the Java API, or manual copy. The second type of vulnerabilities is related
to the manual copy process, which can be uncomplete. This occurs either
when some states are omitted during the copy process, or when the given
object contains references to other objects. This later problem implies that
parameter objects should have a limited depth of mutable objects so as to
prevent copy faults and omissions.

– The Non-final parameter category consists in exploiting the extensibility of
classes or the possibility of providing self-defined implementation of inter-
faces to execute arbitrary code. This can also lead to more complex sce-
nario: a malicious parameter can be used to trigger execution of code in the
caller bundle, possibly passing back data from the victim bundle. This ac-
tually builds a case of malicious inversion of control (see Appendix A.1). As
we already mentioned, the protection against this vulnerability is to allow
only basic and final types as method parameters in public classes. A copy

90 P. Parrend and S. Frénot

mechanism designed to avoid cited flaws can also prevent this vulnerability
category from being exploited, as the object passed as parameter is no longer
used during the method execution.

Invalid Workflow (SOP) vulnerabilities are bound with invalid configura-
tion of the service dependencies. In Java/OSGi platforms, services are discovered
and retrieved through the BundleContext, which plays the role of local ser-
vice repository. Service lookup is performed according to a given Java interface,
with possibly additional provider-set properties. Consequently, very little con-
trol is enforced, in particular when components from several mutually untrusted
providers coexist in a SOP platform. This lack of control have two main conse-
quences. First, there is no guarantee that found services actually provide a valid
implementation of the advertised interface. They could either provide arbitrary
code, or gather data that is passed to them as parameters. Secondly, there is no
guarantee that the service call does not abort. Such abortion can be generated ei-
ther directly, for instance by systematically throwing exceptions, or indirectly, for
instance by creating loops between services that lead to StackOverflowErrors.
To date, most SOP frameworks assume that provided services are benevolent.
The identified risks show that a full SOP security framework should be designed
if this should not be the case. This is a requirement for future work.

3.3 Goals of the Attacks That Exploit These Vulnerabilities

The goals of the attacks that exploit vulnerabilities in Java/OSGi component
interactions are described below. The main goals are Undue Access and Denial
of Service. Undue access is either Access to internal Data or By-pass Security
Checks. Denial of Service (DoS) is restricted to method unavailability, because it
is achieved through method calls on the public code. More serious DoS attacks
can be performed in Java/OSGi platforms by attacking the platform directly [15].

The taxonomy of the goals of the attacks that can be performed by taking
advantage of vulnerabilities in Java/OSGi component interactions is shown in
Table 2, along with related vulnerability categories.

Undue Access - Access to internal Data. Hackers can gain Access to internal Data
through the Exposed Internal Representation and the Fragments vulnerabilities.

Table 2. Taxonomy: Goals of the Attacks that exploit Vulnerabilities in Java/OSGi
Component Interactions

Attack Goal Sub-goal Interaction Category
Undue Access Access to internal Data Class Sharing and SOP - Exposed Internal

Representation
Class Sharing - Fragments

By-pass Security Check Class Sharing - Avoidable Calls to the Secu-
rity Manager
SOP - Flaws in Parameter Validation

DoS Method unavailability Class Sharing and SOP - Synchronization
SOP - Invalid Workflow

Classification of Component Vulnerabilities in Java SOP Platforms 91

The first vulnerability provides access to internal data of the component that
provides ill-coded Shared Classes of Shared Objects. The second one provides
access to all the code of the target component, but without access to the actual
objects. Attacks are performed by malicious client components.

Undue Access - By-pass Security Check. Hackers can By-pass Security Check
through the Avoidable Calls to the security manager and the Flaws in parame-
ter validation vulnerabilities. The first vulnerability enables to execute code that
is not properly protected by security checks. It is specific to the Shared Classes
vulnerability category. The second one enables to pass unvalid or malicious code
as method parameters. It is specific to the Shared Object vulnerability cate-
gory. Attacks that exploit both weaknesses are performed by malicious client
components.

Denial of Service - Method Unavailability. Hackers can force Method Unavailabil-
ity through the Synchronization and the Invalid SOP Workflow vulnerabilities.
Both vulnerabilities enable to block the normal execution of programs, by freez-
ing them of by forcing them to abort. In most cases they are bound with the
Shared Object vulnerability category, but synchronization can also be exploited
through Shared Classes. Attacks that exploit both weaknesses are performed by
malicious servant components, i.e. malicious components which are dependencies
of the victim code.

4 Experiments

A vulnerability is any feature that forces a program to behave so that it breaks
the implicit or explicit security policy of the considered system [8]. They are
generated by errors in the program development or by assumptions that are
not valid in the execution context. In the case of vulnerabilities in Java/OSGi
component interactions, the second case holds: the Java language has not been
designed to support the execution of mutually untrusted components in the same
virtual machine.

4.1 Rationale

The rationale for identifying, validating and classifying these vulnerabilities is the
following. First, we gather knowledge about Java behaviors that are considered
as the expression of vulnerabilities. Sources are the computer science literature as
well as our own experience. Secondly, the Java Language Specification is analyzed
to identify further vulnerabilities, and to check that no language construct has
been neglected [7]. Next, the suspected vulnerabilities are validated through
proof of concept implementation of the attack scenarios. Lastly, taxonomies are
created to classify both vulnerability type - their implementation - and the goal
of the attacks based on the experiment results.

This rationale is strongly inspired by similar studies that focus on Operating
System vulnerabilities, such as those by Landwehr [10] and Lindqvist [11] for
Unix.

92 P. Parrend and S. Frénot

4.2 Implementation of Malicious and Vulnerable SOP Components

Each identified vulnerability must be validated by implementing it so as to con-
firm that it actually breaks security requirements.

The experiment environment is the Java/OSGi Platform. Tests are conducted
on the Sun JVM 1.6, with the Apache Felix6 open source implementation of the
OSGi Platform. Felix 1.0.0 is compliant with the OSGi Release 4 Specifications.

An implementation of a vulnerability validates this vulnerability if the ma-
licious component actually performs an operation on the vulnerable one that
breaks the implicit or explicit security policy, i.e. that either is able to perform
more operations that calling provided methods, or enforces a denial of service.

For each of the 39 vulnerability occurrences that we identify, a malicious/ vul-
nerable component pair is implemented. Providing an implementation for each
attack has a twofold goal. It enables to validate the feasibility of the attack, and
provide a sound basis for our documentation effort. And it makes sample code
available for subsequent effort toward automated vulnerability identification.

5 Conclusions and Perspectives

Based on the presented experiments and classifications of vulnerabilities in Java/
OSGi component interactions, following recommendations can be emitted to
component developers. Security constraints should be enforced at two level: the
component level, i.e. the application architecture, and the Public Code level,
i.e. the code that components make available to others.

Components should:

– only have dependencies on components they trust,
– never used synchronized statements that rely on third party code,
– provide a hardened public code implementation following given recommen-

dations.

Shared Classes should:

– provide only final static non-mutable fields,
– set security manager calls during creation in all required places, at the begin-

ning of the method: all constructors, clone()method if the class is cloneable,
readObject(ObjectInputStream) if serializable,

– have security checks in final methods only,

Shared Objects (e.g. SOP Services) should:

– only have basic types and serializable final types as parameter,
– perform copy and validation of parameters before using them,
– perform data copy before returning a given object in a method. This object

should also be either a basic type or serializable,
6 http://felix.apache.org

Classification of Component Vulnerabilities in Java SOP Platforms 93

– not use Exception that carry any configuration information, and not serialize
data unless a specific security mechanism is available,

– never execute sensitive operations on behalf of other components.

The contribution of this paper is twofold. First, taxonomies that describes
the categories of exploitable vulnerabilities and their goals for Java systems
are defined. The three main system types are stand alone applications, multi-
component systems, and Service Oriented Programming (SOP) Platforms, which
each make a specific set of vulnerabilities directly exploitable. Secondly, recom-
mendations are issued to help software developers build more secure code.These
recommendations can be used for training, or to enrich the flaw sets that are
identified by static analysis tools. Our approach is validated through a system-
atic implementation of each vulnerability through a proof-of-concept malicious /
vulnerable pair of OSGi bundles. Experiments show that given vulnerabilities are
actually directly exposed to malicious components in standard platforms. The
only condition is that the malicious component can be installed and executed to
perform its abuses.

The perspective of this work is first to disseminate the knowledge gathered
through the development of plug-ins for static analysis tools such as FindBugs
or PMD.

Further requirements are also identified. A security framework should be de-
fined and developed to enforce security at the SOP level. Current tools, such
as SCR for the OSGi Platform, do not take security into account. This mecha-
nism should be made mandatory and support for instance dynamic proxies that
would prevent the exploitation of identified vulnerabilities by isolating service
implementation and service client. Such a feature could prove to provide a big
improvement in the quest after the dynamic discovery of unknown components
from the environment, while ensuring that the system security is not at risk.

Aknowledgement

Thiswork has beenmadepossible by valuable discussionswithEmmanuelCoquery
(LIRIS, Lyon 1 University) and Nicolas Geoffray (LIP6, Paris VI University).

References

1. Bieber, G., Carpenter, J.: Introduction to service-oriented programming (rev 2.1).
OpenWings Whitepaper (April 2001)

2. Cotroneo, D., Orlando, S., Russo, S.: Failures classification and analysis of the java
virtual machine. In: 26th IEEE International Conference on Distributed Computing
Systems (ICDCS 2006) (2006)

3. Debbabi, M., Saleh, M., Talhi, C., Zhioua, S.: Security evaluation of j2me cldc
embedded java platform. Journal of Object Technology 5(2), 125–154 (2005)

4. Dolbec, J., Shepard, T.: A component based software reliability model. In: CAS-
CON 1995: Proceedings of the 1995 conference of the Centre for Advanced Studies
on Collaborative research, p. 19. IBM Press (1995)

94 P. Parrend and S. Frénot

5. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: Symposium on Security and Privacy (2003)

6. Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: ACM SIGPLAN Notices,
vol. 39, p. 92–106 (2004); COLUMN: OOPSLA onward

7. Steele, G., Bracha, G., Gosling, J., Joy, B.: Java Language Specification, 3rd edn.
Addison-Wesley Professional, Reading (2005)

8. Krsul, I.V.: Software Vulnerability Analysis. PhD thesis, Purdue University (May
1998)

9. Lai, C.: Java insecurity: Accounting for subtleties that can compromise code. IEEE
Software 25(1), 13–19 (2008)

10. Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A taxonomy of computer
program security flaws, with examples. In: ACM Computing Surveys, September
1994, vol. 26, pp. 211–254 (1994)

11. Lindqvist, U., Jonsson, E.: How to systematically classify computer security intru-
sions. In: IEEE Symposium on Security and Privacy, pp. 154–163 (May 1997)

12. Long, F.: Software vulnerabilities in java. Technical Report CMU/SEI-2005-TN-
044, Carnegie Mellon University (October 2005)

13. OSGI Alliance. Osgi service platform, core specification release 4.1. Draft, 05 2007
14. Parnas, D.L., Wang, Y.: The trace assertion method of module interface speci-

fication. Technical Report 89-261, Dept. of Computing and Information Science,
Queen’s Univ. at Kingston, Ontario, Canada (October 1989)

15. Parrend, P., Frenot, S.: Java components vulnerabilities - an experimental classifi-
cation targeted at the osgi platform. Research Report RR-6231, INRIA, 06 (2007)

16. Parrend, P., Frenot, S.: More vulnerabilities in the java/osgi platform: A focus on
bundle interactions. Technical report, INRIA (to be released, 2008)

17. Sun Microsystems Inc. Secure coding guidelines for the java programming language,
version 2.0. Sun Whitepaper (2007),
http://java.sun.com/security/seccodeguide.html

18. The Last Stage of Delirium. Research Group. Java and java virtual machine. se-
curity vulnerabilities and their exploitation techniques. In: Black Hat Briefings
(2002)

A Appendix

The Appendix presents additional informations related to vulnerabilities in Java/
OSGi component interactions. Subsection A.1 gives a detailed documentation for
two vulnerabilities that exist in component-based applications: Malicious Inver-
sion of Control through overridden Parameters, and Synchronized Code.

A.1 New Attacks Exploiting Interactions between Java Components

We now present two behaviors that enable malicious components to exploit weak
ones in order to achieve security breaks inside component-based applications:
Malicious Inversion of Control through overridden Parameters, and Synchronized
Code. The first vulnerability enables an attack that performs undue access to
code. The second one enables an attack that performs denial of service. To the
best of our knowledge, these behaviors of Java components have not yet been
identified and documented as vulnerabilities.

 http://java.sun.com/security/seccodeguide.html

Classification of Component Vulnerabilities in Java SOP Platforms 95

The Malicious Inversion of Control through overridden Parameters vulnera-
bility occurs when public code expose methods with non-final parameters. This
is the case for all parameters that are defined as interfaces, and most classes with
the exception of basic type wrappers (Integer, etc) and String. Abuse occurs
when called methods are overwritten, and trigger actions that are not supposed
to take place such as spying the behavior of the servant bundle or getting undue
access to internal data. An example of an attack that exploits this vulnerability
is given in Figure 2 as an UML Component Diagram.

Fig. 2. An Example Scenario of malicious Inversion of Control: Component Diagram

The weak method, named weakMethod(List), is provided by the class ClassB
of the servant bundle. In our example, it simply manipulates the List param-
eter. The attack is performed as follows. First, the client bundle defines a ma-
licious FileWriter- ArrayList, whose iterator() method is overwritten and
triggers action that it should not. In our case, this is a single text print for
demonstration. The client bundle creates a FileWriterArrayList object, and
passes it as parameter to the ClassB.weakMethod(List)method. When code in
ClassB.weakMethod(List) is executed, malicious code is executed seamlessly.
Again, the example does not go further than the demonstration, but shows how
a naive servant can execute unrequired code from its caller.

This vulnerability has one main consequence: public code that is intended to
be executed by not fully trusted code should never provide methods with non
final parameters.

The Synchronized Code vulnerability occurs when code in a public class is
tagged as synchronized, which means that one single client bundle can access it
at a time. Synchronization is used in particular to protect transactions or access
to system resources. Abuse occurs when the synchronized method is forced to
hang, which causes all subsequent calls to the method to freeze. An example
of an attack that exploits this vulnerability is given in Figure 3 as an UML
Sequence Diagram.

The synchronized method, setData(), is provided by the Data class. This ser-
vice relies on another one, DataStorage. A default valid scenario is executed by
Alice, which is a benevolent component that stores data every 20 seconds. The
attack is performed as follows. First, the DataStorage service must be replaced

96 P. Parrend and S. Frénot

Fig. 3. An Example Scenario for an Attack against a Synchronized Method: Sequence
Diagram

by a malicious one, which hangs under certain circumstances (here, a specific
valueM value of the transmitted data is the signal for hanging). This substitution
can be replaced by a Denial-Of-Service Attack against a valid implementation
of the DataStorage service. The Mallory component is the accomplice of the
malicious DataStorage service, and therefore knows how to trigger its freez-
ing (transmit data with ‘valueM’ value). It performs the malicious call to the
Data service, which in turn calls the DataStorage service, which hangs. As a
consequence, Alice as well as any other client of the Data service will hang.

The Synchronized Code vulnerability exists under two flavours: Synchronized
method and Synchronized code block. This vulnerability has two consequences.
First, access to synchronized methods MUST be granted to trusted components
only. Secondly, services on which synchronized methods rely MUST be guaran-
teed to be trustworthy.

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 97–113, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Component-Level Energy Consumption Estimation for
Distributed Java-Based Software Systems

Chiyoung Seo1, Sam Malek2, and Nenad Medvidovic1

1 Computer Science Department, University of Southern California, Los Angeles,
CA 90089-0781, U.S.A.

{cseo,neno}@usc.edu
2 Department of Computer Science, George Mason University, Fairfax,

VA 22030-4444, U.S.A.
smalek@gmu.edu

Abstract. Efficiency with respect to energy consumption has increasingly been
recognized as an important quality attribute for distributed software systems in
embedded and pervasive environments. In this paper we present a framework
for estimating the energy consumption of distributed software systems imple-
mented in Java. Our primary objective in devising the framework is to enable
an engineer to make informed decisions when adapting a system’s architecture,
such that the energy consumption on hardware devices with a finite battery life
is reduced, and the lifetime of the system’s key software services increases. Our
framework explicitly takes a component-based perspective, which renders it
well suited for a large class of today’s distributed, embedded, and pervasive ap-
plications. The framework allows the engineer to estimate the distributed sys-
tem’s energy consumption at system construction-time and refine it at runtime.
In a large number of distributed application scenarios, the framework showed
very good precision on the whole, giving results that were within 5% (and often
less) of the actual energy consumption incurred by executing the software. Our
work to date has also highlighted the framework’s practical applications and a
number of possible enhancements.

Keywords: Distributed systems, energy consumption, Java, component-based
software.

1 Introduction

Modern software systems are predominantly distributed, embedded, and pervasive.
They increasingly execute on heterogeneous platforms, many of which are character-
ized by limited resources. One of the key resources, especially in long-lived systems,
is battery power. Unlike the traditional desktop platforms, which have uninterrupted,
reliable power sources, a newly emerging class of computing platforms have finite
battery lives. For example, a space exploration system comprises satellites, probes,
rovers, gateways, sensors, and so on. Many of these are “single use” devices that are
not rechargeable. In such a setting, minimizing the system’s power consumption, and
thus increasing its lifetime, becomes an important quality-of-service concern.

98 C. Seo, S. Malek, and N. Medvidovic

The simple observation guiding our research is that if we could estimate the energy
cost of a given software system in terms of its constituent components ahead of its
actual deployment, or at least early on during its runtime, we would be able to take ap-
propriate, possibly automated, actions to prolong the system’s life span: unloading un-
necessary or expendable components, redeploying highly energy-intensive components
to more capacious hosts, collocating frequently communicating components, and so on.

To this end, we have developed a framework that estimates the energy consump-
tion of a distributed Java-based software system at the level of its components. We
chose Java because of its intended use in network-based applications, its popularity,
and very importantly, its reliance on a virtual machine, which justifies some simplify-
ing assumptions possibly not afforded by other mainstream languages. We have eval-
uated our framework for precision on a number of distributed Java applications, by
comparing its estimates against actual electrical current measurements. In all of our
experiments the framework has been able to estimate the power consumed by a dis-
tributed Java system to within 5% of the actual consumption.

One novel contribution of our estimation framework is its component-based per-
spective. To facilitate component-level energy cost estimates, we suggest a computa-
tional energy cost model for a software component. We integrate this model with the
component’s communication cost model, which is based on the experimental results
from previous studies. This integrated model results in highly accurate estimates of a
component’s overall energy cost. Furthermore, unlike most previous power estimation
tools for embedded applications, we explicitly consider and model the energy over-
head of a host’s OS and an application’s runtime platform (e.g., JVM) incurred in
facilitating and managing the execution of software components. This further en-
hances the accuracy of our framework in estimating a distributed software system’s
energy consumption. Another contribution of our work is its ability to adjust energy
consumption estimates at runtime efficiently and automatically, based on monitoring
the changes in a small number of easily tracked system parameters (e.g., size of data
exchanged over the network, inputs to a component’s interfaces, invocation frequency
of each interface, etc.).

In the remainder of this paper we first present the related research in the energy
estimation and measurement areas (Section 2). We then introduce our energy estima-
tion framework (Section 3) and detail how it is applied to component-based Java sys-
tems (Section 4). This is followed by our evaluation strategy (Section 5) and results
(Section 6). The paper concludes with a discussion of planned applications of this
research (Section 7).

2 Related Work

Several studies have profiled the energy consumption of Java Virtual Machine (JVM)
implementations. Farkas et al. [3] have measured the energy consumption of the Itsy
Pocket Computer and the JVM running on it. They have discussed different JVMs’
design trade-offs and measured their impact on the JVM’s energy consumption. La-
fond et al. [11] have showed that the energy required for memory accesses usually
accounts for 70% of the total energy consumed by the JVM. However, none of these
studies suggest a model that can be used for estimating the energy consumption of a
distributed Java-based system.

 Component-Level Energy Consumption Estimation 99

There have been several tools that estimate the energy consumption of embedded
operating systems (OSs) or applications. Tan et al. [19] have investigated the energy
behaviors of two widely used embedded OSs, µC/OS [10] and Linux, and suggested
their quantitative macro-models, which can be used as OS energy estimators. Sinha
et al. [16] have suggested a web-based tool, JouleTrack, for estimating the energy
cost of an embedded software running on StrongARM SA-1100 and Hitachi SH-4
microprocessors. While they certainly informed our work, we were unable to use
these tools directly in our targeted Java domain because none of them provide generic
energy consumption models, but instead have focused on individual applications run-
ning on specific OSs and platforms.

Recently, researchers have attempted to characterize the energy consumption of
the Transmission Control Protocol (TCP) [15]. Singh et al. [15] measured the energy
consumption of variants of TCP (i.e., Reno, Newreno, SACK, and ECN-ELFN) in ad-
hoc networks, and showed that ECN-EFLN has a lower energy cost than the others.
These studies also show that, since TCP employs a complicated mechanism for con-
gestion control and error recovery, modeling its exact energy consumption remains an
open problem. While we plan to incorporate into our framework the future advance-
ments in this area, as detailed in the next section we currently rely on the User Data-
gram Protocol (UDP), which does not provide any support for congestion control,
retransmission, error recovery, and so on.

Several studies [4,21] have measured the energy consumption of wireless network
interfaces on handheld devices that use UDP for communication. They have shown
that the energy usage by a device due to exchanging data over the network is directly
linear to the size of data. We use these experimental results as a basis for defining a
component’s communication energy cost.

Finally, this research builds on our previous works [12,13], where we have out-
lined the architecture of the framework [12], and the overall energy estimation pro-
cess [13]. In this paper, we provide a comprehensive and detailed description of the
framework, runtime refinement of its estimates, its practical applications, and an ex-
tensive evaluation of its accuracy in the context of several applications.

3 Energy Consumption Framework

We model a distributed software system’s energy consumption at the level of its com-
ponents. A component is a unit of computation and state. In a Java-based application,
a component may comprise a single class or a cluster of related classes. The energy
cost of a software component consists of its computational and communication energy
costs. The computational cost is mainly due to CPU processing, memory access, I/O
operations, and so forth, while the communication cost is mainly due to the data ex-
changed over the network. In addition to these two, there is an additional energy cost
incurred by an OS and an application’s runtime platform (e.g., JVM) in the process of
managing the execution of user-level applications. We refer to this cost as infrastruc-
ture energy overhead. In this section, we present our approach to modeling each of
these three energy cost factors. We conclude the section by summarizing the assump-
tions that underlie our work.

100 C. Seo, S. Malek, and N. Medvidovic

3.1 Computational Energy Cost

In order to preserve a software component’s abstraction boundaries, we determine its
computational cost at the level of its public interfaces. A component’s interface corre-
sponds to a service it provides to other components. While there are many ways of imple-
menting an interface and binding it to its caller (e.g., RMI, event exchange), in the most
prevalent case an interface corresponds to a method. In Section 3.2 we discuss other forms
of interface implementation and binding (e.g., data serialization over sockets).

As an example, Figure 1 shows a component c1 on host H1, c1’s provided inter-
faces, and the invocation of them by remote components. Given the energy cost
iCompEC resulting from invoking an interface Ii, and the total number bi of invoca-
tions for the interface Ii, we can calculate the overall energy cost of a component c1
with n interfaces (in Joule) as follows:

(1)

In this equation, iCompEC(Ii,j), the computational energy cost due to the jth invoca-

tion of Ii, may depend on the input parameter values of Ii and differ for each invocation.
In Java, the effect of invoking an

interface can be expressed in terms
of the execution of JVM’s 256 Java
bytecode types, and its native meth-
ods. Bytecodes are platform-
independent codes interpreted by
JVM’s interpreter, while native
methods are library functions (e.g.,
java.io.FileInputStream’s
read() method) provided by JVM.
Native methods are usually imple-
mented in C and compiled into dy-
namic link libraries, which are
automatically installed with JVM. JVM also provides a mechanism for synchronizing
threads via an internal implementation of a monitor.

Each Java statement maps to a specific sequence of bytecodes, native methods,
and/or monitor operations. Based on the 256 bytecodes, m native methods, and moni-
tor operations that are available on a given JVM, we can estimate the energy cost
iCompEC(Ii,j) of invoking an interface as follows:

(2)

where bNumk,j and fNuml,j are the numbers of each type of bytecode and native
method, and mNumj is the number of monitor operations executed during the jth invo-
cation of Ii. bECk, fECl, and mEC represent the energy consumption of executing a
given type of bytecode, a given type of native method, and a single monitor operation,
respectively. These values must be measured before Equation 2 can be used. Unless
two platforms have the same hardware setup, JVMs, and OSs, their respective values
for bECk, fECl, and mEC will likely be different. We will explain how these values
can be obtained in Section 5.

Fig. 1. Interactions among distributed components

 Component-Level Energy Consumption Estimation 101

3.2 Communication Energy Cost

Two components may reside in the same address space and thus communicate locally,
or in different address spaces and communicate remotely. When components are part of
the same JVM process but running in independent threads, the communication among
the threads is generally achieved via native method calls (e.g., java.lang.Object’s
notify () method). A component’s reliance on native methods has already been ac-
counted for in calculating its computational cost from Equation 2. When components
run as separate JVM processes on the same host, Java sockets are usually used for
their communication. Given that JVMs generally use native methods (e.g.,
java.net.SocketInputStream’s read ()) for socket communication, this is
also captured by a component’s computational cost.

In remote communication, the transmission of messages via network interfaces
consumes significant energy. Given the communication energy cost iCommEC due to
invoking an interface Ii, and the total number bi of invocations for that interface, we
can calculate the overall communication energy consumption of a component c1 with
n interfaces (expressed in Joule) as follows:

(3)

In this equation, iCommEC(Ii,j), the energy cost incurred by the jth invocation of Ii, de-
pends on the amount of data transmitted or received during the invocation and may be
different for each invocation. Below we explain how we have modeled iCommEC(Ii,j).

We focus on modeling the energy consumption due to the remote communication
based on UDP. Since UDP is a light-weight protocol (e.g., it provides no congestion
control, retransmission, and error recovery mechanisms), it is becoming increasingly
prevalent in resource-constrained pervasive domains [2,20]. Previous research [4,21]
has shown that the energy consumption of wireless communication is directly propor-
tional to the size of transmitted and received data. Based on this, we quantify the com-
munication energy consumption due to the jth invocation of component c1’s interface
Ii on host H1 by component c2 on host H2 as follows:

(4)

Parameters tEvtSize and rEvtSize are the sizes (e.g., KB) of transmitted and received
messages on host H1 during the jth invocation of Ii. The remaining parameters are
host-specific. tECH1 and rECH1 are the energy costs (Joule/byte) on host H1 while it
transmits and receives a unit of data, respectively. tSH1 and rSH1 represent constant
energy overheads associated with device state changes and channel acquisition [4].

In Equation 4, the energy values of tEC, rEC, tS, rS are constant and platform-spe-
cific.1 The system parameters that need to be monitored on each host are only the
sizes of messages exchanged (tEvtSize and rEvtSize, which include the overhead of
network protocol headers). Note that transmission or receipt failures between the
sender and receiver hosts do not affect our estimates: UDP does not do any processing
to recover from such failures, while our framework uses the actual amount of data
transmitted and received in calculating the communication energy estimates.

1 We will elaborate on how these parameters are determined for an actual host in Section 6.2.

102 C. Seo, S. Malek, and N. Medvidovic

3.3 Infrastructure Energy Consumption

Once the computational and communication costs of a component have been
calculated based on its interfaces, its overall energy consumption is determined as
follows:

 (5)

However, in addition to the computational and communication energy costs, there
are additional energy costs for executing a Java component incurred by JVM’s gar-
bage collection and implicit OS routines. During garbage collection, all threads except
the Garbage Collection (GC) thread within the JVM process are suspended temporar-
ily, and the GC thread takes over the execution control. We estimate the energy
consumption resulting from garbage collection by determining the average energy
consumption rate gEC of the GC thread (Joule/second) and monitoring the total time
tGC the thread is active (second). In Section 5 we describe how to measure the GC
thread’s execution time and its average energy consumption rate.

Since a JVM runs as a separate user-level process in an OS, it is necessary to
consider the energy overhead of OS routine calls for facilitating and managing the
execution of JVM processes. There are two types of OS routines:

1. explicit OS routines (i.e., system calls), which are initiated by user-level applica-
tions (e.g., accessing files, or displaying text and images on the screen); and

2. implicit OS routines, which are initiated by the OS (e.g., context switching, paging,
and process scheduling).

Java applications initiate explicit OS routine calls via JVM’s native methods. There-
fore, Equation 2 already accounts for the energy cost due to the invocation of explicit
OS routines. However, we have not accounted for the energy overhead of executing
implicit OS routines. Previous research has shown that process scheduling, context
switching, and paging are the main consumers of energy due to implicit OS routine
calls [19]. By considering these additional energy costs, we can estimate the overall
infrastructure energy overhead of a JVM process p as follows:

 (6)

Recall that gEC is the average energy consumption rate of the GC thread, while tGCp is
the time that the GC thread is active during the execution of process p. csNump, pfNump,
and prNump are, respectively, the numbers of context switches, page faults, and page
reclaims that have occurred during the execution of process p. csEC, pfEC, and prEC
are, respectively, the energy consumption of processing a context switch, a page fault,
and a page reclaim. We should note that csEC includes the energy consumption of proc-
ess scheduling as well as a context switch. This is due to the fact that in most embedded
OSs a context switch is always preceded by process scheduling [19].

Since there is a singleton GC thread per JVM process, and implicit OS routines op-
erate at the granularity of processes, we estimate the infrastructure energy overhead of
a distributed software system in terms of its JVM processes. In turn, this helps us to
estimate the system’s energy consumption with higher accuracy. Unless two plat-
forms have the same hardware configurations, JVMs, and OSs, the energy values of
gEC, csEC, pfEC, and prEC on one platform may not be the same as those on the
other platform. We will describe how these values can be obtained for an actual host
in Section 5.

 Component-Level Energy Consumption Estimation 103

Once we have estimated the energy consumption of all the components, as well as
the infrastructure energy overhead, we can estimate the system’s overall energy con-
sumption as follows:

(7)

where cNum and pNum are, respectively, the numbers of components and JVM pro-
cesses in the distributed software system.

3.4 Assumptions

In formulating the framework introduced in this section, we have made several
assumptions. First, we assume that the configuration of all eventual target hosts is
known in advance. This allows system engineers to closely approximate (or use the
actual) execution environments in profiling the energy consumption of applications
prior to their deployment and execution. As alluded above, and as will be further dis-
cussed in Sections 4 and 5, several elements of our approach (e.g., profiling the en-
ergy usage of a bytecode, assessing infrastructure energy costs) rely on the ability to
obtain accurate energy measurements “off line”.

Second, we assume that interpreter-based JVMs, such as Sun Microsystems’ KVM
[9] and JamVM [5], are used. These JVMs have been developed for resource-con-
strained platforms, and require much less memory than “just-in-time” (JIT) compila-
tion-based JVMs. If a JIT-based JVM is used, the energy cost for translating a
bytecode into native code “on the fly” would need to be added into Equation 2 since
the JIT compilation itself happens while a Java application is being executed. We are
currently investigating how our framework can be extended to JIT-based JVMs.

Third, we assume that the systems to which our framework is applicable will be
implemented in “core” Java. In other words, apart from the JVM, we currently do not
take into account the effects on energy consumption of any other middleware plat-
form. While this does not prevent our framework from being applied on a very large
number of existing Java applications, clearly in the future we will have to extend this
work to include other middleware platforms.

Finally, we assume that the target network environment is a (W)LAN that consists
of dedicated routers (e.g., wireless access points) and stationary or mobile hosts. This
is representative of a majority of systems that rely on wireless connectivity and bat-
tery power today. In the case of mobile hosts, we assume that each host associates
itself with an access point within its direct communication range and communicates
with other hosts via dedicated access points. In this setting, there could be a hand-off
overhead when mobile hosts move and change their associated access points. How-
ever, it is not the software system that causes this type of energy overhead, but rather
the movement of the host (or user). Therefore, we currently do not consider these
types of overhead in our framework. Note that in order to expand this work to a wire-
less ad-hoc network environment, we also need to consider the energy overhead of
routing event messages by each host. This type of energy overhead can be accounted
for by extending the infrastructure aspect of our framework. We plan to investigate
this issue as part of our future work.

104 C. Seo, S. Malek, and N. Medvidovic

4 Energy Consumption Estimation

In this section, we discuss the framework’s application for estimating a software sys-
tem’s energy cost at both during system construction-time and runtime.

4.1 Construction-Time Estimation

For construction-time estimation, we first need to characterize the computational en-
ergy cost of each component on its candidate hosts. To this end, we have identified
three different types of component interfaces:
I. An interface (e.g., a date component’s setCurrentTime) that requires the

same amount of computation regardless of its input parameters.
II. An interface (e.g., a data compression component’s compress) whose input size

is proportional to the amount of computation required.
III. An interface (e.g., DBMS engine’s query) whose input parameters have no di-

rect relationship to the amount of computation required.
For a type I interface, we need to profile the number of bytecodes, native methods,

and monitor operations only once for an arbitrary input. We can then calculate its en-
ergy consumption from Equation 2.

For type II interfaces, we generate a set of random inputs, profile the number of
bytecodes, native methods, and monitor operations for each input, and then calculate
its energy cost from Equation 2. However, the set of generated inputs does not show
the complete energy behavior of a type II interface. To characterize the energy behav-
ior of a type II interface for any arbitrary input, we employ multiple regression [1], a
method of estimating the expected value of an output variable given the values of a
set of related input variables. By running multiple regression on a sample set of input
variables’ values (i.e., each generated input for a type II interface) and the corre-
sponding output value (the calculated energy cost), it is possible to construct an equa-
tion that estimates the relationship between the input variables and the output value.

Interfaces of type III present a challenge as there is no direct relationship between
an interface’s input and the amount of computation required, yet a lot of interface
implementations fall in this category. For type III interfaces with a set of finite execu-
tion paths, we use symbolic execution [8], a program analysis technique that allows
using symbolic values for input parameters to explore program execution paths. We
leverage previous research [7], which has suggested a generalized symbolic execution
approach for generating test inputs covering all the execution paths, and use these
inputs for invoking a type III interface. We then profile the number of bytecodes, na-
tive methods, and monitor operations for each input, estimate its energy cost from
Equation 2, and finally calculate the interface’s average energy cost by dividing the
total energy cost by the number of generated inputs.

The above approach works only for interfaces with finite execution paths, and is
infeasible for interfaces whose implementations have infinite execution paths, such as
a DBMS engine. We use an approximation for such interfaces: we automatically in-
voke the interface with a large set of random inputs, calculate the energy cost of the
interface for each input via Equation 2, and finally calculate the average energy con-
sumption of the interface by dividing the total consumption by the number of random
inputs. This approach will clearly not always give a representative estimate of the

 Component-Level Energy Consumption Estimation 105

interface’s actual energy consumption. Closer approximations can be obtained if
an interface’s expected runtime context is known (e.g., expected inputs, their frequen-
cies, possible system states, and so on). As we will detail in Sections 4.2, we can
refine our estimates for type III interfaces by monitoring the actual amount of compu-
tation required at runtime.

To estimate the communication energy cost of an interface, we rely on domain
knowledge (e.g., the known types of input parameters and return values) to predict the
average size of messages exchanged due to an interface’s invocation. Using this data
we approximate the communication energy cost of interface invocation via Equation
4. Finally, based on the computational and communication energy costs of interfaces,
we estimate the overall energy cost of a component on its candidate host(s) using
Equations 1, 3, and 5.

Before estimating the entire distributed system’s energy cost, we also need to de-
termine the infrastructure’s energy overhead, which depends on the deployment of the
software (e.g., the number of components executing simultaneously on each host).
Unless the deployment of the system’s components on its hosts is fixed a priori, the
component-level energy estimates can help us determine an initial deployment that
satisfies the system’s energy requirements (e.g., to avoid overloading an energy-con-
strained device). Once an initial deployment is determined, from Equation 6 we esti-
mate the infrastructure’s energy cost. We do so by executing all the components on
their target hosts simultaneously, with the same sets of inputs that were used in char-
acterizing the energy cost of each individual component. Finally, we determine the
system’s overall energy cost via Equation 7.

4.2 Runtime Estimation

Many systems for which energy consumption is a significant concern are long-lived,
dynamically adaptable, and mobile. An effective energy cost framework should ac-
count for changes in the runtime environment, or due to the system’s adaptations.
Below we discuss our approach to refining the construction-time estimates after the
initial deployment.

The amount of computation associated with a type I interface is constant regardless
of its input parameters. If the sizes of the inputs to a type II interface significantly dif-
fer from construction-time estimates, new estimates can be calculated efficiently and
accurately from its energy equation generated by multiple regression. Recall from
Section 4.1 that for type III interfaces our construction-time estimates may be inaccu-
rate as we may not be able to predict the frequency of invocation or the frequency of
the execution paths taken (e.g., the exception handling code). Therefore, to refine a
type III interface’s construction-time estimates, the actual amount of runtime compu-
tation (i.e., number of bytecodes, native methods, and monitor operations) must be
monitored. In Section 5.4 we present an efficient way of monitoring these parameters.

For the communication cost of each component, by monitoring the sizes of mes-
sages exchanged over network links, their effects on each interface’s communication
cost can be determined, and a component’s energy cost can be updated automatically.

Finally, the fact that the frequency at which interfaces are invoked may vary signif-
icantly from what was predicted at construction-time, and the fact that the system
may be adapted at runtime, may result in inaccurate construction-time infrastructure

106 C. Seo, S. Malek, and N. Medvidovic

energy estimates. Therefore, the GC thread execution time and the number of implicit
OS routines invoked at runtime must also be monitored. We discuss the overhead of
this monitoring in detail in Section 5.4. Based on the refined estimates of each inter-
face’s computational and communication costs, and of the infrastructure’s energy
overhead, we can improve (possibly automatically) our construction-time estimates of
distributed systems at runtime.

5 Evaluation Strategy

This section describes our evaluation environment, the tools on which we have relied,
and the energy measurement and monitoring approaches we have used.

5.1 Experimental Setup

To evaluate the accuracy of our estimates, we need to know the actual energy
consumption of a software component or system. To this end, we used a digital mul-
timeter, which measures the factors influencing the energy consumption of a device:
voltage and current. Since the input voltage is fixed in our experiments, the energy
consumption can be measured based on the current variations going from the energy
source to the device.

Figure 2 shows our experimental
environment setup that included a
Compaq iPAQ 3800 handheld device
running Linux and Kaffe 1.1.5 JVM
[6], with an external 5V DC power
supply, a 206MHz Intel StrongARM
processor, 64MB memory, and
11Mbps 802.11b compatible wireless
PCMCIA card. We also used an HP 3458-a digital multimeter. For measuring the
current drawn by the iPAQ, we connected it to the multimeter, which was configured
to take current samples at a high frequency. A data collection computer controlled the
multimeter and read the current samples from it.

5.2 Selecting Java Components

We have selected a large number of Java components with various characteristics for
evaluating our framework. They can be categorized as follows: 1) Computation-intensive
components that require a large number of CPU operations. (e.g., encryption/decryption,
data compression); 2) Memory-intensive components that require large segments of
memory. (e.g., Database components); 3) Communication-intensive components that in-
teract frequently with other components over a network (e.g., FTP component).

For illustration, Table 1 shows a cross-section of the Java components used in our
evaluation. These components vary in size and complexity (HSQLDB is the largest,
with more than 50,000 SLOC, while Jess is somewhat smaller, with approximately
40,000 SLOC). The source code of Jess, HSQLDB, and IDEA components can be
found at Source Forge [18], while the source code of the other components from
Table 1 was obtained from Source Bank [17].

Fig. 2. Experimental setup

 Component-Level Energy Consumption Estimation 107

5.3 Measurement

Prior to the deployment,
we first need to measure
the energy cost on a tar-
get platform of each
bytecode, native method,
monitor operation, and
implicit OS routine, as
well as the average con-
sumption rate during
garbage collection. For
each bytecode we gener-
ate a Java class file that
executes that bytecode
1000 times. We also
create a skeleton Java
class with no functionality, which is used to measure the energy consumption overhead
of executing a class file. We use the setup discussed in Section 5.1 for measuring the
actual energy cost of executing both class files. We then subtract the energy overhead
E1 of running the skeleton class file from the energy cost E2 of the class file with the
profiled bytecode. By dividing the result by 1000, we get the average energy con-
sumption of executing the bytecode. Similarly, for measuring the energy consumption
of each native method, we generate a class file invoking the native method and meas-
ure its actual energy consumption E3. Note that when JVM executes this class file,
several bytecodes are also executed. Therefore, to get the energy cost of a native
method, we subtract (E1 + energy cost of the bytecodes) from E3. For a monitor op-
eration, we generate a class file invoking a method that should be synchronized
among multiple threads, and measure its energy consumption E4. Since several byte-
codes are also executed during the invocation, we can get the energy cost of a monitor
operation by subtracting (E1 + energy cost of the bytecodes) from E4.

To measure the energy cost of implicit OS routines, we employ the approach sug-
gested by Tan et al. [19], which captures the energy consumption behavior of embed-
ded operating systems. This allows us to determine the energy cost of major implicit
OS routine calls, such as context switching, paging, and process scheduling. Due to
space constraints we cannot provide the details of this approach; we point the inter-
ested readers to [19]. Finally, for getting the average energy consumption rate of the
GC thread, we execute over a given period of time a simple Java class file that creates
a large number of “dummy” objects, and measure the average energy consumption
rate during the garbage collection.

5.4 Monitoring

Since we need to monitor the numbers of bytecodes, native methods, monitor
operations, and implicit OS routines, as well as the GC thread execution time, we in-
strumented the Kaffe 1.1.5 JVM to provide the required monitoring data. Since the
monitoring activity itself also consumes energy, we had to ensure that our monitoring
mechanism is as light-weight as possible. To this end, we modified Kaffe’s source

Table 1. A cross-section of Java components used in evaluation

108 C. Seo, S. Malek, and N. Medvidovic

code by adding: 1) an integer array of size 256 for counting the number of times each
bytecode type is executed; 2) integer counters for recording the number of times the
different native methods are invoked; and 3) an integer counter for recording the num-
ber of monitor operations executed.

As mentioned earlier, this monitoring is only used for type III interfaces. We also
added a timer to Kaffe’s GC module to keep track of its total execution time. This
timer has a small overhead equivalent to two system calls (for getting the times at the
beginning and at the end of the GC thread’s execution). For the number of implicit
OS routines, we simply used the facilities provided by the OS. Since both Linux and
Windows by default store the number of implicit OS routines executed in each proc-
ess’s Process Control Block, we did not introduce any additional overhead. We have
measured the energy overhead due to these monitoring activities for the worst case
(i.e., type III interfaces). The average energy overhead compared with the energy cost
without any monitoring was 3.8%. Note that this overhead is transient: engineers can
choose to monitor systems during specific time periods only (e.g., whenever any
changes occur or are anticipated in the system or its usage).

6 Evaluation Results

In this section, we present the results of evaluating our framework.

6.1 Computational Energy Cost

To validate our computational
energy model, we compare
the values calculated from
Equation 2 with actual energy
costs. All actual energy costs
have been calculated by sub-
tracting the infrastructure en-
ergy overhead (Equation 6)
from the energy consumption
measured by the digital mul-
timeter. As an illustration,
Figure 3 shows the results of
one series of executions for
the components of Table 1. In
this case, for each component we executed each of its interfaces 20 times with different
input parameter values, and averaged the discrepancies between the estimated and actual
costs (referred to as “error rate” below). The results show that our estimates fall within 5%
of the actual energy costs. These results are also corroborated by additional experiments
performed on these as well as a large number of other Java components [17,18].

In addition to executing components of Table 1 in isolation, we have run these
components simultaneously in different sample applications. Recall that, since each
component is running in a separate JVM process, the energy overhead due to implicit
OS routines is higher when multiple components are running simultaneously than

Fig. 3. Error rates for the components in Table 1

 Component-Level Energy Consumption Estimation 109

when each is running in isolation.
Figure 4 shows the error rates of
our computational energy model
as the number of simultaneously
running components increases.
The experimental results show
that, despite the increased infra-
structure overhead, our estimates
usually fall within 4% of the ac-
tual energy costs.

As discussed in Section 4.1,
multiple regression can be used
for characterizing the energy cost
of invoking type II interfaces. For this we used a tool called DataFit. In measurements
we conducted on close to 50 different type II interfaces, our estimates of their energy
cost have been within 5% of the
actual energy costs. As an illus-
tration, Figure 5 shows the graph
generated by DataFit for the
find interface of the Short-
est Path component, using
20 sets of sample values for
find’s input parameters (x1 and
x2), and the resulting energy
costs (y) estimated by Equation
3. Several actual energy costs
are shown for illustration as the
discrete points on the graph.

For estimating the energy con-
sumption of type III interfaces, as
discussed previously we generated
a set of random inputs, estimated
the energy cost of invoking each
interface with the inputs using
Equation 3, and calculated its aver-
age energy consumption. Figure 6
compares the average energy con-
sumption of each interface for the
DB and Jess components cal-
culated using our framework with
the interface’s actual average en-
ergy consumption. The results
show that our estimates are within
5% of the actual average energy
costs. Recall that these design-time
energy estimates can be refined at
runtime by monitoring the numbers

Fig. 4. Error rates with respect to the number of
simultaneously running components

Fig. 5. Multiple regression for the find interface of
the Shortest Path Component

Fig. 6. Accuracy of the framework for type III
interface of DB and Jess components

110 C. Seo, S. Malek, and N. Medvidovic

of bytecodes, native methods, and
monitor operations executed. For ex-
ample, for a scenario that will be de-
tailed in Section 6.3, we refined the
construction-time energy estimate for
the DB query interface at runtime,
reducing the error rate to under 2.5%.

6.2 Communication Energy Cost

For evaluating the communication
energy cost, we use a wireless router
for the iPAQ to communicate with an
IBM ThinkPad X22 laptop via a
UDP socket implementation over a
dedicated wireless network. Recall
from Section 3.2 that several parame-
ters (tEC, rEC, tS, and rS) from
Equation 4 are host-specific. To
quantify these parameters for the
iPAQ, we created two Java programs
that exchange messages via UDP
sockets, and executed them on the
iPAQ and the laptop. We then used the digital multimeter to measure the actual energy
cost E on the iPAQ as a result of transmitting and receiving a sample set of messages
of various sizes to/from the laptop. Since several bytecodes and native methods (e.g.,
java.net.SocketInputStream’s
read() method) are executed during the
program execution on the iPAQ, we sub-
tract their energy costs from E to get the
energy consumption of a wireless interface
card on the iPAQ. Based on these results,
we used multiple regression to find equa-
tions that capture the relationship between
the input (size of the transmitted or re-
ceived data x) and the output (actual energy
consumption y of a wireless interface card
on the iPAQ):

 (8)

(9)

We used the generated equations to quantify the host-specific parameters in Equa-
tion 4. For example, the size of transmitted data xt in Equation 8 represents tEvtSize
in Equation 4. The constant energy cost of 3.1958 represents the parameter tS in
Equation 4, which is independent of the size of transmitted data. The variables tEC is
captured by the constant factor 4.0131. Figure 7 shows two graphs plotted for Equa-
tions 9 and 10, which represent the framework’s estimates. As shown, the estimates,

Fig. 7. Transmission (top) and receipt (bot-
tom) energy estimation on an iPAQ

Fig. 8. A distributed Java-based system
comprising three hosts

 Component-Level Energy Consumption Estimation 111

which are depicted by the discrete
points are within 3% of the actual en-
ergy costs.

6.3 Overall Energy Cost

We have evaluated our framework
over a large number of applications.
Figure 8 shows one example such ap-
plication deployed across three iPAQ
hosts. TheseiPAQ devices communi-
cate with each other via a wireless
router. Each software component in-
teracts with the other components via
a UDP socket. A line between two
components (e.g., IDEA and FTP
Client on host A) represents an in-
teraction path between them. The FTP
Client and Server components
used in our evaluation are UDP-based
implementations of a general purpose FTP. We have used several execution scenarios
in this particular system. For example, DB Client component on host A may
invoke the query interface (i.e., type III interface) of the remote DB Serveron host B;
in response, DB Server calculates the results of the query, and then invokes IDEA’s
encrypt interface (i.e., type II interface) and returns the encrypted results to DB
Client; finally, DB Client invokes the decrypt interface (i.e., type II interface)
of its collocated IDEA component to get the results.

We executed the above software
system by varying the frequencies
and sizes of exchanged messages,
measured the system’s overall en-
ergy cost, and compared it with our
framework’s runtime estimates. As
shown in Figure 9, our estimates
fall within 5% of the actual costs
regardless of interaction frequencies
and the average size of messages. In
addition, we have evaluated our
framework for a large number of
additional distributed applications,
increasing the numbers of compo-
nents and hosts [14], and had simi-
lar results as shown in Figure 10.

7 Conclusion

We have presented a framework for estimating the energy cost of Java-based software
systems. Our primary objective in devising the framework has been to enable an

Fig. 9. The framework’s error rates with
respect to the interaction frequency (top)
and The average size of a message (bottom)

Fig. 10. Error rates of the framework with respect
to the numbers of hosts and comps

112 C. Seo, S. Malek, and N. Medvidovic

engineer to make informed decisions, such that the system’s energy consumption is
reduced and the lifetime of the system’s critical services increases. In a large number
of distributed application scenarios the framework has shown very good precision,
giving results that have been within 5% (and often less) of the actually measured
power losses incurred by executing the software. We consider the development and
evaluation of the framework to be a critical first step in pursuing several avenues of
further work. As part of our future work, we plan to investigate the applications of the
framework to various types of architectural decisions that could improve a system’s
energy usage, such as off-loading of software components, adapting components,
modifying communication protocols, and so on.

Acknowledgements

This material is based upon work supported partially by the National Science Founda-
tion under Grant Numbers 0312780 and 0820222. Effort also partially supported by
the Bosch Research and Technology Center.

References

1. Allison, P.D.: Multiple regression. Pine Forge Press (1999)
2. Drytkiewicz, W., et al.: Prest: a REST-based protocol for pervasive systems. In: IEEE In-

ternational Conference on Mobile Adhoc and Sensor Systems (2004)
3. Farkas, K.I., et al.: Quantifying the Energy Consumption of a Pocket Computer and a Java

Virtual Machine. In: ACM SIGMETRICS, New York (2000)
4. Feeney, L.M., et al.: Investigating the Energy Consumption of a Wireless Network Inter-

face in an Ad Hoc Networking Environment. In: IEEE INFOCOM, Anchorage, AL (2001)
5. JamVM 1.3.2 (2006), http://jamvm.sourceforge.net/
6. Kaffe 1.1.5 (2005), http://www.kaffe.org/
7. Khurshid, S., et al.: Generalized Symbolic Execution for Model Checking and Testing. In:

Int’l Conf. on Tools and Algorithms for Construction and Analysis of Systems, Warsaw,
Poland (April 2003)

8. King, J.C.: Symbolic execution and program testing. Communications of the ACM 19(7)
(1976)

9. KVM (2005), http://java.sun.com/products/cldc/wp/
10. Labrosse, J.J.: MicroC/OS-II: The Real-Time Kernel. CMP Books (2002)
11. Lafond, S., et al.: An Energy Consumption Model for An Embedded Java Virtual Ma-

chine. In: Virtual Machine Research and Technology Symposium (2006)
12. Seo, C., et al.: An Energy Consumption Framework for Distributed Java-Based Systems.

In: Int’l Conf. on Automated Software Engineering, Atlanta, Georgia (November 2007)
13. Seo, C., et al.: Estimating the Energy Consumption in Pervasive Java-Based Systems. In:

Int’l Conf. on Pervasive Computing and Communication, Hong Kong (March 2008)
14. Seo, C.: Prediction of Energy Consumption Behavior in Component-Based Distributed

Systems. Ph.D. Dissertation, University of Southern California (April 2008)
15. Singh, H., et al.: Energy Consumption of TCP in Ad Hoc Networks. Wireless Net-

works 10(5) (2004)

 Component-Level Energy Consumption Estimation 113

16. Sinha, A., et al.: JouleTrack - A Web Based Tool for Software Energy Profiling. In: De-
sign Automation Conference (2001)

17. SourceBank, http://archive.devx.com/sourcebank/
18. sourceForge.net, http://sourceforge.net/
19. Tan, T.K., et al.: Energy macromodeling of embedded operating systems. ACM Trans. on

Embedded Comp. Systems (2005)
20. UPnP Device Architecture (2007), http://www.upnp.org/
21. Xu, R., et al.: Impact of Data Compression on Energy Consumption of Wireless-

Networked Handheld Devices. In: Int’l Conf. on Distributed Computing Systems, Rhode
Island (2003)

Synthesis of Connectors from Scenario-Based
Interaction Specifications

Farhad Arbab and Sun Meng�

CWI, Kruislaan 413, Amsterdam, The Netherlands
{Farhad.Arbab,Meng.Sun}@cwi.nl

Abstract. The idea of synthesizing state-based models from scenario-based in-
teraction specifications has received much attention in recent years. The synthesis
approach not only helps to significantly reduce the effort of system construction,
but it also provides a bridge over the gap between requirements and implemen-
tation of systems. However, the existing synthesis techniques only focus on gen-
erating (global or local) state machines from scenario-based specifications, while
the coordination among the behavior alternatives of services/components in the
systems is not considered. In this paper we propose a novel synthesis technique,
which can be used to generate constraint automata specification for connectors
from scenario specifications. Inspired by the way UML2.0 sequence diagrams
can be algebraically composed, we define an algebraic framework for building
constraint automata by exploiting the algebraic structure of UML sequence dia-
grams.

Keywords: Connector, Reo, Constraint Automata, Scenario-based Specification,
UML, Synthesis.

1 Introduction

Service-oriented computing (SOC) [19] has now become the prominent paradigm for
distributed computing, creating opportunities for service providers and application de-
velopers to use services as fundamental elements in their application development pro-
cesses. Services consist of autonomous, platform-independent computational entities
which can be described, published, categorized, discovered, and dynamically assem-
bled for developing complex and evolvable applications that may run on large-scale
distributed platforms. Such systems, which typically are heterogeneous and geograph-
ically distributed, usually exploit communication infrastructures whose topologies fre-
quently vary and allow their components to connect to or detach from the systems at
any moment. It is well-known that most service-oriented applications need a collab-
orative behavior among services/components, and this implies complex coordination.
Therefore, it is crucial to derive a correct coordination model which specifies a precise
order and causality of the service actions (for example: a purchase should happen after
a payment). Consider the slogan proposed in [9]:

application = computation + coordination

� Corresponding author.

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 114–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Synthesis of Connectors from Scenario-Based Interaction Specifications 115

This separation is effective from the software engineering perspective: keeping the co-
ordination issues separate from computation issues brings interaction to a higher level
of abstraction and thus simplifies the programming task.

Compositional coordination models and languages provide a formalization of the
“glue code” that interconnects the constituent components/services and organizes the
communication and cooperation among them in a distributed environment. They sup-
port large-scale distributed applications by allowing construction of complex compo-
nent connectors out of simpler ones. As an example, Reo [2,7], which is a channel-based
exogenous coordination model, offers a powerful glue language for implementation of
coordinating connectors based on a calculus of mobile channels, wherein complex co-
ordinators, called connectors, are compositionally built out of simpler ones. Reo has
been successfully applied in service-oriented computing [18,21]. Further details about
Reo and its semantics can be found in [2,6,7].

Due to the increasing size and complexity of service oriented applications, construc-
tion of their coordination model remains a difficult task that requires considerable ex-
pertise. To solve this problem, the synthesis of component connectors from a given
automaton specification has been investigated in [3]. One of the serious pragmatic lim-
itations of the approach in [3] is the complexity of building the automaton specification
of interactions in the first place. In this paper, we discuss the problem on synthesizing
connectors from scenario-based specifications with Reo as our target implementation
language. The input to this problem is a scenario specification and we aim to output a
connector (Reo circuit) that correctly implements the coordination given in the speci-
fication. The synthesis of connectors from scenario-based specifications not only helps
to significantly reduce the effort of coordination model construction, but it also links
the approaches geared toward requirement analysis with those geared toward reasoning
about system design at the architectural level.

Scenario-Based Specification languages have become increasingly popular over the
last decade, through the widespread adoption of UML [22]. Scenarios describe how sys-
tem components (in the broadest sense) and users interact in order to provide the system
level functionality. Each scenario corresponds to a single temporal sequence of interac-
tions among system components and provides a partial system description. Scenarios
are close to users’ understanding and they are often employed to refine use cases and
provide an abstract view of the system behavior. Several notations have been proposed
for the description of scenario-based models. The UML sequence diagrams (SDs) [22],
message sequence charts (MSCs) [13], and Live Sequence Charts (LSCs) [10] are some
of the most popular notations. In this paper we focus on scenarios represented as UML
sequence diagrams.

Although there exist a number of works on formalizing and synthesizing from
scenario-based specifications [11,12,17,23], most of them only focus on generating
(global or local) state machines from scenario-based specifications. To the best of our
knowledge, our work here is the first attempt to synthesize exogenous coordination
models from scenario-based specifications. In [3] the problem of synthesizing Reo cir-
cuits from given automata specifications is discussed. Our work goes one step fur-
ther toward bridging the gap between low-level implementations and abstract speci-
fications by generating constraint automata (CA) specifications for coordination from

116 F. Arbab and S. Meng

scenario-based specifications. Constraint automata were introduced in [7] as a formal-
ism to capture the operational semantics of Reo, based on timed data streams which
also constitute the foundation of the coalgebraic semantics of Reo [6]. The choice of
Reo as the coordination language (and therefore constraint automata as its operational
specification) is motivated by the fact that (1) it allows exogenous coordination and
arbitrary user defined primitives, and (2) it is unique among other models in allowing
arbitrary combination of synchrony and asynchrony in coordination protocols. This,
for instance, facilitates multi-party transactions through Reo’s inherent propagation of
synchrony and exclusion constraints.

Inspired by the way UML2.0 SDs can be algebraically composed, we define an al-
gebraic framework for composing constraint automata. Then we provide a family of
constraint automata for basic sequence diagrams and show how to transform scenarios
given as a composition of sequence diagrams into a composition of constraint automata.
Beyond offering a systematic and semantically well founded synthesis approach, an-
other benefit of our method lies in its flexibility: Due to the compositionality of the
framework, modifying or replacing a given scenario has a limited effect on the synthe-
sis process, thus fostering better traceability between the requirement and the dynamic
architectural design of the system.

The remainder of this paper is organized as follows: Section 2 discusses the differ-
ence between endogenous and exogenous view of scenarios and show the motivation of
our work. Section 3 briefly presents the relevant features of UML Sequence Diagrams.
In Section 4 we present the algebraic framework for the synthesis of constraint automata
from UML Sequence Diagrams. We discuss our work in Section 5, and compare it with
related work in Section 6. Section 7 concludes the paper.

2 Motivation

The idea of using scenario descriptions, such as UML SDs, to generate operational mod-
els and/or executable code, of course, is not new. We briefly describe some related work
in this area in Section 6. All such work share a common view of how scenarios are used
to generate their operational models or code. For instance, consider a use case scenario
in a simple bank ATM machine example, that involves a user, an ATM machine, and a
number of remote processes, including a PIN verifier. The scenario describes that after
feeding his card into the ATM machine, (1) the ATM machine asks the user to enter his
PIN; (2) the ATM machine sends the user ID and his PIN to the PIN verifier; (3) the
PIN verifier verifies the PIN to determine the validity of the access request; (4) the PIN
verifier sends its (Allow/Deny/Confiscate) response back to the ATM machine; and (5)
depending on the content of the response, the ATM machine proceeds to either allow
or deny user access, or confiscates his card. The common view of the transformation of
this scenario to executable code yields an ATM process and a PIN verifier process that
directly communicate with each other: the ATM process contains a send 〈ID, PIN〉
to PINverifier instruction somewhere in its code, implementing step 2; and the
PIN verifier process contains a send response to ATM instruction somewhere in
its code, implementing step 4, above. These direct communication instructions imple-
ment the coordination protocol described in the scenario in an endogenous form.

Synthesis of Connectors from Scenario-Based Interaction Specifications 117

Endogenous models implement/express a protocol only implicitly, through fragments
of code in disparate entities that are hardwired to specifically realize that protocol. Sup-
pose now that in a later version of this system, it is decided that the messages sent to the
PIN verifier process must also be sent to some monitoring process, or instead of the PIN
verifier to another more sophisticated process (e.g., one that tells the ATM machine to
confiscate the user’s card if the number of successive wrong PIN access attempts by the
same card ID through all involved ATM machines within, say, a 24-hour sliding win-
dow, exceeds a threshold). Such changes to the protocol can easily be reflected in the
SD specifications. However, implementing them requires invasive changes to a variety
of independent software units that comprise the participating processes; worse, these
changes may necessitate other less obvious changes that affect other software units and
processes that are not directly involved in the modified portion of the protocol. Thus,
small, “local” changes to a protocol can propagate through large spans of software units,
touching them in ways that may invalidate their previously verified properties. Not only
such invasive modifications are generally undesirable, in many cases they are imprac-
tical or even impossible, e.g., when they involve legacy code or third party providers.

code

CA
{User!}

User!

d =Password
{User!}

User!

read verifywithBank;

Bank

local check
read verifyAccount;
write verifywithBank

Consortium

{Banksite?}
d =AccountNo Banksite?

Banksite?d =Password
{Banksite?}

{Banksite!}
d =AccountNo Banksite!

{Consortium?}
d =verifyAccount

Consortium?

{Consortium!}

d =verifyAccount

d =verifywithBankConsortium!

{Bank?}

Bank?d =verifywithBank

check

process User

write AccountNo;
write Password

read AccountNo;
read Password;
write verifyAccount

Banksite

Fig. 1. Behavior Skeleton of processes in EnterPwd Scenario

Alternatively, the exogenous view of a scenario (e.g., the EnterPwd SD in the top
right corner of Figure 2) imposes a purely local interpretation on each inter-process
communication, implementing it as a pure I/O operation on each side, that allows pro-
cesses to communicate anonymously, through the exchange of untargeted passive data.
For instance, Figure 1 shows the behavior skeleton of the four processes involved in
the EnterPwd SD, mentioned above. Observe that these processes are not hardwired
to directly communicate with each other. Replacing exchanges of targeted messages
with simple I/O localizes the range of their impact. This makes processes engaged in a
protocol oblivious to changes in the protocol and their peers that do not directly impact
their own behavior. Having expunged all communication/coordination concerns out of
the parties involved, exogenous models relegate the task of conducting the required co-
ordination to a (centralized or distributed) coordinator glue code that establishes the
necessary communication links among the parties and engages them in the specified
protocol. Reo is a good example of an exogenous coordination language that can be
used to develop such glue code.

The scheme that we advocate in this paper for generating operational models and/or
executable code from UML sequence diagrams uses the exogenous view in its interpre-
tation of these scenario specifications. To our knowledge, this approach is novel and no
other work has considered scenario specifications for exogenous coordination.

118 F. Arbab and S. Meng

Our approach starts with the UML SD specification of a scenario and consists of
the following steps: (1) generate a constraint automaton for the behavior skeleton of
every process involved in the scenario in its own ideal environment, which assumes
that all the other processes and the communication protocol are implemented correctly;
(2) generate a constraint automaton for the coordination glue code that implements the
protocol specified by the scenario; and (3) compose the individual processes and the
glue code together to obtain a complete system that behaves as specified. The first step
involves producing constraint automata representations for behavior skeletons such as
in Figure 1 from individual process life-lines. This is trivial and we do not elaborate on
it further. Instead, we focus in this paper on the other two steps.

Our approach is compositional and embodies the advantages inherent in the exoge-
nous models of coordination: coordinated processes are strictly isolated from the de-
pendencies on their environment and the details of the protocol that do not involve their
individual behavior. This leads to more reusable processes, and an independent, explicit
coordination protocol that can in turn be reused to coordinate these or similar processes.
The ECT tools [1] can automatically generate executable code to produce a centralized
implementation of the resulting composed coordination protocol. Alternatively, the re-
sulting protocol can be used to synthesize a Reo circuit, as described in [3], that yields
a distributed implementation of the coordinator.

3 UML Sequence Diagrams

UML sequence diagrams are one of the UML diagrams used to model the dynamic be-
havior of systems. SDs focus on the message interchange among a number of lifelines.
A SD describes an interaction by focusing on the sequence of messages exchanged dur-
ing a system run. See Figure 2 as an example of sequence diagrams which describe
the interactions in the login phase of an on-line banking scenario. A UML SD is rep-
resented as a rectangular frame labeled by the keyword sd followed by the interaction
name. The vertical lines in the SD represent lifelines for the individual participants in
the interaction. Interactions among participants are shown as arrows called messages
between lifelines.

A message defines a particular communication between two lifelines of an interac-
tion. It can be either asynchronous (represented by an open arrow head) or synchronous
(represented by a filled arrow head). Two special kinds of messages are lost and found
messages, which are described by a small black circle at the arrow end (starting end
respectively) of the message. Note that what we are interested in is the coordination
among components/services, so we will consider only a subset of the UML2.0 SDs. For
example, the internal behavior or action within the lifelines in SDs (like the check action
in Figure 2) will not be considered in the synthesis process. Therefore, the synthesized
result in our approach considers only the interaction aspect as opposed to a global state
machine in which both behaviors of components and interactions among components
are completely intertwined.

Before describing UML SDs in more detail, we first define the following notations.

– E is a set of events.
– L is a set of lifelines.

Synthesis of Connectors from Scenario-Based Interaction Specifications 119

:Consortium :Bank

sd EnterPwd

:User :Banksite :Consortium :Bank

AccountNo

:Consortium :Bank
badPassword

:Consortium :Bank

badAccountNo

:Consortium

validAccNoandPwd

:Bank

sd OnLineBankLogon

:User :Banksite :Consortium :Bank

UserArrives
ref

ref EnterPwd

ref Login

ref
EnterPwd

loop

ref BadPassword

alt

ref
BadAccount

validAccount

badAccountNo

badPassword

:Banksite

:Banksite

:Banksite

reqAccNoandPwd

:User

displayAccount

:User

reqAccNoandPwd

:User

:Banksite

displayindexpage

linkonlineBank

displayonlineBank

:User

sd UserArrives

sd BadPassword

BadAccountsd

sd Login

Password verifyAccount verifywithBank

check

Fig. 2. Sequence Diagrams for the On-line Banking Example

– Let p, q range over L, and Σ be the set of communication actions executed by the
participants in L. Such actions have the following forms, where p or q in an action
can be replaced by • for lost or found messages:
1. 〈p! → q, m〉 - p sending asynchronous message m to q,
2. 〈p? ← q, m〉 - p receiving asynchronous message m from q,
3. 〈p!−� q, m〉 - p sending synchronous message m to q, and
4. 〈p? �−q, m〉 - p receiving synchronous message m from q.

– A lifeline introduces a totally ordered set of events E′ ⊆ E.
– λ : E → Σ is a labeling function that assigns communication actions to the events

on all lifelines.

Definition 1. A basic Sequence Diagram is one of the following:

– asynchronous message: 〈〈p! → q, m〉, 〈q? ← p, m〉〉
– synchronous message: 〈〈p!−� q, m〉, 〈q? �−p, m〉〉
– lost message: 〈p! → •, m〉
– found message: 〈p? ← •, m〉

In the UML2.0 and later versions, SDs are enhanced by important control flow features.
Thus, sequence diagrams can be composed by means of operators like alt, par, strict,

120 F. Arbab and S. Meng

seq and loop to obtain more complex interactions. The operator alt designates that
the combined SD represents a choice of behavior alternatives, where at most one of
the operand SDs will be chosen. The operator par designates that the combined SD
represents a parallel merge between the behaviors of the operand SDs. The operator
strict designates that the combined SD represents a strict sequencing of the behaviors
of the operands. The operator seq designates that the SD represents a weak sequencing
between the behaviors of the operands (all events in the first operand situated on one
lifeline must be executed before events of the second operand situated on the same
lifeline, but the events on different lifelines from different operands may come in any
order). The loop operator specifies an iteration of an interaction. As an example, the
sequence diagram OnLineBankLogon in Figure 2 can be described as:

OnLineBankLogon

=strict(UserArrives, loop(strict(Enterpwd,

alt(BadAccount, BadPassword))), Enterpwd, Login)

where the SDs being used (like UserArrives) are further composed out of basic SDs.

4 Generating Constraint Automata from Sequence Diagrams

We can describe the method for generating connectors from scenario specifications as
consisting of two main phases. The first phase concerns the generation of constraint
automata from UML SDs. The second phase involves translation from constraint au-
tomata to Reo circuits. In this paper we focus on the first phase and refer to [3] for a
detailed description of the second phase.

We propose an approach that generates constraint automata from scenarios via an
algebraic framework that allows to switch from an algebraic composition of SDs to
an algebraic composition of constraint automata. First, we extend the definition of con-
straint automata with the notion of final states, yielding the notion of final state extended
constraint automaton (FSECA) for representing finite behavior. The general principle
of our approach is to take each basic SD and produce a final state extended constraint
automaton so that there exists a finite sequence of transitions corresponding to the sce-
nario. Then we can use the composition operators to compose the automata from basic
SDs. Finally, the final states in the resulting FSECA can be merged into its initial state
to get the constraint automata model when loops on the scenarios are possible.

In the sequel, we assume a finite set N of nodes (ports), and Data as a fixed, non-
empty set of data that can be sent and received via channels. A data assignment denotes
a function δ : N → Data where N ⊆ N . We use DA(N) for the set of all data
assignments for the node-set N . A symbolic representation of data assignments is given
by using data constraints which consist of propositional formulas built from the atoms
“dA ∈ P ”, “dA = dB” or “dA = d” plus standard Boolean connectors, where A, B ∈
N , dA is a symbol for the observed data item at node A and d ∈ Data, P ⊆ Data.
We write DC(N) to denote the set of data constraints that at most refer to the observed
data items dA at nodes A ∈ N , and DC for DC(N). Logical implication induces a
partial order ≤ on DC: g ≤ g′ iff g ⇒ g′.

Synthesis of Connectors from Scenario-Based Interaction Specifications 121

Definition 2. A final state extended constraint automaton (FSECA) over the data do-
main Data is a tuple A = (S, s0, SF , N , −→) where S is a set of states, also called
configurations, s0 ∈ S is its initial state, SF ⊆ S is a set of final states, N is a finite
set of nodes, −→⊆

⋃
N⊆N S × {N} × DC(N) × S, called the transition relation.

Note that the notion of final state has a meaning similar to its corresponding notion in
classical automata, but here it also plays an addition role during composition of CA: it
is used as a kind of merging state for some of the operators. In graphical representation
of FSECA as in Figure 3, final states are represented by double circles.

The generation of a constraint automaton from a scenario specification is based on
the generation of FSECA from basic SDs. For simplicity, we assume that for every
participant p in the communication, the connector has at most one input port (denoted
by p!) and one output port (denoted by p?) connected to p. This assumption can lead to
a more abstract constraint automaton, while the approach can be easily extended to the
case where one participant p is connected to multiple nodes in the connector.

d =mq?d =mp!

{p!}
d =d =mp! q?

{q?} {p!,q?}

Synchronous messageAsynchronous message

{p!}
d =mp!

Lost message Found message

{q?}
d =mq?

Fig. 3. Final State Extended Constraint Automata for Basic Sequence Diagrams

For the four basic Sequence Diagrams in Definition 1, the corresponding FSECA are
given as in Figure 3.

In the following we define the operators altA, parA, strictA, seqA and loopA for
composition of FSECA. Final states introduced in Definition 2 will be necessary for
formalizing these operators. A special FSECA used in the definitions, called the empty
FSECA, denoted by A∅, contains only a single state which is both an initial and a final
state, and has no transitions. A FSECA is a loop if it is not empty and its initial state is
a final state.

Let A1 = (S1, s
1
0, S

1
F , N1, −→1) and A2 = (S2, s

2
0, S

2
F , N2, −→2) be two final

state extended constraint automata.

Definition 3. The FSECA resulting from the alternative composition of A1 and A2

describes a choice between the behaviors of its operands. altA(A1, A2) = (S, s0, SF ,
N , −→) where

– S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 A2 = A∅ ∧ A1 �= A∅
S2 A1 = A∅ ∧ A2 �= A∅
{s0} A1 = A∅ ∧ A2 = A∅
S1 ∪ S2 ∪ {s0} si

0 ∈ Si
F ∧ Ai �= A∅ for i = 1, 2

S1 ∪ S2 \ {s2
0} si

0 /∈ Si
F for i = 1, 2

S1 ∪ S2 otherwise

– s0 =

⎧⎪⎨
⎪⎩

s s is a new state ∧ si
0 ∈ Si

F ∧ Ai �= A∅ for i = 1, 2
s2
0 s2

0 /∈ S2
F ∧ (s1

0 ∈ S1
F ∨ A1 = A∅)

s1
0 otherwise

122 F. Arbab and S. Meng

– SF = (S1
F ∪ S2

F) ∩ S
– N = N1 ∪ N2

– −→= (−→1 ∩
⋃

N⊆N S × {N} × DC(N) × S) ∪ (−→2 ∩
⋃

N⊆N S × {N} ×
DC(N) × S) ∪ {(s0, N, g, s) | (si

0, N, g, s) ∈−→i for i = 1, 2}

In this definition and Definition 5, we have the identity element in the algebra, i.e., the
empty FSECA, to make the operations more complete. However, in most cases for UML
SDs, the operands are not empty, and the definitions can be simplified by removing
the cases corresponding to empty operands. If one of the operands in an alternative
composition is empty, then the resulting FSECA is the same as the non-empty one.
The resulting FSECA is empty when both operands are empty. If both operands are
non-empty, then the transitions in both automata will be kept in the resulting one, and
the initial states will be merged together. If both of the initial states s1

0 and s2
0 in the

two operands are final states, then a new initial state s0 will be added in the resulting
automaton, and the transitions with s1

0 or s2
0 as their source state will be replaced by

transitions with the source state s0. Otherwise, one of the two initial states will be kept
as the initial state in the new automaton.

Definition 4. The FSECA resulting from the parallel composition of A1 and A2 de-
scribes a parallel merge of the behaviors of its operands. parA(A1, A2) = (S, s0, SF ,
N , −→) where S = S1 × S2, s0 = 〈s1

0, s
2
0〉, SF = S1

F × S2
F , N = N1 ∪ N2, and the

transition relation −→ in parA(A1, A2) is defined by the interleaving rules:

– If s1

N,g
−−−→1 s′1, then 〈s1, s2〉

N,g
−−−→ 〈s′1, s2〉.

– If s2

N,g
−−−→2 s′2, then 〈s1, s2〉

N,g
−−−→ 〈s1, s

′
2〉.

According to the UML specification, the par operator represents a parallel merge of the
behaviors of its operands. The behavior of the two operands can be interleaved in any
order as long as the ordering imposed within each operand as such is preserved.

Definition 5. The FSECA resulting from the strict sequential composition of A1 and
A2 describes the behavior of the first operand followed by the behavior of the second
one. strictA(A1, A2) = (S, s0, SF , N , −→) where

– S =

⎧⎪⎨
⎪⎩

S1 ∪ S2 \ {s2
0} s2

0 /∈ S2
F ∨ A2 = A∅

S2 A1 = A∅
S1 ∪ S2 otherwise

– s0 =

{
s1
0 A1 �= A∅

s2
0 otherwise

– SF =

{
S1

F ∪ S2
F s2

0 ∈ S2
F

S2
F otherwise

– N = N1 ∪ N2

– −→=−→1 ∪(−→2 ∩
⋃

N⊆N S × {N} × DC(N) × S) ∪
{(f, N, g, s) | (s2

0, N, g, s) ∈−→2 ∧f ∈ S1
F }

Synthesis of Connectors from Scenario-Based Interaction Specifications 123

If the first operand in a strict sequential composition is empty, the resulting automaton
is the same as the second operand. If the initial state s2

0 is not a final state in the second
operand, it will be removed from the state space, and every transition from s2

0 will
be replaced by transitions from the final states in the first operand. That means, the
behavior of the second operand will start after the behavior of the first operand finishes.

Before we define the weak sequential composition seqA, we first introduce another
operation on FSECA: ordered composition �. For a lifeline l in a SD, we introduce
an order automaton Ol = (Sl, s

l
0, s

l
F , M , −→l) where the node set M consists of all

the nodes connected to the lifeline, and all its transitions form a sequence sl
0

M1,g1
−−−→l

sl
1 · · ·

Mn,gn

−−−→l sl
n = sl

F
1. For a FSECA A = (S, s0, SF , N , −→A) and an order

automaton O = (T, t0, TF , M , −→O), their phased composition A � O is defined as

A � O = (SA �O, 〈s0, t0〉, F, N , −→)

which is constructed as follows:

1. SA �O = {〈s0, t0〉};

2. for 〈s, t〉 ∈ SA �O and s
N1,g1
−−−→A s′ a transition of A , do

– if N1 ∩M = ∅ then 〈s, t〉
N1,g1
−−−→ 〈s′, t〉 is a transition of A � O, and 〈s′, t〉 is

a state of A � O.

– if there exists a t
N2,g2
−−−→O t′ in O, where N1∩N2 �= ∅ and g1∧g2 is satisfiable,

then 〈s, t〉
N1,g1
−−−→ 〈s′, t′〉 is a transition of A � O, and 〈s′, t′〉 is a state of

A � O.

– if for any transition t
N2,g2
−−−→O t′ with source state t in O, either N1 ∩ N2 =

∅∧N1 ∩M �= ∅ or N1 ∩N2 �= ∅∧ g1 ∧ g2 = false, then there is no transition
from 〈s, t〉 labelled by N1, g1.

until no new states can be added to the state space SA �O .

Note that the ordered composition is asymmetric, which is different from the prod-
uct operation on constraint automata. This is due to the different roles played by the
two operands. In this context, the automaton A describes all possible communication
behavior, while the automaton O provides some requirements on the protocol by re-
stricting the order of events. However, this operation is still compositional. That means,
for any A and O1, O2, (A �O1)�O2 = (A �O2)�O1. (Detailed proofs for the com-
positionality is omitted here.) Therefore, we can easily extend the � operation to the
case where N1 ∩ N2 contains nodes of more than one lifeline and use A � {Oi}1≤i≤k

as an abbreviation for (· · · ((A � O1) � O2) � · · · � Ok).

Definition 6. The FSECA resulting from the weak sequential composition of A1 and
A2 can be reduced to a parallel merge when the operands contain disjoint sets of nodes.
When the operands work on the same nodes, the weak sequential composition reduces
to strict sequential composition.

1 Note that the order automaton can be derived from the order of events on a lifeline. If the order
of events is not specified (for example, events in a coregion in UML SD), then it can be any
possible order.

124 F. Arbab and S. Meng

A B C
m1

m2

m3

{A!,B?}

{B!,C?}

{C!,A?}

{A!,B?}

{C!,A?}

{A!,B?}

{C!,A?} {C!,A?}

{A!,B?}

{B!,C?}

{B!,C?}{B!,C?}

{A!} {A?}

{B!}{B?}

{C?} {C!}

(a) (b) (c)

O :A

O :B

O :C

(d)

{A!,B?}

A! B?d =d =m1

{B!,C?}
d =d =m2B! C?

{C!,A?}
d =d =m3C! A?

Fig. 4. Weak Sequential Composition

seqA(A1, A2) =

{
parA(A1, A2) N1 ∩ N2 = ∅
parA(A1, A2) � {Oli} N1 ∩ N2 = {li}

where the transitions in Oli correspond to the events happening on lifeline li.

Example 1. As an example, consider the sequence diagram given in Figure 4(a). For
each of the messages m1, m2, m3, we have a basic SD, and the sequence diagram
can be defined as a weak sequential composition of the three basic SDs. We can first
construct the parallel merge of the FSECA for the basic SDs. The resulting FSECA A
is as shown in Figure 4(b) 2. The order automaton for the corresponding lifelines are
given in Figure 4(c). Then, according to the definition of �, we can get the resulting
FSECA A � {OA, OB, OC} for the whole SD as shown in Figure 4(d).

Banksite!

{User?}

User?
d =displayindexpaged =displayindexpage d =d User! Banksite?

=linkonlineBank

{User!, Banksite?}
d =displayonlineBankBanksite!

{Banksite!}

{User?}
d =displayonlineBank{User!, Banksite?}

d =d User! Banksite?
=AccountNo

{User!, Banksite?}
d =d User! Banksite?
=Password

Banksite! Consortium?

=verifyAccount

{Consortium!, Bank?}
d =d User?

Bank?

=verifywithBank

{Bank!, Consortium?}{Bank!, Consortium?}

Consortium!

Consortium?d =d Bank!

=badPassword
d =d =badAccountNoBank! Consortium?

{Consortium!, Banksite?} {Consortium!, Banksite?}

d =d Consortium! Banksite?

=badPassword

d =d Consortium! Banksite? =badAccountNo

{Banksite!, Consortium?}

{Banksite!, User?}

d =d

d =d =reqAccNoandPwdBanksite! User?

{Banksite!, User?}
d =d =reqAccNoandPwdBanksite! User?

{User!, Banksite?}
d =d =AccountNoUser! Banksite?

{User!, Banksite?}
d =d =PasswordUser! Banksite?

{Banksite!, Consortium?}
d =d Banksite! Consortium?=verifyAccount

{Consortium!, Bank?}
d =d Consortium! Bank?=verifywithBank

{Bank!, Consortium?}
d =d =validAccNoandPwdBank! Consortium?

{Consortium!, Banksite?}
d =d Consortium! Banksite?

=validAccount

{Banksite!}

{Banksite!}
d =displayAccountBanksite!

{User?}
d =displayAccountUser?

Fig. 5. Final State Extended Constraint Automaton for the OnLineBankLogon Scenario

Definition 7. The FSECA resulting from a loop describes the iteration of the behavior
of its operand. loopA(A1) = (S, s0, SF , N , −→) where S = (S1 \ S1

F) ∪ {s1
0},

s0 = s1
0, SF = {s1

0}, N = N1, and −→= (−→1 ∩
⋃

N⊆N S × {N} × DC(N) ×
S) ∪ {(s, N, g, s1

0) | (s, N, g, f) ∈−→1 ∧f ∈ S1
F }.

2 For simplicity, here we omit the data constraints on all transitions, which can be derived easily
from the SD.

Synthesis of Connectors from Scenario-Based Interaction Specifications 125

After building a collection of FSECA for our basic sequence diagrams, the extension
of the method to general SDs seems quite straight-forward. Let S be a SD constructed
by composing a set of basic SDs {B1, · · · , Bk} with the operators alt, par, strict, seq
and loop. For each Bi, a FSECA Ai can be built using its corresponding automaton in
Figure 3. Then the FSECA AS for the SD S can be constructed by replacing every Bi

with Ai and using the operators altA, parA, strictA, seqA and loopA to replace alt,
par, strict, seq and loop, respectively. As an example, Figure 5 shows the FSECA for
the OnLineBankLogon scenario generated by composing the FSECA of its basic SDs.

5 Discussion

Every UML SD from which a FSECA is synthesized captures a single scenario, with
all of its relevant actors accounted for. However, because of the algebraic operators
in UML 2.0, it is possible to deal with the more interesting situations where systems
may have many possible scenarios, and these scenarios are combined into a specifi-
cation. The generation of constraint automata from scenario specifications provides a
certain flexibility in the synthesis process. When we modify the scenario specification
(for example, adding, removing or changing a sequence diagram), part of the previ-
ous synthesis result can be reused. So far, our synthesis approach focuses on gener-
ating the coordination model among components/services, instead of components or
the whole system. The intuition is that, when we develop distributed applications, espe-
cially service-oriented applications running in wide area large-scale distributed environ-
ments, coordinating connectors play an important role for gluing the often pre-existing
components/services together. Instead of synthesizing an implementation for separate
components, we synthesize the connector that can be used to glue together and coordi-
nate existing components/services in a distributed processing environment.

Although scenarios also describe the interactions among components, they cannot
be used directly as a coordination language. Initially one would expect the synthesized
state-based models (and thus the connectors) to have exactly the same set of behaviors
as those depicted in the scenario specifications. However, this is not always the case.
Scenarios can combine in unexpected ways and certain system behavior, not present in
the scenario specifications, may appear in possible system implementations. To solve
this problem, [27] proposed an approach to detect scenarios that appear in a synthesized
model (implied scenarios) and then to enhance the set of requirements to include these
implied scenarios. However, as pointed out in [29], the detection of an implied scenario
can be done only through simulation, and some unspecified runs can be missed. Thus
the number of implied scenarios can be infinite and the set of requirements may never
converge toward a stable set of scenarios.

Therefore, synthesis from scenarios can be taken as an entry point toward more oper-
ational models such as CA. Since we can consider each sequence diagram as a sample
interaction behavior of an application, it is clear that each interaction behavior described
by a SD must match at least one run of an implementation. The constraint automata gen-
erated by synthesis can then be used to generate Reo circuits, which provide adequate
communication mechanisms (synchrony, asynchrony, broadcast communication, etc.).

126 F. Arbab and S. Meng

Then the scenarios can be used as tests to check if the Reo circuit provides appropriate
communication with respect to the initial requirements.

In [3], the generation of Reo circuits from constraint automata also follows a com-
positional approach: for each basic expression 〈N, g〉, a Reo circuit R〈N,g〉 can be built
and a family of operators can be used to combine them. Tools are also available for
generating a constraint automaton from a Reo circuit. Both Reo circuits and constraint
automata can serve as the coordinating glue code that composes black-box components
into complex systems. The constraint automaton incarnation of a Reo circuit constitutes
a centralized coordinator that reflects the global states of the system and can be substan-
tially more efficient to run. On the other hand, a Reo circuit is inherently distributed,
requiring no central authority or global state information, which makes it more suitable
for systems composed of distributed components/services.

Like most program-generated code, the synthesis of a Reo circuit from a constraint
automaton, as reported in [3], generally yields verbose circuits that do not “look natural”
to the human eye. Using this method, then, to generate a Reo circuit from a constraint
automaton (such as in Figure 5) synthesized from UML2 SDs yields Reo coordinator
circuits that may not easily correlate back to their original SD specifications. The merit
of synthesizing Reo circuits directly from SDs, which has been investigated in [5] lies
in the greater structural fidelity between the resulting Reo circuits in this approach and
their original SD specifications. However, for some SD operators like the negation oper-
ator neg, the behavior in the scenario is not permitted and it is impossible to synthesize
the Reo circuit directly from the scenario. However, it is still possible to be dealt with
by using CA. We can first construct the CA corresponding to a negative scenario ac-
cording to the approach in Section 4, and then build its complement part, and finally
generate the corresponding Reo circuits according to the approach in [3].

6 Related Work

Several semantics for scenario-based languages have been proposed, and a number of
approaches for synthesis of state-based models from scenario descriptions have been
developed. Some of these works provide algorithms for synthesizing state-based mod-
els from Message Sequence Charts. For example, [16] presents a state-chart synthesis
algorithm, but the approach does not support High-Level Message Sequence Charts
(HMSC), which provide a composition mechanism very close to UML2.0 SDs. The
authors of [26,27] propose an approach to synthesize LTS models from MSC specifica-
tions, where the mechanism for communication between components is synchronous.
The authors of [17] use MSCs for service specifications and propose an algorithm for
synthesizing component automata from specifications.

In [11,12], the problem of synthesizing state machines from LSC models was tackled
by defining the notion of consistency of an LSC model. A global system automaton can
be constructed and then decomposed. However, this approach suffers from the state
explosion problem due to the construction of the global system automaton, which is
often huge in size because of the underlying weak partial ordering semantics of LSC. In
[23], Sun and Dong combine the LSC notation with Z, and propose a synthesis approach
for generating distributed finite state designs from the combined specifications.

Synthesis of Connectors from Scenario-Based Interaction Specifications 127

The authors of [20] propose an interactive algorithm that can be used to generate
flat state-charts from UML sequence diagrams. In [14], the authors also provide an
interactive algorithm to generate state-charts from multiple scenarios expressed as UML
collaborations. An algebraic approach was adopted in [29] to synthesize state-charts of
components from sequence diagrams, but it takes only the operators alt, seq and loop
into account, and does not consider any of the other UML2.0 operators on SDs. In [25],
the existing LTS synthesis algorithms are extended to produce Modal Transition Sys-
tems from the combination of properties (expressed in temporal logic) and scenarios.

Regardless of the scenario notations used (MSC, LSC or UML), all these works fo-
cus only on generating the state-based models for separate components (or a global
state machine for the whole system). These approaches differ from ours as (1) we are
concerned about the coordination aspects in distributed applications instead of the be-
havior models for separate individual components, and (2) our synthesized connectors
also provide the actual protocols used for communication among components/services
in the system, and the components do not need to contain any protocol information.
Therefore, when the communication protocol changes through system evolution, we
need to change only the connector implementation without changing any components.

Another closely related work is the synthesis of adapters in component based sys-
tems. The authors of [28] propose an approach to modify the interaction mechanisms
that are used to glue components together by integrating the interaction protocol into
components. However, this approach acts only on the signature level. The work re-
ported in [24] goes beyond the signature level and supports protocol transformations in
the synthesis process, but the initial coordinator being synthesized behaves only as the
“no-op” coordinator, which requires the assembly of new components to enhance its
protocol for communication.

In [3], we have shown how to synthesize Reo circuits from CA specifications. The
new contribution in this paper is that we go one step further and generates CA from
scenario specifications represented by UML SDs. There is substantial benefit in this
work which bridges the gap between requirements and implementation of coordination
among services in service oriented application development.

7 Conclusion

In this paper we have presented an algebraic technique for constructing constraint au-
tomata from scenario specifications represented by UML SDs. This work aims to assist
users and designers in the production of coordination models from scenario specifica-
tions. Our synthesis method produces a constraint automaton that can be used directly
to generate a local executable glue code. It can also extend our previous work described
in [3] that presents an algorithm for automatically synthesizing Reo circuits from con-
straint automata specifications. Together with the results in this paper, we can success-
fully derive a Reo circuit that coordinates the behavior of the components/services in
a large-scale distributed application directly from its scenario specifications. Although
we can synthesize Reo circuits directly from scenarios [5], using CA as the bridge be-
tween coordinators and scenario specifications still has potential benifits since we can
use CA for model checking and testing properties of the connectors.

128 F. Arbab and S. Meng

Among our next steps is the automation of the synthesis approach. We already have a
set of integrated, visual tools to support coordination of components/services, including
graphical editors, animation and simulation tools, and model checkers [1,8,15]. We ex-
pect our tool to be useful in model-based development of service-oriented applications.
Our aim is to aid designers who are interested in complex coordination scenarios and
to use UML SDs as the basis for generating implementations automatically using our
synthesis approach. A prototype is being developed which uses a simple description of
UML SDs, and in our future work, we will exploit some existing UML design tools and
use their XMI exported UML models directly as input for our synthesis. Once the con-
straint automaton (or Reo circuit) is generated from scenario specifications, we can also
apply the existing tools, for example, the model checker, to check the containment and
equivalence of connectors. Furthermore, we will consider the appropriate representa-
tion of QoS aspects in UML and their connection with quantitative constraint automata
and quantitative Reo circuits [4].

Acknowledgements. The work reported in this paper is supported by a grant from the
GLANCE funding program of the Dutch National Organization for Scientific Research
(NWO), through project CooPer (600.643.000.05N12).

References

1. Eclipse Coordination Tools, http://homepages.cwi.nl/∼koehler/ect/
2. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Mathe-

matical Structures in Computer Science 14(3), 329–366 (2004)
3. Arbab, F., Baier, C., de Boer, F., Rutten, J., Sirjani, M.: Synthesis of Reo Circuits for Imple-

mentation of Component-Connector Automata Specifications. In: Jacquet, J.-M., Picco, G.P.
(eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 236–251. Springer, Heidelberg (2005)

4. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component Connectors with QoS Guarantees.
In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 286–304.
Springer, Heidelberg (2007)

5. Arbab, F., Meng, S., Baier, C.: Synthesis of Reo Circuits from Scenario-based Specifications.
In: Proceedings of FOCLASA 2008 (2008)

6. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing, M., Pat-
tinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidel-
berg (2003)

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by con-
straint automata. Science of Computer Programming 61, 75–113 (2006)

8. Blechmann, T., Baier, C.: Checking Equivalence for Reo Networks. In: Proceedings of 4th
International Workshop on Formal Aspects of Component Software, FACS 2007 (2007)

9. Carriero, N., Gelernter, D.: Coordination Languages and Their Significance. Communica-
tions of the ACM 35, 97–107 (1992)

10. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal Methods
in System Design 19(0) (2001)

11. Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Specifications.
Foundations of Computer Science 13, 5–51 (2002)

12. Harel, D., Kugler, H., Pnueli, A.: Synthesis Revisited: Generating Statechart Models from
Scenario-Based Requirements. In: Proc. Formal Methods in Software and Systems Model-
ing, pp. 309–324 (2005)

 http://homepages.cwi.nl/~koehler/ect/

Synthesis of Connectors from Scenario-Based Interaction Specifications 129

13. ITU-TS. Recommendation Z.120(11/99) : MSC 2000, Geneva (1999)
14. Khriss, I., Elkoutbi, M., Keller, R.K.: Automating the synthesis of uml statechart diagrams

from multiple collaboration diagrams. In: Bézivin, J., Muller, P.-A. (eds.) UML 1998. LNCS,
vol. 1618, pp. 132–147. Springer, Heidelberg (1999)

15. Klüppelholz, S., Baier, C.: Symbolic Model Checking for Channel-based Component Con-
nectors. In: Canal, C., Viroli, M. (eds.) Proceedings of FOCLASA 2006, pp. 19–36 (2006)

16. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From mscs to statecharts. In: Distributed and
Parallel Embedded Systems, pp. 61–72. Kluwer, Dordrecht (1999)

17. Krüger, I.H., Mathew, R.: Component Synthesis from Service Specifications. In: Leue, S.,
Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 255–
277. Springer, Heidelberg (2005)

18. Lazovik, A., Arbab, F.: Using Reo for Service Coordination. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 398–403. Springer, Heidelberg
(2007)

19. Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Comm. ACM 46(10),
25–28 (2003)

20. Mäkinen, E., Systä, T.: Mas - an interactive synthesizer to support behavioral modeling in
uml. In: Proceedings of the 23rd International Conference on Software Engineering, ICSE
2001, pp. 15–24. IEEE Computer Society, Los Alamitos (2001)

21. Meng, S., Arbab, F.: Web Services Choreography and Orchestration in Reo and Constraint
Automata. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 346–
353. Springer, Heidelberg (2007)

22. Object Management Group. Unified Modeling Language: Superstructure - version 2.1.1
(2007), http://www.uml.org/

23. Sun, J., Dong, J.S.: Design Synthesis from Interaction and State-Based Specifications. IEEE
Transactions on Software Engineering 32, 349–364 (2006)

24. Tivoli, M., Autili, M.: SYNTHESIS, a Tool for Synthesizing Correct and Protocol-Enhanced
Adaptors. RSTI L’object 12, 77–103 (2006)

25. Uchitel, S., Brunet, G., Chechik, M.: Behaviour model synthesis from properties and sce-
narios. In: 29th International Conference on Software Engineering (ICSE 2007), pp. 34–43.
IEEE Computer Society, Los Alamitos (2007)

26. Uchitel, S., Kramer, J.: A Workbench for Synthesising Behaviour Models from Scenarios.
In: Proceedings of International Conference on Software Engineering (ICSE 2001), pp. 188–
197. IEEE Computer Society, Los Alamitos (2001)

27. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence chart
specifications. In: Proceedings of the 9th European Software Engineering Conference and
9th ACM SIGSOFT International Symposium on the Foundations of Software Engineering
(ESEC/FSE 2001), pp. 74–82. ACM, New York (2001)

28. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Transac-
tions on Programming Languages and Systems 19(2), 292–333 (1997)

29. Ziadi, T., Hélouët, L., Jézéquel, J.-M.: Revisiting Statechart Synthesis with an Algebraic
Approach. In: Proceedings of the 26th International Conference on Software Engineering
(ICSE 2004). IEEE Computer Society, Los Alamitos (2004)

http://www.uml.org/

State Space Reduction Techniques for Component
Interfaces

Markus Lumpe, Lars Grunske, and Jean-Guy Schneider

Faculty of Information & Communication Technologies
Swinburne University of Technology

P.O. Box 218
Hawthorn, VIC 3122, Australia

{mlumpe,lgrunske,jschneider}@swin.edu.au

Abstract. Automata-based interface and protocol specifications provide an ele-
gant framework to capture and automatically verify the interactive behavior of
component-based software systems. Unfortunately, the underlying formalisms
suffer from combinatorial state explosion when constructing new specifications
for composite components or systems and may therefore render the application of
these techniques impractical for real-world applications. In this paper, we explore
the bisimulation technique as a means for a mechanical state space reduction of
component-based systems. In particular, we apply both strong and weak bisimu-
lation to Component Interaction Automata in order to obtain a minimal automata
that can serve as a behavioral equivalent abstraction for a given component spec-
ification and illustrate that the proposed approach can significantly reduce the
complexity of an interface specification after composition.

1 Introduction

With the emphasis on reusable, self-contained software components that expose their
capabilities through well-defined interfaces [30], there is a clear need for sound inter-
face and protocol specifications. Such specifications allow, for example, for a precise
characterization of both, the number and sequence of events and method calls, and have
been well motivated for the definition, analysis, and verification of object-oriented soft-
ware systems [24]. In component-based software engineering, these techniques become
even more important [27, 13, 33] as they provide an effective means for the reduction
of the complexity in component specifications through abstraction. The added benefit
of this approach is that, ideally, component users only need to understand the interface
specification of a given component in order to be able to use it correctly in a given
deployment environment.

In the past decades, there has been a significant research interest in suitable and
formal support for the specification and verification of component interfaces and their
composition. Several approaches have emerged that focus either on service interfaces,
interaction protocols, or both [6, 13, 21, 1, 22, 27, 31, 5, 7, 11, 10]. The majority of these
formalisms rely on finite state machines as the underlying formal model and employ
some form of automata-based notation to denote interface specifications. The finite

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 130–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

State Space Reduction Techniques for Component Interfaces 131

state machine model allows for a fine-grained description of how and when specific ser-
vice requests of components can interact with the deployment environment. This serves
component developers, component testers, and component integrators alike as the en-
tropy of a given component interface or system specification can be geared towards the
compatibility requirements [8, 19] indicated for correctness, fitness, and safety checks,
respectively.

Unfortunately, automata-based models suffer from combinatorial state explosion.
That is, whenever one composes two or more component interface specifications, the
result, often constructed as a product automaton [5, 11], will contain a significantly
large number of states and transitions. Moreover, component compatibility verification
techniques like model checking, substitutability checking, or refinement checking, and
the constructions of the composed interface specification, in itself, have an exponential
complexity with respect to the number of states and transition to be considered. There-
fore, the application of some form of state space reduction becomes essential in order
to permit actual component composition and component fitness checks to take place in
real-world scenarios.

In this paper, we propose a state space reduction method for composite component
interface specifications based on state partition refinement [25] using the bisimulation
technique [26]. Bisimulation is a co-inductive proof technique to test whether two au-
tomata exhibit the same interaction behavior. When applied to component interface
specifications, bisimulation allows for the identification of behavioral equivalent com-
ponent states and, consequently, for the verification of “component substitutability”
when constructing a minimal component interface specification.

Several variants of the bisimulation technique exist. Of particular interest are the
strong and weak versions [18]. The composition of two or more component interface
specifications can produce identical behavioral patterns in the resulting automata. We
can equate these patterns by building a respective bisimulation relation. The discrimi-
native power of the bisimulation technique allows us to define the pruning of the state
space either over direct common component interaction prefixes with the environment
(strong bisimulation) or the transitive closure of inter-component synchronizations
(weak bisimulation). Moreover, the strong bisimulation relation is known to preserve
temporal properties, as required for model checking [16, 14, 29], whereas weak bisim-
ulation yields an observable equivalence that abstracts from the internal behavior.

We use Component Interaction Automata (CIA) [5, 7] as the underlying model for
our state space reduction technique. Interestingly, Černá et al. [7] have already stud-
ied strong bisimulation in order to define component substitutability in the Compo-
nent Interaction Automata framework. However, the focus of our work is on finding a
redundant-free, minimal specification for a given composite system. Therefore, we seek
to provide answers to the following questions:

• How can a minimal, strongly bisimilar automaton be constructed automatically?
• How can a minimal, weakly bisimilar automaton be constructed automatically?
• How efficient is the state space reduction in terms of the number of the eliminated

states and transitions?
• What are the costs of state space reduction?
• When should the state space reduction be applied?

132 M. Lumpe, L. Grunske, and J.-G. Schneider

We have developed a prototype implementation in PLT-Scheme [28] to study the dif-
ferent composition alternatives and the feasibility of a partition refinement algorithm for
Component Interaction Automata. This prototype allows us to configure and perform
experiments with the different notions of bisimulation and to take time measurements
in order to assess the effectiveness of composition under state space reduction. As a test
bed for our experiments, we use both, specially-designed as well as randomly gener-
ated component interaction automata specifications. Parameters like number of actions,
number of states, number of transitions, ratio of inter-component synchronizations, etc.
are used to fine-tune the component interface specification generator. This approach
limits the impact of human bias in selecting candidate automata and enables us to de-
termine more effectively which reduction strategy yields the best results with respect to
size and structure of the composite system being analyzed.

The rest of the paper is organized as follows: Section 2 provides some background on
the interface specification formalism of Component Interaction Automata and presents
some simple examples how this formalism can be used. In Section 3, we illustrate the
main contributions of this paper: (i) the adaption of a state space reduction technique
to identify bisimilar states and (ii) the construction of minimal component interaction
automata. We proceed with a report on the results of a set of experiments to assess
the effectiveness and applicability of the proposed techniques in Section 4. We discuss
related work in Section 5 and conclude with a summary of our main observations as
well as an outlook to future work in Section 6.

2 The Core of Component Interaction Automata

Component Interaction Automata [5, 7] provide a formal specification framework to
denote not only the interaction behavior but also the hierarchical structure of compo-
nents. This new model, which is an extension of Interface Automata [11] and Team
Automata [31], offers two major innovations. First, all component interaction automata
maintain a structural information to record their corresponding composition hierarchy.
For one automaton the value associated with this information is just the component iden-
tifier of the component itself. However, for composite automata a tuple is used whose
elements capture the composition architecture of the composed system. To illustrate
this concept, consider two component interaction automata A1, A2 and their compo-
sition. We write (A1) and (A2) to capture the hierarchical structure of A1 and A2,
respectively. In other words, A1 and A2 are primitive components that do not reveal
any internal compositions [5]. In contrast, we denote by ((A1)(A2)) the hierarchical
structure of the composition of A1 and A2. Similarly, we express the hierarchical struc-
ture of the composition of the primitive component A3 with the composite of A1 and
A2 as ((A3)((A1)(A2))).

The second novelty is the use of structured labels, which are triples that encode the
action, originating component, and target component in the transitions of a component
interaction automaton. There are three forms of structured labels: (−, a, n), the input of
a at component n, (n, a, −), the output of a emitted from component n, and (n1, a, n2),
the synchronization of components n1 and n2 through action a. The symbol − in both

State Space Reduction Techniques for Component Interfaces 133

input and output stands for the environment. Consequently, input and output denote
external interactions, whereas synchronization is an internal component interaction.

Formally, a component interaction automata is defined as follows [5]:

Definition 1. A component interaction automaton C is a quintuple (Q,Act , δ, I, S)
where:

• Q is a finite set of states,
• Act is a finite set of actions,
• δ ⊆ Q × Σ × Q is a finite set of labeled transitions with Σ ⊆ {(N × Act × N)}\

{({−} × Act × {−})}, where N = {n | n occurs in S} ∪ {−} is the set of
structured labels induced by C,

• I ⊆ Q is a non empty set of initial states, and
• S is a tuple denoting C’s hierarchical composition structure.

To illustrate the use of the component interaction automata formalism, consider the
following two small components C1 and C21:

C1 = ({q0, q1}, {a, b}, {(q0, (1, a, −), q1), (q1, (−, b, 1), q0)}, {q0}, (1))
C2 = ({q0, q1}, {a, b}, {(q0, (−, a, 2), q1), (q1, (2, b, −), q0)}, {q0}, (2))

C1 has two states and is output-enabled in its initial state. In particular, upon activa-
tion component C1 emits action a and moves, after a successful delivery, into state
q1. In this state, C1 waits for action b and upon receiving b returns back to its initial
state q0. In contrast, C2, while also defining two states, is input-enabled in its initial
state. That is, when activated, C2 waits for input action a. After receiving a, C2 moves
into state q1 and issues b. Once the output is completed, C2 moves back to its initial
state q0.

Two or more component interaction automata can be composed to form a new com-
ponent interaction automaton. The composition, however, can be parameterized over a
set of reachable external actions. These actions define the provided and required ports
of a component. A particular feature of reachable actions is that they can also occur
in component synchronizations. This allows for the specification of more collaborative
interaction patterns than possible in Interface Automata [11] or Team Automata [31].
Specifically, component architects can add additional behavior to composites in order to
reify their inter-component synchronizations. The corresponding rules for the selection
of the reachable external actions originate from a secondary architectural description
outside the Component Interaction Automata formalism [5]. In the following, we use R
to stand for the set of reachable required actions and P to denote the set of reachable
provided actions.

Definition 2. Let SP
R = {(Qi,Act i, δi, Ii, Si)}i∈I , where I ⊂ N is finite, R is the set of

reachable required actions, and P is the set of reachable provided actions, be a system
of pairwise disjoint component interaction automata. Then C = (

∏
i∈I Q, ∪i∈IAct ,

1 We use only numerical values as component identifiers (i.e., C1 in denoted as 1).

134 M. Lumpe, L. Grunske, and J.-G. Schneider

C123: {provides: a; requires: b} C124: {provides: ; requires: }

q00
(-,b,1)

q10

(1,a,-)

C121: {provides: a,b; requires: a,b}

q01
(-,b,1)

q11

(1,a,-)
(2,b,1)

(1,a,2)
(2,b,-) (-,a,2) (2,b,-) (-,a,2)

C122: {provides: b; requires: a}

q00 q10

q01 q11

(2,b,1)

(1,a,2)
(-,a,2) (2,b,-) (-,a,2)(2,b,-)

q00
(-,b,1)

q10

(1,a,-)

q01
(-,b,1)

q11

(1,a,-)
(2,b,1)

(1,a,2)

q00 q10

q01 q11

(2,b,1)

(1,a,2)

Fig. 1. Composition of C1 and C2 under varying architectural constraints

∆OldInternal ∪ δNewInternal ∪ δInput ∪ δOutput ,
∏

i∈I I, (Si)i∈I) is a component
interaction automaton restricted by R and P where:

∆OldInternal = {(q, (n1, a, n2), q′) | ∃i ∈ I : (qi, (n1, a, n2), q′i) ∈ δi ∧ ∀j ∈ I,
j �= i : qj = q′j},

δNewInternal = {(q, (n1, a, n2), q′) | ∃i1, i2 ∈ I, i1 �= i2 : (qi1 , (n1, a, −), q′i1) ∈ δi1 ∧
(qi2 , (−, a, n2), q′i2) ∈ δi2 ∧ ∀j ∈ I, i1 �= j �= i2 : qj = q′j},

δInput = {(q, (−, a, n), q′) | a ∈ R ∧ ∃i ∈ I : (qi, (−, a, n), q′i) ∈ δi ∧
∀j ∈ I, j �= i : qj = q′j},

δOutput = {(q, (n, a, −), q′) | a ∈ P ∧ ∃i ∈ I : (qi, (n, a, −), q′i) ∈ δi ∧
∀j ∈ I, j �= i : qj = q′j}.

Consider again the components C1 and C2. We write {C1, C2}P
R to denote their

composition with respect to the provided actions P and the required actions R. Four
possible outcomes2 of their composition are shown in Figure 1. Common to all is
that each composite interaction automaton contains two synchronizations: (1, a, 2) and
(2, b, 1). These internal synchronizations reflect the established handshake protocol be-
tween C1 and C2. The remaining transitions are a direct result of the specified archi-
tectural constraints. In C121, the actions of C1 and C2 are declared as reachable and,
therefore, occur in the final component interaction automata. In C122 and C123 ei-
ther the actions of C2 or the actions of C1 are declared reachable, hence the reduced
set of final transitions. Finally, C124 only contains internal synchronizations, as both
sets, P and R, are empty. Moreover, due to the architectural constraints, the states q01

and q10 become isolated in C124. However, the Component Interaction Automata for-
malism does not provide any provisions for an explicit removal of isolated states and
consequently such states remain in the corresponding composite automaton.

Unlike interface automata, where the set of actions of the composed components has
to be pairwise disjoint [11], the structured labels of component interaction automata
allow for the composition of components with common actions. Consider, for example,
the two structurally equivalent buffer components B1 and B2 as shown in Figure 2.
Both automata share the same set of common actions set and get. However, within
structured labels, we can differentiate between these common actions by inspecting
their corresponding originating and target component and, as a result, we can safely
compose B1 and B2 to form B12.

2 We omit the actual formal specification of the composition in favor of readability.

State Space Reduction Techniques for Component Interfaces 135

q0 q1

(-,set,2)

(2,get,-)

B2: {provides: get, requires: set}
q00 q11

(-,set,1)

(1,get,-)

q01

q10

(-,set,1)

(2,get,-)

(-,set,2)

(2,get,-)

B12: {provides: get, requires: set}

q0 q1

(-,set,1)

(1,get,-)

B1: {provides: get, requires: set}

(-,set,2)

(1,get,-)

Fig. 2. The composition of structurally equivalent buffers

Unfortunately, composite automata such as B12 do not offer any possibility for the
reduction of their complexity, as each state is unique and all transitions, even those
with the same action, are required. This is an unavoidable consequence of the nature of
component interaction automata composition. However, during the modeling process,
component architects may sometimes wish to abstract from the internal hierarchical
composition structure of a component in order to obtain a more coarse-grained spec-
ification. The result of such an abstraction is called primitive component and can be
constructed using the following definition:

Definition 3. Let C = (Q, Act, δ, I, S) be a component interaction automata and n be
a fresh component identifier. Then C′ = (Q, Act, δ′, I, (n)) is the primitive image of C
with δ′ = δ′internal ∪ δ′input ∪ δ′output where

δ′internal = {(q, (n, a, n), p) | (q, (n1, a, n2), p) ∈ δ},

δ′input = {(q, (−, a, n), p) | (q, (−, a, n), p) ∈ δ},

δ′output = {(q, (n, a, −), p) | (q, (n, a, −), p) ∈ δ}.

While abstraction necessarily results in a loss of information and may also produce a
non-deterministic automaton (e.g., the outgoing transitions labeled with action set of
state q0 in B12 become indistinguishable), it provides us with a first option for state
space reduction. Consider the composite component interaction automata B121 and
B1231 shown in Figure 3. Both automata, which are primitive, contain equivalent sub-
structures. In B121 the states q01 and q10 are equivalent, whereas in B1231 the states
q001, q010, q100 and q011, q101, q110 are pairwise equivalent. We can use partition refine-
ment and strong bisimulation to prune the state space of B121 and B1231 and obtain
the new minimal automata B122 and B1232. The new automata are behavioral equiv-
alent to their original automata. Moreover, both are now deterministic. Unfortunately,
partition refinement cannot guarantee to always yield a deterministic automaton when
applied to a non-deterministic one.

3 Minimal Component Interaction Automata Construction

We face a state explosion problem when composing two or more component interaction
automata. An early indication of how fast the number of states and transitions grow in
a composite automaton is already evident by revisiting the two component interaction

136 M. Lumpe, L. Grunske, and J.-G. Schneider

q00 q11

(-,set,12)

(12,get,-)

q01

q10

(-,set,12)

(12,get,-)

(-,set,12)

(12,get,-)

(-,set,12)

(12,get,-)

q000 q010

(-,set,123)

(123,get,-)

q001

q100

(-,set,123)

(123,get,-)

(-,set,123)

(123,get,-)
q101

q011

q110

(-,set,123)

(123,get,-)

(-,set,123)

(123,get,-)

(-,set,123)

(123,get,-)

(123,get,-)
(-,set,123)

(-,set,123)

(123,get,-)

(123,get,-)

(-,set,123)

q111
(-,set,123)

(-,set,123)

(-,set,123)

(123,get,-)

(123,get,-)

(123,get,-)

q0 q1

(-,set,123)

(123,get,-)
q2 q3

(-,set,123)

(123,get,-)

(-,set,123)

(123,get,-)
q0 q1

(-,set,12)

(12,get,-)
q2

(-,set,12)

(12,get,-)

B122 :{provides: get, requires: set}

B121: {provides: get, requires: set}

B1232 :{provides: get, requires: set}

B1231: {provides: get, requires: set}

Fig. 3. The primitive CIA B121, B1231 and their strongly bisimilar variants B122, B1232

automata B12 and B123 shown in Figure 3. In fact, the number of states increases with
2n, where n is the number of components being composed (cf. Table 1). However, the
growth rate of transitions exceeds by far the growth rate of states. This is typical for
the composition of structurally equivalent components. For this reason, we must pay
special attention to the order in which we perform the analysis when defining a tool-
based approach for state space reduction of composite component interaction automata.

Table 1. Growth Analysis of the Composition of Structurally Equivalent Buffers

of Buffers Composed 2 3 4 5 6 7 8 9 10 11 12

of States before Reduction 4 8 16 32 64 128 256 512 1024 2048 4096
of States after Reduction 3 4 5 6 7 8 9 10 11 12 13
of Transitions before Reduction 8 24 64 160 384 896 2048 4608 10240 22528 49152
of Transitions after Reduction 4 6 8 10 12 14 16 18 20 22 24

The example of the nth composition of structurally equivalent buffers is a very spe-
cial case that, nevertheless, vividly illustrates the possible gains when using some form
of state space reduction technique. In particular, when using strong bisimulation to re-
fine the state partitions of the composite buffers, the resulting composite automata grow
only linearly. That is, the number of states of the nth composite automaton is n + 1,
whereas the number of transitions is 2n. As a consequence, the composition of a re-
duced composite buffer with another simple buffer results only in a linear growth.

Strong bisimulation provides the means for the definition of a fine-grained equiva-
lence relation over component interaction automata. A specific feature of the Compo-
nent Interaction Automata formalism is, however, that any equivalence relations must
respect the hierarchical composition structure of the component in question. Recall the
definition of Σ, the alphabet of structured labels for a given automaton C. Σ is de-
fined over both the set of actions, Act, and the hierarchical composition structure, S.
As a consequence, two component interaction automata C and C’ can only be consid-
ered equivalent, if and only if they exhibit the same underlying composition structure.
In order words, when defining a minimal component interaction automaton, we can

State Space Reduction Techniques for Component Interfaces 137

reduce the original automaton’s state space complexity but have to retain its underlying
hierarchical make-up.

Definition 4. Let C = (Q, Act, δ, I, S) and C′ = (Q′, Act, δ′, I ′, S) be two compo-
nent interaction automata. A binary relation ∼⊆ Q × Q′ is a strong bisimulation if it
is symmetric and q ∼ p implies whenever

• (q, (n1, a, n2), r) ∈ δ, then ∃s ∈ Q′ such that (p, (n1, a, n2), s) ∈ δ′ and r ∼ s,
• (q, (−, a, n), r) ∈ δ, then ∃s ∈ Q′ such that (p, (−, a, n), s) ∈ δ′ and p ∼ s,
• (q, (n, a, −), r) ∈ δ, then ∃s ∈ Q′ such that (r, (n, a, −), s) ∈ δ′ and r ∼ s.

Two component interaction automata C and C′ are strongly bisimilar, written C ∼ C′,
if they are related by some strong bisimulation.

To illustrate the application of strong bisimulation for partition refinement, consider
again the two composite automata B121 and B1231. We can compute the partition
refinement over strong bisimulation and obtain the following new partitions:

B121 : {{q00}, {q01, q10}, {q11}}
B1231 : {{q000}, {q001, q010, q100}, {q011, q101, q110}, {q111}}

That is, from the perspective of an external observer, the states q01, q10 in B121 and
the states q001, q010, q100 and q011, q101, q110 in B1231 are indistinguishable. We can,
therefore, construct new automata in which theses states are merged into one:

B122 = ({q0, q1, q2}, {set , get}, δB122 , {q0}, ((1)(2)))
B1232 = ({q0, q1, q2, q3}, {set , get}, δB1232 , {q0}, ((1)(2)(3)))

where

δB122 = {(q0, (−, set , 12), q1), (q1, (−, set , 12), q2), (q2, (12, get , −), q1),
(q1, (12, get , −), q0)}

δB1232 = {(q0, (−, set , 123), q1), (q1, (−, set , 123), q2), (q2, (−, set , 123), q3),
(q3, (123, get, −), q2), (q2, (123, get, −), q1), (q1, (123, get , −), q0)}.

Strong bisimulation does not distinguish between internal synchronizations and
reachable external actions. This is the discriminating power of weak bisimulation, which
allows for the formulation of an observable equivalence relation between component
interaction automata. For example, the composite automata C121, C122, C123, and
C124, as shown in Figure 1, can be simplified by merging the states q00 and q11. In
each instance, these states are indistinguishable under weak bisimulation and partition
refinement collapses them to one state.

Weak bisimulation provides an abstraction over internal inter-component synchro-
nizations. A crucial ingredient in the definition of weak bisimulation is the transitive
closure of inter-component synchronizations in a given component interaction automa-
ton C. The elements of the transitive closure are synchronization paths.

138 M. Lumpe, L. Grunske, and J.-G. Schneider

Definition 5. Let C = (Q, Act, δ, I, S) be a component interaction automaton. A bi-
nary relation ⇒⊆ Q×Q over C implies whenever (q, q′) ∈⇒, then there exists a finite
path from q to q′ of k ≥ 1 synchronization transitions such that

{(q, (n1, a1, n
′
1)r1), (r1, (n2, a2, n

′
2)r2), ..., (rk−1, (nk, ak, n′

k), q′)}.

Furthermore, we write
∗⇒ to denote the reflexive transitive closure of ⇒.

Definition 6. Let C = (Q, Act, δ, I, S) and C′ = (Q′, Act, δ′, I ′, S) be two compo-
nent interaction automata. A binary relation ≈⊆ Q × Q′ is a weak bisimulation if it is
symmetric and q ≈ p implies whenever

• (q, (n1, a, n2), r) ∈ δ, then ∃u, u′, s ∈ Q′ and (u, (n1, a, n2), u′) ∈ δ′ such that
p

∗⇒ u, u′ ∗⇒ s, and r ≈ s,
• (q, (−, a, n), r) ∈ δ, then ∃u, u′, s ∈ Q′ and (u, (−, a, n), u′) ∈ δ′ such that

p
∗⇒ u, u′ ∗⇒ s, and r ≈ s,

• (q, (n, a, −), r) ∈ δ, then ∃u, u′, s ∈ Q′ and (u, (n, a, −), u′) ∈ δ′ such that
p

∗⇒ u, u′ ∗⇒ s, and r ≈ s.

Two component interaction automata C and C′ are weakly bisimilar, written C ≈ C′,
if they are related by some weak bisimulation.

We can use weak bisimulation to simplify the composite component interaction au-
tomata C121, C122, C123, and C124. Partition refinement yields

C121−4 : {{q00, q11}, {q01}, {q10}}

That is, the states q00 and q11 are weakly bisimilar and appear indistinguishable to an
external observer. We use this information to construct new automata (we only show
C123):

C123 = ({q0, q1, q2, q3}, {a, b}, δC123 , {q0}, ((1)(2)))

where

δC122 = {(q0, (1, a, −), q1), (q0, (1, a, 2), q3), (q1, (−, b, 1), q0),
(q3, (2, b, 1), q0), (q2, (1, a, −), q3), (q3, (−, b, 1), q2)}.

We have implemented the bisimulation-based partition refinement for component in-
teraction automata in PLT-Scheme [28]. Our prototype consists of the two parts compo-
sition and minimization. Both processes can be configured over a variety of parameters
that allow us, for example, to perform additional sanity checks to verify the soundness
of specifications or to provide more fine-grained details about both the composition and
the minimization process.

Internally, our implementation maintains dictionaries that provide maps, either from
states to transitions or actions to transitions, in order to speed up the lookup process
for transitions. As mentioned before, the number of transitions grows much faster than
the number of states when composing component interaction automata. By using the
dictionaries, which are created only once per run, we can process a greater class of

State Space Reduction Techniques for Component Interfaces 139

specifications, even though we still face exponential time complexity in the computation
of component interaction automata composition.

At the heart of the minimization process is a partition refinement algorithm [17, 15,
25] that takes a splitter function as argument. At present, we have defined two splitter
functions: one for strong bisimulation relation and one for weak bisimulation. The par-
tition refinement tries to merge equivalent states. If this fails (e.g., the given automata
cannot be minimized), the minimization process just returns the result of the compo-
sition. Otherwise, we construct a new, reduced automaton in which all occurrences of
duplicate transitions are deleted.

Both, composition and minimization are timed to allow for a performance analysis.
We record the actual processing time and the time spent in the garbage collector. We
are primarily interested in the actual computation time, but the frequency of garbage
collector invocations provides us with valuable information that assists us not only in
asserting certain quantitative properties, but also in improving the quality of our parti-
tion refinement algorithm in the future.

4 Validation and Results

The Component Interaction Automata formalism provides a powerful means to capture
and analyze the interaction behavior and hierarchical structure of component-based sys-
tems. Unfortunately, the inherent combinatorial complexity in terms of space and time
makes it difficult to apply this formalism in real-world scenarios. Hence, a suitable
state space reduction technique is needed to enable the effective composition of a large
number of components. To further illustrate this fact, consider the scenario where a
number of structurally equivalent buffers (cf. Section 2) are composed, with and with-
out state space reduction of the resulting intermediate component interaction automata.
As shown in Figure 4, in both cases composition always exhibits the expected expo-
nential time complexity. However, the rate of growth is significantly smaller if inter-
mediate component interaction automata are reduced. The time it takes to compose 25
structurally equivalent buffers, whose composites are simultaneously optimized through
partition refinement, is still below the time required to compose 10 buffers without state
space reduction.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

#Compositions

C
u

m
u

la
ti

v
e
 T

im
e
 (

s
)

with statespace reduction

without statespace reduction

Fig. 4. Timed buffer composition

Nevertheless, the application of the
proposed partition refinement technique
for Component Interaction Automata
raises two major questions: (i) when do
we need to apply state space reduction
and (ii) how efficient is state space re-
duction via bisimulation? In order to an-
swer these questions we ran a series of
experiments and applied our approach
to both, specially-designed as well as
randomly generated component interac-
tion automata specifications. We configured the automata generation process in a
way so that the obtained component interaction automata specifications resulted in

140 M. Lumpe, L. Grunske, and J.-G. Schneider

deterministic and coherent systems. In particular, all generated systems contained a
variable number of states, a subset of predefined action labels, and used these action
labels either in input or output transitions to allow for internal synchronizations be-
tween the components subject to composition. As testbed for our experiments we used
a Windows-based PC equipped with a 2.2 GHz dual-core processor and 2GB of main
memory.

When should we apply state space reduction via bisimulation? In order answer this
question, we investigated the effectiveness of state space reduction in varying composi-
tion scenarios using both, strong and weak bisimulation. As shown in Figure 4, there is a
clear benefit in applying state space reduction to the composition of structurally equiv-
alent components. Furthermore, due to the absence of any internal synchronizations,
strong and weak bisimulation yield the same results.

But would we obtain the same benefits if we were to apply state space reduction
to the composition of structurally different components? For this purpose, we gener-
ated 25 component interaction automata, each having 4 states and in-between 9 and 12
transitions. Based on these 25 specifications, we then constructed composites of up to
10 components that were again computed with and without state space reduction. The
best and worst cases composition scenarios are illustrated in Table 2. For each com-
position we list the number of transitions as well as the corresponding composition
time. For state space reduction with weak bisimulation we also record the reduction
time.

Table 2. Best and worst case scenarios for composition under weak bisimulation

without bisimulation with weak bisimulation
Series # transitions comp. time # transitions comp. time reduction time

A1 169 0.016s 169 0.016s 0.032s
A2 1,152 0.078s 211 0.016s 0.016s
A3 6,496 0.978s 120 0.016s 0.001sBest Case
A4 34,368 21.46s 131 0.015s 0.016s
A5 179,456 564.69s 131 0.015s 0.016s
A6 887,808 > 6h 146 0.016s 0.001s
B1 156 0.015s 156 0.015s 4.10s
B2 1,000 0.057s 1,000 0.047s 3,084.76s
B3 6,208 1s 5,914 0.890s 46.01sWorst Case
B4 34,048 21.24s 130 0.016s 0.001s
B5 175,104 534.65s 132 0.016s 0.001s
B6 863,232 > 6h 137 0.016s 0.001s

Our experiments revealed that the composition of 6 components without state space
reduction took, on average, more than 6 hours to compute. Compositions of a higher de-
gree required a computation time of more than 24 hours. On the other hand, using state
space reduction via weak bisimulation, we were able to determine the respective com-
positions in substantially less time for all test scenarios. The maximum time required to
compute the composition of 10 components was approx. 51 minutes.

State Space Reduction Techniques for Component Interfaces 141

Model Checking of Control-User

Component-Based Parametrised Systems

Pavĺına Vařeková� and Ivana Černá��

Faculty of Informatics, Masaryk University
Czech Republic

Abstract. Many real component-based systems, so called Control-User
systems, are composed of a stable part (control component) and a num-
ber of dynamic components of the same type (user components). Models
of these systems are parametrised by the number of user components and
thus potentially infinite. Model checking techniques can be used to verify
only specific instances of the systems. This paper presents an algorithmic
technique for verification of safety interaction properties of Control-User
systems. The core of our verification method is a computation of a cutoff.
If the system is proved to be correct for every number of user compo-
nents lower than the cutoff then it is correct for any number of users. We
present an on-the-fly model checking algorithm which integrates compu-
tation of a cutoff with the verification itself. Symmetry reduction can be
applied during the verification to tackle the state explosion of the model.
Applying the algorithm we verify models of several previously published
component-based systems.

1 Introduction

Model-checking [11] is a formal verification technique which has received a wide
attention in industry as it can be used to detect design errors early in the design
life-cycle. Model checking is based on state space generation and as such can
be directly applied to finite state systems. In case of infinite state systems more
involved techniques have to be employed.

Component-based software development is an alternative to existing software
development techniques. Component-based development proposes to assemble
software systems from reusable components, which helps to significantly reduce
development time and costs. On the other hand, interaction among components
opens new issues relevant to the correctness of interaction.

An extensive study of component-based systems reveals that many systems
are composed of a beforehand unknown number of components. A typical situa-
tion is the composition of one fixed component (control component) with an un-
known number of identical components (user components). These systems are
usually called Control-User systems. Formal verification of Control-User systems

� The author has been supported by the grant No. 1ET400300504.
�� The author has been supported by the grant No. 1ET408050503.

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 146–162, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Checking of Control-User Component-Based Parametrised Systems 147

includes verification of every possible composition of the control component with
any number of user components. Even if the composition of the control compo-
nent with a specific number of user components is finite, the verification task
itself is infinite.

It has been observed [14] that reachability properties are the most common
properties arising in verification. Reachability is closely related to safety, ex-
pressing that no unsafe state is reachable in a system. This remains true also
for Control-User systems.

In this paper we aim to use existing approaches to build-up two reachability
verification algorithms. Our verification method is based on cutoffs [15, 19]. If
a system is proved to be correct for every number of user components lower
than the cutoff then it is correct for any number of users. First of the two intro-
duced algorithms is suitable for efficient verification of a finite set of reachability
properties. The algorithm iteratively computes the minimal cutoff and during
the computation it finds a finite set of representatives of all reachable states.
Representatives bear all information needed for deciding reachability and thus
to verify given properties of the whole Control-User system it is enough to check
these representatives. Advantages of the verification algorithm are that it works
with the minimal cutoff and allows to verify many properties at the same time.
Evaluation of the algorithm reveals that the cutoff is typically rather small and
thus the verification itself is efficient. The experimental studies were conducted
on several previously published case studies as well as on a tailored Control-User
system.

The second (bounding) algorithm is proposed for computing the highest pos-
sible number of users which are simultaneously in the same state (part of a
computation). The bounding algorithm provides answers to questions like What
is the maximal number of users simultaneously requiring the same services?
The number of users is called the bound. The algorithm has two main parts.
In the first part the algorithm finds a candidate for the bound and proves that
the bound is less or equal to the candidate. In the second part it computes the
exact value of the bound. Experiments demonstrate that typically in the first
part the algorithm efficiently finds a candidate which is equal to the bound. In
both algorithms the effectiveness can be supported by symmetry reduction over
the reachable state space.

The paper is structured as follows. Section 2 presents a model of Control-
User system while Section 3 introduces several types of reachability properties.
Section 4 highlights backward reachability for C-U systems. The algorithm for
verification of reachability properties is described in Section 5 and its evaluation
is in Section 6. The bounding algorithm and its evaluation can be found in
Section 7. Related work is summarised in Section 8.

2 The Control-User System Model

We consider a class of parametrised systems where a system consists of a unique
component - in the literature called the control component [21, 17] and an

148 P. Vařeková and I. Černá

arbitrary number of components with an identical model - user components.
An example of such a system with n users is in Figure 1 a). Components are
executing concurrently with the interleaving semantics, capturing that a compo-
nent can communicate with another component using the pairwise rendezvous
synchronisation (a component can send a message iff the receiver is enabled).

As the formal model of a Control-User system we use a labelled Kripke
structure (LKS) [9]. An LKS is a structure underlying many other formalisms
capturing interactions between components like I/O automata [25], Component-
Interaction Automata [35], or Extended Behavior Protocols [24].

Definition 1 (LKS). A labelled Kripke structure (or LKS for short) is a tuple
(Q, I, Ap, L, Σ, δ) where Q is a set of states, I ⊆ Q is a set of initial states, Ap
is a set of atomic propositions, L : Q → 2Ap is a state-labelling function, Σ is
a finite set of actions and δ ⊆ Q × Σ × Q is a transition relation.

We suppose that Σ = Σint ∪ Σout ∪ Σinp, where Σout = Σ′
out × {!}, Σinp =

Σ′
inp × {?}. The alphabets Σout resp. Σinp represent output resp. input actions

which can be used for pairwise rendezvous communication between LKSs. The
alphabet Σint represents internal actions. We write q → q′ if there is a label
l ∈ Σ such that (q, l, q′) ∈ δ, →∗ is the transitive and reflexive closure of →.
A state q is reachable iff in →∗ q for some in ∈ I. Let q = (q0, · · · , qn) be an
n+1-tuple. Then pri(q), i = 0, . . . , n, denotes its i+1-th projection, pri(q) = qi.

In this paper we restrict ourselves to systems in which the models of the
control and user component are finite and have one initial state. Thus LKSs
C = (QC , {inC}, ApC , LC , ΣC , δC), U = (QU , {inU}, ApU , LU , ΣU , δU) form a
Control-User model (or C-U model for short) iff QC , QU , ΣC , and ΣU are finite.

Definition 2 (Composition). Let n ∈ N0 and for each i = 0, . . . , n let Ki =
(Qi, Ii, Api, Li, Σi, δi) be an LKS. Then K0‖ . . . ‖Kn denotes the asynchronous
composition of K0, . . . , Kn and is defined as the LKS

(Q0 × · · · × Qn, I0 × · · · × In, (Ap0×{0}) ∪ · · · ∪ (Apn×{n}), L, Σ, δ),
where the state-labelling function L assigns to each state (q0, . . . , qn) the set⋃n

i=0 Li(qi) × {i}. The alphabet Σ =
⋃n

i=0 Σi,int ∪ {l | l ∈
⋃n

i=0 Σ′
i,inp ∧ l ∈⋃n

i=0 Σ′
i,out)}. The transition relation δ is defined by the prescription (q, l, q′) ∈ δ

iff any of the next possibilities holds
– ∃0 ≤ i ≤ n : ∀0 ≤ j ≤ n, j �= i : prj(q) = prj(q′), and (pri(q), l, pri(q′)) ∈ δi,
– ∃0 ≤ i, i′ ≤ n, i �= i′ : ∀0 ≤ j ≤ n, i �= j �= i′ : prj(q) = prj(q′),

(pri(q), (l, ?), pri(q′)) ∈ δi, and (pri′ (q), (l, !), pri′(q′)) ∈ δi′ .

A C-U system with n clients is modelled as the composition of n+1 LKSs where
the first LKS stands for the control component while the others are identical
and represent the users. A Control-User system with arbitrary many clients is
modelled as the union of LKSs modelling systems with n clients, for all n ∈ N.

Definition 3 (C‖Un, C‖U∞). Let C, U be a C-U model, n ∈ N. Then C‖Un

denotes the composition C‖U‖ · · · ‖U of C and n copies of U . C‖U∞ is an
infinite state LKS defined C‖U∞ =
(

⋃
n∈N

QC‖Un ,
⋃

n∈N

{inC‖Un},
⋃

n∈N

ApC‖Un ,
⋃

n∈N

LC‖Un ,
⋃

n∈N

ΣC‖Un ,
⋃

n∈N

δC‖Un).

Model Checking of Control-User Component-Based Parametrised Systems 149

The states of C‖Un or C‖U∞ are called global states while the states of C or U
are called local states .

Example 1 (Coordinator System)
As a running example we present a part of the Common Component Modelling
Example (CoCoME) system [35]. Coordinator is a part of the system that is
used for managing express checkouts. For this purpose, Coordinator keeps a list
of sales that were done within the last 60 minutes and decides whether an ex-
press cash desk is needed. Coordinator consists of two types of sub-components:
CoordinatorEventHandler (control component) and Sale (user) see Figure 1 a).
Anytime a new sale arrives, CoordinatorEventHandler creates a new instance of
the Sale component and displays it in the list. Whenever a sale represented by
an instance expires, CoordinatorEventHandler removes the instance from the list
which causes its destruction.

Fig. 1. a) CoordinatorEventHandler with n Sales, b) Component Token

We use the models of CoordinatorEventHandler and Sale as presented in [34].
In the models we abbreviate the name of the method getNumberofItems() to
gNI, getPaymentMode() to gPM, getTimeofSale() to gTS, updateStatistics()
to uS, and isExpressModeNeeded() to iEMN.

The control component Cex is depicted in Fig. 2. Its set of atomic propositions
corresponds to the set of labels, ApCex = ΣCex . For a state q ∈ QCex the set
LCex (q) contains all labels which are enabled in the state. For example LCex (A) =
{onEvent} and LCex (I) = {(gMP, !), (SaleD, !)}.

The user component Uex is depicted in Fig. 3. Its atomic propositions are
ApUex = ΣUex ∪ {activated , served}. For q ∈ {1, . . . , 7} the set LUex (q) con-

C�������� (Sale,!) �� D�������� (Sale′,?) �� E�������� uS
′

�� F��������

iEMN

��

H�������� (gTS′,?) �� I��������

(gPM,!)

��
(SaleD,!)

���������������

B��������

uS

��

P��������
onEvent

′

���������������������� G��������

(gTS,!)
���������������iEMN

′
��

iEMN
′

��

J��������(SaleD′,?)�� K��������

(gPM′,?)

��
�� A��������

onEvent

��

O��������
publish

′

��

N��������
publish

�� M��������
(gNI′,?)

���������������
L��������

(gNI,!)
��

Fig. 2. LKS Cex modelling CoordinatorEventHandler

150 P. Vařeková and I. Černá

2	
�����
(Sale′ ,!)

		������������ 5	
�����
(gNI′ ,!)

�����������������

�� 1	
�����

(Sale,?)

��������������
3	
����� (gPM,?)��

(gNI,?)

�������������������

(gTS,?)

�����������������

(SaleD,?)�������������� 6	
�����
(gPM,!)

��

4	
�����(SaleD′ ,!)

��������������
7	
�����

(gTS′ ,!)

�������������������

Fig. 3. LKS Uex modelling Sale

tains labels which are enabled in the state, for q ∈ {3, 5, 6, 7} it moreover con-
tains the atomic predicate activated , and for q ∈ {2, 4, 5, 6, 7} the set LUex (q)
in addition contains served . For example LUex (2) = {(Sale′, !), served} and
LUex (7) = {(gTS′, !), activated , served}.

Note 1. Note that systems with more than one type of users can be modelled as
C-U models as well. More precisely, the C-U model can represent an arbitrary
system with a control part and a finite number of distinct types of users. The
model of a user is an LKS which in the initial state non-deterministically chooses
one of the given behaviours and after that it behaves like the choosen type of
user. For example in the model of Token and its support (part of the prototype
implementation of a payment system for public Internet on airports [29]) a Token
(client) first chooses whether it will behave as a client with prepaid or free access
to Internet (for model of the component see Figure 1 b)).

3 l-Symmetric Reachability Properties

We concentrate on verification of reachability properties of C-U models. Prop-
erties of interesting states are expressed as formulae of a propositional logic.
Formulae are defined over a set of atomic propositions with the help of standard
Boolean operators ∧, ∨, ¬. A propositional formula is interpreted over a state of
an LKS. A formula is true in a state iff after evaluating all atomic proposition
assigned to the state as true and all others as false the result formula is true. In
the following text we use a standard shortcut

∨
i∈∅ ψi ≡ false.

A reachability property (or RP for short) is a property capturing that a state
satisfying a given propositional formula is reachable in the model C‖Un for
some n. The general reachability problem for C-U models is formulated as:

Instance (reachability):
− C-U model C, U
− sequence of formulae {ϕn}n∈N, where ϕn is a formula of the propositional
logic over atomic propositions LC×{0} ∪ LU ×{1} ∪ · · · ∪ LU×{n}.
Problem: Is there n ∈ N such that a state satisfying ϕn is reachable in C‖Un?

In the paper we are interested only in special types of reachability properties
which make no distinction among users – so called 0-symmetric RP, 1-symmetric
RP, etc. For a fixed l ∈ N0 and any n ∈ N, an l-symmetric RP guarantees that

Model Checking of Control-User Component-Based Parametrised Systems 151

if a state q ∈ QC‖Un satisfies ϕn, then there are l users which together with
the control component ensure that the state q satisfies ϕn. An instance of the
l-symmetric reachability problem is:
Instance (l-symmetric reachability):
− C-U model C, U , number l ∈ N0

− sequence of l-symmetric formulae {ϕn}n∈N, where for each n ∈ N:

ϕn =
∨

f :{1,...,l}→{1,...,n}
ψ(1,f(1)),...,(l,f(l)).

Here ψ is a formula of the propositional logic over atomic propositions defined
LC×{0}∪LU ×{1}∪· · ·∪LU ×{l}, f is an injective function, and ψ(1,f(1)),...,(l,f(l))

is the formula which results from ψ if we substitute each atomic proposition (a, i)
by (a, f (i)) leaving (a, 0) untouched. We say that ψ is the propositional formula
underlying {ϕn}n∈N.

Example 2. l-symmetric RPs of the C-U model Cex , Uex described in Example 1
are e.g. properties describing reachability of a state satisfying:
1. Sale can send an event but CoordinatorEventHandler is not ready to accept

it. It is a 1-symmetric RP described by the sequence {ϕn}n∈N with the
underlying formula ψ =

∨
act∈{Sale′,SaleD′,gNI′,gMP′,gTS′}

((act , !), 1)∧¬((act , ?), 0).

2. Two Sales are able to send a response Sale’ to CoordinatorEventHandler
at the same time. It is a 2-symmetric RP with the underlying formula ψ =
((Sale′, ?), 0) ∧ ((Sale′, !), 1) ∧ ((Sale′, !), 2).

3. At least m Sales can be activated simultaneously. It is an m-symmetric RP
with the underlying formula ψ = (activated , 1) ∧ · · · ∧ (activated , m).

4. CoordinatorEventHandler can service (at least) m activated Sales simultane-
ously. It is an m-symmetric RP with the underlying formula ψ = (served , 1)∧
(activated , 1) ∧ · · · ∧ (served , m) ∧ (activated , m).

4 Backward Reachability

Backward reachability is one of the methods used in verification of parametrised
systems for checking reachability of critical states [4,22,23]. For a given LKS S and
asetof its statesQ thequestion iswhetherastate fromQ is reachable in thestructure
S. For iteratively increasing values j, one generates the set of states from which Q
can be reached by a sequence of transitions of the length at most j. The backward
reachability procedure terminates in the first iteration where the generated set of
states doesnot increase comparing to the set generated in theprevious iterationor if
the last generated set of states contains an initial state. For transition systems with
an infinitenumberof states terminationof backward reachability isnot guaranteed.
However, the termination can be guaranteed for special sets Q.

Lemma 1. Let C, U be a C-U model, A ⊆ QC. Then the backward reachability
in C‖U∞ starting with Q =

⋃
i∈N

A × QU × · · · × QU︸ ︷︷ ︸
i

terminates.

Proof: For the proof see [31].

152 P. Vařeková and I. Černá

5 Verification Algorithm

In this Section we present an algorithm which verifies a given l-symmetric RP.
A näıve approach is to check all reachable states of the C-U model (more pre-
cisely, all reachable states of the LKSs C‖U1, C‖U2, . . .) for validity of the given
property. As the number of the reachable states is infinite, we first define a finite
number of their representatives.

Definition 4 (l+1-tuple). Let C, U be a C-U model, q ∈ QC‖U∞ and l ∈ N0.
Then an l + 1-tuple (qC , q1, . . . , ql) ∈ QC‖Ul is assigned to the state q iff the
local state of C in q is qC and there are l different users in q with local states
q1, . . . , ql.

In a similar way we can assign an l + 1-tuple to an (l + i) + 1-tuple t′ (t′ is a
state of C‖U l+i).

l + 1-tuples serve as an abstraction of the C-U model states where only the
local states of l chosen users in an arbitrary order are maintained. Observe that
for any fixed sequence {ϕn}n∈N describing a l-symmetric RP a state q of C‖U i

satisfies ϕi if and only if there is an l + 1-tuple t assigned to q such that t
(which is a state of C‖U l) satisfies ψ (ψ is the propositional formula underlying
{ϕn}n∈N). Hence if we find all l + 1-tuples assigned to the reachable states of
C‖U∞ (so called reachable l + 1-tuples of C‖U∞) we can easily verify validity
of the given l-symmetric RP1. Thus the core of our verification algorithm is a
procedure for finding all reachable l + 1-tuples of C‖U∞. As for each l ∈ N0 the
number of l + 1-tuples is finite there must exist a number k such that the set
of all reachable l + 1-tuples of {C‖Un}n∈{l,...,k} is exactly the set of reachable
l + 1-tuples of C‖U∞. Let us call the number k cutoff.

The smallest number which can be a cutoff is the number L = max(1, l).
The algorithm which we propose searches for the minimal cutoff and returns all
reachable l + 1-tuples of C‖U∞. It iteratively traverses all reachable states of
C‖UL, C‖UL+1, . . . In the i-th iteration all l + 1-tuples assigned to reachable
states of C‖UL+i are computed and compared to those computed in the previous
iteration. More precisely, as for any j the set of reachable l+1-tuples of C‖U j is
a subset of the set of reachable l+1-tuples of C‖U j+1, it is sufficient to compare
their cardinality. Once there is no difference between the two sets, the number
L + i − 1 is the candidate for a cutoff. It can happen that there is an l + 1-tuple
assigned to a state reachable in C‖UL+j−1 for some j > i which is not covered
yet. Therefore we need to verify whether L + i − 1 is a cutoff.

To confirm that L + i − 1 is a cutoff we run backward reachability in C‖U∞

from the set of its states to which a not yet covered l + 1-tuple is assigned. If
backward reachability finds that some of these states is reachable in C‖U∞, then
the state must be reachable in C‖Uk for some k > L + i − 1 and the state is
not reachable in C‖Uk for k ≤ L + i − 1. Consequently L + i − 1 is not a cutoff
and we start the whole procedure with L+ i. Otherwise L+ i− 1 is the minimal
cutoff; the algorithm returns all reachable l + 1-tuples of C‖UL+i−1.
1 In fact, having all reachable l + 1-tuples of C‖U∞ we can verify any l′-symmetric

RP for l′ ≤ l.

Model Checking of Control-User Component-Based Parametrised Systems 153

1 proc Reachable l + 1-tuples(C, U, l)
2 All tuples := all l + 1-tuples
3 Cutoff := max(l, 1); Valid cutoff := false
4 while Valid cutoff = false do
5 Find Cutoff(Cutoff)
6 Backward Reachability(All tuples \ Reached tuples)
7 if Valid cutoff = false then Cutoff := Cutoff + 1 fi
8 od
9 Cutoff = Cutoff − 1;

10 return Reached tuples

1 proc Find Cutoff(Cutoff)
2 k := Cutoff ; Reached tuples := ∅
3 repeat Old tuples := Reached tuples
4 Reached tuples := all l + 1-tuples assigned to reachable states in C‖Uk

5 if |Old tuples| = |Reached tuples| then k := k + 1 fi
6 until |Old tuples| = |Reached tuples|
7 Cutoff := k − 1

1 proc Backward Reachability(T)
2 Q := {q∈ QC‖U∞ | an l + 1-tuple assigned to q belongs to T}
3 Q′ := ∅; Reach := false
4 while (Q = Q′) ∧ (Reach = false) do
5 Q := Q ∪ Q′

6 Q′ := predecessors of Q in C‖U∞

7 if Q′ ∩ inC‖U∞ = ∅ then Reach := true fi
8 od
9 if ¬Reach then Valid cutoff := true fi

Fig. 4. Algorithm for computing all reachable l + 1-tuples

The pseudo-code of the algorithm is given in Fig. 4. The procedure Find

Cutoff returns the first number k greater or equal to Cutoff such that the sets
of reachable l+1-tuples of the LKSs C‖Uk and C‖Uk+1 are the same. The set
of all reachable l + 1-tuples of C‖U j is monotonically increasing with increasing
parameter j and at the same time the set of all possible l + 1-tuples is finite.
These two facts ensure that the procedure terminates.

The procedure Backward Reachability(T) first computes the set contain-
ing all states of C‖U∞ to which an l + 1-tuple from T is assigned. By iterative
searching of predecessors it decides reachability of states from T in C‖U∞.

Lemma 2. The procedure Backward Reachability always terminates.

Lemma 3. Let for a C-U model C, U and l ∈ N0 the following condition is true:
An unreachable l + 1-tuple of C‖U∞ is assigned to every unreachable
(l+1)+1-tuple of C‖U∞. (*)

Then Backward Reachability(T), where T is the set of all unreachable l+1-
tuples of C‖U∞, terminates after the first iteration.

Proof: For the proof of Lemma 2 and Lemma 3 see [31].

Example 3. Let us inspect the computation of Reachable l + 1-tuples(Cex ,
Uex , 1); where Cex ,Uex is the C-U model from Example 1.

154 P. Vařeková and I. Černá

In the first iteration of when Reached tuplesk=0 = ∅ while-cycle Find Cut-

off(1) is called and it iteratively computes the set Reached tuples:
Reached tuplesk=1 = {(x, 1), (x, 3) | x ∈ {A, B, C, G, N, O, P}} ∪

{(x, 3) | x ∈ {E, F, I, L}} ∪
{(D, 2), (H, 7), (J, 4), (K, 6), (M, 5)},

Reached tuplesk=2 = {(x, 1), (x, 3) | x ∈ {A, . . . , P}} ∪
{(D, 2), (H, 7), (J, 4), (K, 6), (M, 5)},

Reached tuplesk=3 = Reached tuplesk=2.
After that Backward Reachability(All tuples \ Reached tuplesk=3) is called.
Iteration 0: Q contains all states of Cex‖U∞

ex to which a tuple from
T={(x,2), (x,4), (x,5), (x,6), (x,7) |x∈{A, . . . , P}}\{(D,2), (H,7), (J,4),

(K,6), (M,5)} is assigned,
Iteration 1: Q contains all states of Cex‖U∞

ex to which a tuple from
T ∪ {(D,2,2), (H,7,7), (J,4,4), (K,6,6), (M,5,5)} is assigned,

Iteration 2: Q is the same as for the iteration 2.
Thus after 2 iterations Backward Reachability terminates and returns that
the found cutoff 2 is valid, consequently Reachable l + 1-tuples returns the
set Reached tuplesk=2.

We should stress that even if the algorithm is presented as a procedure for finding
all reachable l+1-tuples of C‖U∞ it is in fact a verification algorithm. As pointed
out at the beginning of this Section, keeping the set of all reachable l + 1-tuples
of C‖U∞ one can decide validity of any l′-symmetric RP for an arbitrary l′ ≤ l.

Note 2 (Optimisation). There are several possible optimisations of the algo-
rithm. We list the two most important.

– Symmetry reduction [10] in the algorithm decreases the number of both
reachable states and tuples exponentially.

– On-the-fly approach to verification: as soon as an l + 1-tuple is reached for
the first time it is checked for validity of given reachability properties.

Note 3 (Verification). There is another important way how to use the presented
algorithm, namely verification of an updated (modified) system. When updating
a system we usually want to guarantee that the new system satisfies all important
properties which the original system satisfies. The problem is that it is hard to
enumerate all (important) properties of the original system. In such a case it
is profitable to use the given algorithm and compute differences between the
reachable l + 1-tuples in the original and the updated system.

6 Evaluation

In order to test efficiency of the proposed algorithm we use several models of
previously published real component-based C-U systems (RI - RIV), simplified

Model Checking of Control-User Component-Based Parametrised Systems 155

real systems (SI , SII), and simple C-U systems proposed for evaluation of our
algorithm (EI , EII). The inspected C-U models are: RI - model of Coordinator
(Example 1), RII - model of Token and its support (Note 1), RIII - model of Cash
desk and its support (Fractal model in [7]), RIV - model of Subject - Observer
system with n subjects (published in [33], model of the system [3]). SI and
SII are models of Comanche Web Server with a Sequential resp. Multi Thread
Scheduler and their clients, published in [1]. EI is a system where the controller
provides 5 services in parallel and users can use the services sequentially. EII is
a system where the controller provides 2 services and in all states it can receive
or return any request, users use the services sequentially. Detailed description of
all models and their characteristics are on the web page [2].

Table on Fig. 5 displays for a given C-U model and a parameter l ∈ {1, 2, 3}
the number of states of C‖Uk for maximal k for which the state space is gener-
ated in FindCutoff (States), the minimal cutoff (Cutoff), and the number of
iterations of backward reachability (Iterations). Based on experimental evalua-
tion we conclude:

1. In all cases the while-cycle in Reachable l+1 -tuples was performed only
once - the Cutoff computed in FindCutoff was the valid minimal cutoff.

2. For each of the models and every l ≥ 2 the condition (*) holds. It means that
for each of the models and every l ≥ 2 to arbitrary unreachable l + 1-tuple
of C‖U∞ is assigned an unreachable 2 + 1-tuple of C‖U∞. Thus for each
model and an arbitrary l ≤ 2 Backward Reachability terminates after
the first iteration.

3. The minimal cutoff for l + 1-tuples is typically the minimal cutoff for 0 + 1-
tuples plus l.

model l States Cutoff Iterations
1 144 2 2

RI 2 332 3 1
3 748 4 1

1 145 125 4 2
RII 2 1 091 875 5 1

3 7 821 875 6 1

1 297 108 4 2
RIII 2 1 706 103 5 1

3 8 957 952 6 1

1 48 320n 4 2
RIV 2 266 240n 5 1

3 1 425 920n 6 1

model l States Cutoff Iterations
1 1 126 2 2

SI 2 4 910 3 1
3 20 830 4 1

1 7 514 2 2
SII 2 142 476 3 1

3 2 672 672 4 1

1 4 051 6 2
EI 2 9 276 7 1

3 19 080 8 1

1 69 3 1
EI 2 245 4 1

3 312 5 1

Fig. 5. Evaluation of the verification algorithm

156 P. Vařeková and I. Černá

7 Bounding Algorithm

When analysing C-U systems we are often interested in the highest possible
number of users which are simultaneously in the same state (situation, part
of a computation). For instance, we can ask how many users have started a
communication with the control component and have not finished it yet, or
how many users are demanding the same service. This can be described by a
sequence of reachability properties {Pm}m∈N such that for each m the property
Pm = {ϕm

n }n∈N is an m-symmetric RP expressing that It is possible to reach a
global state in which at least m users are in the same specified setting.

Example 4. Motivations can be found e.g. in Example 2, properties 3 and 4:
What is the maximal number of Sales which can be activated simultaneously?
or What is the maximal number of activated Sales which can CoordinatorEven-
tHandler service simultaneously?

Lemma 4. Let {Pm}m∈N be a sequence where every Pm is an m-symmetric RP
with the underlying formula ψm. Let the implication ψj ⇒ ψi be true for every
j > i. Then if C‖U∞ satisfies Pj then it also satisfies Pi for each i ≤ j. (**)

A sequence of RPs satisfying the condition of Lemma 4 is denoted integrated
sequence of RPs. Note that an equivalent to the condition (**) is: if C‖U∞ does
not satisfy Pi then it does not satisfy Pj for any i ≤ j.

For a given integrated sequence of RPs we propose an algorithm for computing
a bound which is the number b such that Pb is satisfied and Pb+1 is not satisfied
(if it exists). In practise we are often given a value Max and the question is
whether the bound is at most Max and only if this is the case we want to know
the exact value of bound. The task which we study can be described as
Instance:

− C-U model C, U , number Max ∈ N

− sequence {Pm}m∈{1,...,Max}, where Pi is an i-symmetric RP satisfying (**)
Problem: Compute

bound
def=

⎧⎪⎨
⎪⎩

0 if P1 is not satisfied ,

b if Pb is satisfied and Pb+1 is not satisfied , 1 ≤ b < Max ,

Max if PMax is satisfied .

From the Section 5 it follows that for checking the property Pi from the
sequence {Pm}m∈{1,...,Max} it suffice to compute all i + 1-tuples reachable in
C‖U∞. A trivial bounding algorithm, using the algorithm given in the previous
section, first finds all 1+1-tuples reachable in C‖U∞ and checks P1, then it finds
2 + 1-tuples reachable in C‖U∞ and checks P2, etc. However, this approach is
not effective enough, for explanation see item 3 in Section 6. This motivate us to
propose another algorithm which instead of computing all i+1-tuples reachable
in C‖U∞ for each i over-approximate the sets of tuples.

The core idea is that if we have a high integer b, we can choose a small
integer k and under-approximate the set Unreach b of all unreachable b + 1-
tuples of C‖U∞ by the set Unreach b k of all b + 1-tuples to which is assigned

Model Checking of Control-User Component-Based Parametrised Systems 157

Fig. 6. The sets of b + 1-tuples All b, Unreach b, Reach b, and Unreach b k

an unreachable k+1-tuple of C‖U∞. The profit is that to compute Unreach b k
instead of Unreach b it is necessary to find all reachable k+1-tuples instead of all
reachable b+1-tuples. The set Unreach b k serves also as an over-approximation
of all reachable b + 1-tuples of C‖U∞. Let us denote All b the set of all possible
b+1-tuples of C‖U∞. Then the set of all reachable b+1-tuples of C‖U∞ can be
over-approximated Reach b k = All b \ Unreach b k of all b+1-tuples to which
is not assigned an unreachable k + 1-tuple of C‖U∞.

The pseudo-code of the algorithm is given in Fig. 7. The algorithm in the first
cycle (lines 3-9) iteratively finds the minimal k such that to each unreachable
k + 1-tuple of C‖U∞ is assigned an unreachable (k − 1) + 1-tuple of C‖U∞.
For every value of l ≤ k the algorithm tests whether l − 1 = bound (line 7). If
the bound is greater than k − 1, then in the next step (line 10) the algorithm
computes the maximal b ∈ {k, . . . ,Max} such that a b+1-tuple from Reach b k
satisfies the property Pb. The inclusion Reach b k ⊇ Reach b implies that the
property Pb may but must not be satisfied. On the other hand if b < Max then
the property Pb+1 can not be satisfied. Thus the number b is a maximal value
which can be the bound and for us it is a candidate for the bound. Consequently
the algorithm computes which of the values k, . . . , b is the bound (line 11).

The procedure Reachable l + 1-tuples is described in Section 5. The pro-
cedure Is k − 1 Bound computes, using the set of all reachable k-tuples of
C‖U∞ Reach New, whether k − 1 is the bound. Generate Possible New

generates all k + 1-tuples to which is assigned a (k − 1) + 1-tuple in the input
set. The procedure Last Satisfied returns the maximal number b from the
set {k, . . . ,Max + 1} such that the intersection of all tuples unsatisfying Pb and
Reach b k is not empty. The procedure gradually tests b = k, . . . ,Max + 1. The
procedure ValidateBound tests which of the numbers k, . . . , b is the result. If
b = Max then it is the valid result, else it firstly checks whether b is the bound
and after that it tests k, k + 1, etc.

Evaluation. As noted in item 2 in Section 6 for each examined model and an
arbitrary k ≥ 2 the condition (*) holds. Consequently for any of the presented
models and arbitrary b, k, where b ≥ k ≥ 2, equalities Unreach b k = Unreach b
and Reach b k = Reach b hold. Thus the procedure Bound for all studied mod-
els and any sequence of described properties found the correct bound in the
while-cycle (lines 3-9) - if it is less then 3. If the bound is greater of equal to 3,
than the algorithm computes b as the bound (line 10) and than it successfully
verifies, that Pb is satisfied. Our experience with verification of different prop-
erties of component-based systems is that a good choice for the value Max is
|QC | + 1 as usually if the bound is finite then it is at most |QC |.

158 P. Vařeková and I. Černá

1 proc Bound(C, U, Max , {Pi}1≤i≤Max)
2 k := 0; Unreach New = ∅
3 repeat k := k + 1
4 Unreach Old := Unreach New
5 Reach New := Reachable l + 1-tuples(C, U, k)
6 Unreach New := all k+1-tuples \ Reach New
7 if Is k − 1 Bound() then return k-1 fi
8 Changes = Unreach New \ Generate Possible New(Unreach Old)
9 until (Changes = ∅) ∨ (k ≥ Max)

10 b := Last Satisfied(Unreach Old)
11 return ValidateBound(b, Unreach Old)

1 proc Is k − 1 Bound

2 Old Satisfied = New Satisfied;
3 New Satisfied = Is Pk Satisfied(Reach New)
4 if Old Satisfied ∧ (¬New Satisfied) then return true
5 else return false

Fig. 7. Algorithm for computing the bound

8 Related Work

Many papers address parametrised systems and their verification, we relate our
contribution to the previously published results in several aspects.

Computational model We consider control-user systems of the form C‖Un

with finite models of C and U . Components communicate using the pairwise
rendezvous synchronisation, and there are no variables in the model. Similar
models are studied in [6,8,21].

Two other approaches to modelling C-U system can be found in the literature.
The first one is a model containing a parametrised number of identical finite state
components (modelling users) with a finite set of global variables (modelling states
of the control component) where an individual user can make a transition if the
global variables satisfy a Boolean guard, see [12,26,27,28]. The second approach is
to model a C-U system with a finite number of control states (modelling the control
component), infinite set of data values N

|QU |
0 (corresponding to the number of users

in each state from QU), and appropriate synchronisation, see [4].
Cutoff Verification methods based on a cutoff have been successfully applied

to several types of properties of various parametrised systems. In [21] an ap-
proach implicitly based on a cutoff was used for proving that verification of
l-symmetric reachability properties is decidable but the algorithm runs in triple
exponential time and thus it is impractical. Other papers [15, 16, 19, 20] pro-
pose algorithms which are more efficient however these are not applicable to our
model of control-user systems. In our previous work [32] we studied verification
of LTLX properties using a cutoff. This algorithm is incomplete and for several
l-symmetric properties with l > 0 does not terminate.

Verification Among a number of approaches to verification of parametrised
systems [4,6,8,12,18,19,20,21,22,23,26,27,28] there are several fully automatic
techniques which can be used for systems which we study in the paper.

Several of the approaches are based on (backward or forward) reachability
analysis [4,22,23,26,30]. The paper [4] presents verification of reachability prop-
erties for general types of systems using backward reachability analysis. The

Model Checking of Control-User Component-Based Parametrised Systems 159

authors prove that for a general type of systems and a special type of reach-
ability properties (including l-symmetric properties) the algorithm terminates,
but the number of iterations in which it terminates is not known. The sym-
bolic backward and forward reachability analysis for general rich assertional lan-
guages using regular sets and acceleration is performed in [23]. The paper [22]
extends [4]. It studies general program model and using a transitive closure gen-
eration and acceleration of actions it performs a reachability analysis on those
systems. In [26] the author uses a tree based decision procedure which generates
predecessors to solve this problem. The main purpose of the paper is to prove a
decidability of verification of safety properties for a broad class of systems and
thus the paper does not contain any experimental results. Authors in [30] study
backward analysis using the local backward reachability algorithm.

Another approach to verification of safety properties works with invisible in-
variants [5,20,27,28]. This incomplete approach is based on computing an induc-
tive assertion. Our approach can be seen in some aspects as a restriction of this
approach (inductive assertion is exactly determined by reachable l + 1-tuples).
Contrary to the mentioned algorithms our algorithm always terminates.

Papers [8,12] propose an algorithm based on generating abstract finite model of
infinite users (an over-approximation of the model of the system with U∞). Paper
[12] moreover studies in which cases the algorithm returns a valid counterexample.

The technique presented in [6] takes each instance of a parametrised system
as an expression of a process algebra and interprets this expression in modal mu-
calculus, considering a process as a property transformer. The result is an infinite
chain of mu-calculus formulae and technique solves the verification problem by
finding the limit of a chain of formulae.

To sum it up, our verification algorithm is complete (contrary to [5, 8, 12,
27, 28, 32]), it computes a cutoff for l-symmetric RPs (not only checks an l-
symmetric RP, contrary to [4, 6,22,23,26, 30]), and the found cutoff is minimal
(contrary to [21, 32]). Experiments demonstrate that the number of backward
reachability iterations is typically very small (contrary to [4, 22, 23, 26, 30]) but
steps of backward reachability in our algorithm are usually quite complex. As
it was mentioned our verification algorithm computes the cutoff for l-symmetric
RPs. Consequently our verification algorithm is important especially whenever
one needs to find several types of possible errors in the system. The algorithm
computes the reachable l + 1-tuples and after (or during) this computation it
verifies which of the given properties are fulfilled.

As far as we know there is no other algorithm for verification of integrated
sequences of RPs. Experiments show that the algorithm Bound typically esti-
mates the value of the bound correctly and thus is very efficient.

9 Conclusions

The paper studies systems composed of a control component and a dynamic
number of user components (Control-User systems). Such type of systems is

160 P. Vařeková and I. Černá

often of use in component-based systems e.g. when a central component provides
services to unspecified number of clients. Safety properties are used to express
that the system cannot enter an undesired configuration. The complexity of
verification of reachability problems for Control-User systems stems from the
fact that we want to guarantee the correctness for every possible number of users
communicating with the control component. Though the problem of verification
of symmetric safety properties on C-U system is decidable [21,4], the state-space
explosion is highly limiting factor for practical usage of verification techniques
on those systems.

The paper presents two verification algorithms. The first algorithm solves the
problem whether a given C-U model satisfies a given (finite) set of l-symmetric
properties. The second algorithm is for computing the largest number of users
which can be at the same time in a specific situation, state (so called bound).

The algorithms are evaluated on several C-U models of component-based sys-
tems (see also [2]). Characteristics of these models confirm practical usability
of both algorithms as only instances with very low number of user components
have to be explored during the algorithm.

An open question is whether similar approaches can be used to verify a wider
class of reachability properties.

References

1. http://fractal.objectweb.org/tutorial/index.html

2. http://anna.fi.muni.cz/coin/CUmodels/

3. Poetzsch-Heffter, A., Aldrich, J., Barnett, M., Giannakopoulou, D., Leavens, G.T.,
Sharygina, N.: Challenge Problem SAVCBS 2007 (May 2007),
http://www.eecs.ucf.edu/leavens/SAVCBS/2007/challenge.shtml

4. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems
for infinite-state systems. In: LICS 1996. IEEE Computer Society, Los Alamitos
(1996)

5. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with
automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102. Springer, Heidelberg (2001)

6. Basu, S., Ramakrishnan, C.R.: Compositional analysis for verification of parame-
terized systems. Theor. Comput. Sci. 354(2), 211–229 (2006)

7. Bulej, L., Bures, T., Coupaye, T., Decky, M., Jezek, P., Parizek, P., Plasil, F.,
Poch, T., Rivierre, N., Sery, O., Tuma, P.: CoCoME in Fractal. In: PACS 2000.
LNCS, vol. 5153. Springer, Heidelberg (2008)

8. Calder, M., Miller, A.: An automatic abstraction technique for verifying featured,
parameterised systems. Theoretical Computer Science (to appear, 2008)

9. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based
software model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM
2004. LNCS, vol. 2999. Springer, Heidelberg (2004)

10. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9(1-2), 77–104 (1996)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, USA (2000)

http://fractal.objectweb.org/tutorial/index.html
http://anna.fi.muni.cz/coin/CUmodels/
http://www.eecs.ucf.edu/leavens/SAVCBS/2007/challenge.shtml

Model Checking of Control-User Component-Based Parametrised Systems 161

12. Clarke, E.M., Talupur, M., Veith, H.: Proving ptolemy right: The environment ab-
straction principle for model checking concurrent systems. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg
(2008)

13. Dickson, L.E.: Finiteness of the odd prerfect and primitive abundant numbers with
r distinct prime factors. Amer. Journal Math. 35, 413–422 (1913)

14. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP, pp. 7–15. ACM Press, New York (1998)

15. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few.
In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer,
Heidelberg (2000)

16. Emerson, E.A., Kahlon, V.: Exact and efficient verification of parameterized
cache coherence protocols. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS,
vol. 2860, pp. 247–262. Springer, Heidelberg (2003)

17. Emerson, E.A., Kahlon, V.: Model checking guarded protocols. In: LICS 2003, pp.
361–370. IEEE Computer Society, Los Alamitos (2003)

18. Emerson, E.A., Kahlon, V.: Rapid parameterized model checking of snoopy cache
coherence protocols. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 144–159. Springer, Heidelberg (2003)

19. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL 1995, pp. 85–94.
ACM, New York (1995)

20. Fontaine, P., Gribomont, E.P.: Decidability of invariant validation for paramater-
ized systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp.
97–112. Springer, Heidelberg (2003)

21. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J.
ACM 39(3), 675–735 (1992)

22. Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying
infinite-state systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS,
vol. 1785, pp. 220–234. Springer, Heidelberg (2000)

23. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. Theor. Comput. Sci. 256, 93–112 (2001)

24. Kofroň, J.: Behavior Protocols Extensions. PhD thesis, Charles University in
Prague (2007)

25. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

26. Maidl, M.: A unifying model checking approach for safety properties of param-
eterized systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 311–323. Springer, Heidelberg (2001)

27. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001)

28. Pnueli, A., Zuck, L.D.: Model-checking and abstraction to the aid of parameterized
systems. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI
2003. LNCS, vol. 2575, p. 4. Springer, Heidelberg (2002)

29. Component reliability extensions for fractal component model,
http://kraken.cs.cas.cz/ft/public/public index.phtml

30. Rybina, T., Voronkov, A.: Using canonical representations of solutions to speed
up infinite-state model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002.
LNCS, vol. 2404. Springer, Heidelberg (2002)

http://kraken.cs.cas.cz/ft/public/public_index.phtml

162 P. Vařeková and I. Černá

31. Vařeková, P., Černá, I.: Model Checking of Control-User Component-Based
Parametrised Systems. Technical Report FIMU-RS-2008-06, Masaryk University,
Faculty of Informatics, Brno, Czech Republic (2008)

32. Vařeková, P., Moravec, P., Černá, I., Zimmerova, B.: Effective-Verification of Sys-
tems with a Dynamic-Number of Components. In: SAVCBS 2007, pp. 3–13. ACM
Press, New York (2007)

33. Vařeková, P., Zimmerova, B.: Solution of challenge problem. In: SAVCBS 2007.
ACM Press, New York (2007)

34. Zimmerova, B., Vařeková, P.: Reflecting creation and destruction of instances in
CBSs modelling and verification. In: MEMICS 2007, Znojmo, Czech Republic
(2007)

35. Zimmerova, B., Vařeková, P., Beneš, N., Černá, I., Brim, L., Sochor, J.:
Component-Interaction Automata Approach (CoIn). In: PACS 2000. LNCS,
vol. 5153, pp. 146–176. Springer, Heidelberg (2008)

Automatic Protocol Conformance Checking of

Recursive and Parallel Component-Based
Systems

Andreas Both and Wolf Zimmermann

Institute of Computer Science, University of Halle, 06099 Halle/Saale, Germany
andreas.both@informatik.uni-halle.de,

wolf.zimmermann@informatik.uni-halle.de

Abstract. Today model checking of security or safety properties of
component-based systems based on finite protocols has the flaw that
either parallel or sequential systems can be checked. Parallel systems
can be described often by well known Petri nets, but it is not possible to
model recursive behaviour. On the other hand sequential systems based
on pushdown automata can capture recursion and recursive callbacks
[27], but they do not provide parallel behaviour in general.

In this work we show how this gap can be filled if process rewrite
systems (introduced by Mayr [16]) are used to capture the behaviour
of components. The protocols of the components interfaces specified as
finite state machines can be combined to a system equal to a process
rewrite system. By calculating the reachability of the fault state range
one gets a trace (counterexample) which does not satisfy the properties
specified by all protocols of the combined components, if any error exists.

1 Introduction and Motivation

Modern software development contains a big share of reusing previously de-
veloped software called components. Often these components are developed by
third party companies and supplied in binary code or as Web Service. So it is
not easy to have a look at the source code to collect the behaviour. Hence the
supplier should deliver together with the component a protocol of the interfaces
and an abstraction of the component which specifies the behaviour, to give us
the ability to check certain properties, e. g. abortion freeness.

The protocol is in general specified as finite state machine. Today the abstrac-
tions are often specified in one of the following four ways:

– By using Petri nets it is possible to specify parallel behaviour like threads
as well as synchronous and asynchronous method calls, but no recursion in
general.

– By using pushdown automata (PDA) it is possible to specify recursion and
synchronous method calls, but no threads or asynchronous calls in general.
[27]

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 163–179, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

164 A. Both and W. Zimmermann

– By using finite state machines (FSM) ([18, 23]) a kind of parallel behaviour
can be described (cf. [22]), but no recursion in general. Normally FSM can
be represented as PDA or Petri nets.

– By using process algebras such as CSP [1], these approaches are more pow-
erful than FSM and PDA, but at the end the conformance checking reduces
to checking FSM [12].

In (modern) component systems like OMG’s CORBA, Sun’s JavaEE or Mi-
crosoft’s .NET parallel concepts as well as sequential concepts are permitted.
Hence it will be nearly impossible to use exclusively Petri nets or pushdown
automata in practice to model the behaviour of components.

Our idea is to use another representation to model the behaviour of com-
ponents and component-based systems and to develop a tool which proves the
absence of component protocol violations. This tool should advance the veri-
fication of a component-based system by automatically verifying the protocol
conformance of its components. No expert of verification will be necessary.

In Section 2 definitions of components, protocols and abstractions will be de-
scribed. Creating abstractions of a full program will be shown in Section 3. In
Section 4 the so called Combined Abstraction will be introduced, which is a rep-
resentation of the full component-based system in combination with a considered
protocol. We show in Section 5 how a counterexample can be calculated, while
solving a reachability problem. To converge our approach to real component-
based systems we show in Section 6 how abstractions of single components can
be constructed without knowledge of the other components in the component-
based system, and how they are assembled to a full component-based system
abstraction.

2 Terms and Definitions

2.1 Components and Component-Based Systems

We assume that a component is an implementation of each provided interface. It
is possible, that a component uses provided interfaces, thus has required inter-
faces. We make no restrictions on the language nor location where the compo-
nent is deployed. Of course the implementation could be inaccessible (e. g. Web
Service). Our assumptions are summarized in Figure 1.

A component-based system is assembled by components which communicate
only over required (and provided) interfaces. These interfaces consist of a set of
functions/procedures. We allow synchronous and asynchronous interfaces. Called
synchronous interfaces block their caller until the callee has been completed the
call, while asynchronous interfaces start a new thread when they are called.
Hence the caller can proceed without waiting for completion. We also assume,
that a components interface does not contain the information if it is implemented
synchronous or asynchronous in general.1

We allow call-backs, but no external dynamic instances of a component.
1 For simplification we specify in our example the communication method.

Automatic Protocol Conformance Checking 165

1

k

J1

kI
X p(...J x...){...}i c

C0
I

Jn

1
c

component

Fig. 1. Component C0 with the required interfaces J1, . . . , Jn and the provided inter-
faces I1, . . . , In

2.2 Protocol

A protocol of a component describes the use of all interfaces (remote use of func-
tions) of the component. It can be used to verifiy dynamically incoming (remote)
method calls, and also to verifiy the components statically. Using model checking
we consider the latter in this work because it has the advantage that component-
based systems are checked before they are deployed by the customer. This is a
model checking problem, which is much harder to solve than verifing dynami-
cally. Nevertheless component protocols could be used with both approaches to
increase safety and security.

Creating and verifying protocols can help to ensure the restrictions of business
rules. For example, using a SSO-component2 in a system with the following
actions, a. register and sign in, b. sign in, c. optionally change password, d.
logout, could have the following business rule respectively protocol A formulated
as regular expression: RA = ((a|b)c∗d)∗.

This protocol should be obeyed by every client. We will check automatically,
if a component-based system using the mentioned SSO-service protocol obeys
the defined constraints.

In accordance with other works [11, 21, 27] we use FSM to represent the
protocol A. The FSM A = (QA, ΣA, →A, IA, FA) is defined as usual, i. e. QA is
a finite set of states, ΣA is a finite set of atomic actions, →A⊆ QA × ΣA × QA

is a finite set of transition rules, IA ∈ QA is the initial state, FA ⊆ QA is the set
of final states.

Note that the protocol as FSM gives us the ability to show this protocol to
the developers, to create a graphical representation (to use it in the development
process), and to use it for automated verification.

Many approaches [11, 21] model the use of required interfaces by regular
languages obtained by finite transducers. In [27] it is shown that this approach
leads to false positives if recursion is present.

The use of a component Ci in a component-based system is the set of possible
sequences of calls to Ci. Thus, this can be also modeled as a language Li

Π . Hence
the protocol conformance checking is equivalent to check whether Li

Π ⊆ LPi ,
when LPi is the language defined by the protocol Pi of Ci.

In Figure 2 an example of a component-based system including the compo-
nents implementations and protocols is shown.

2 Single Sign On. A component which provides the functionality of a lo-
gin/logout/session management, so different applications can use this mechanism
to verify a user.

166 A. Both and W. Zimmermann

interface I {
sync void a(); }

interface K {
async void e(); }

interface J {
sync void c(int);
sync void b();
sync void d(); }

Fig. 2. Example. A component-based system assembled from the components A (im-
plements interface I), B (implements interfaces J) and C (implements interface K).
The components have following protocols, given as regular expessions: A: a∗, B: cb+d+,
C: e∗.

In this work we will verify if components interfaces are used in the manner the
developer specified by a protocol. By doing this, we can exclude semantic errors
which appear because of an unexpected sequence of (remote) method calls.

For a more detailed proof we also need an abstraction of the behaviour of the
component.

2.3 Process Rewrite Systems (Short PRS)

The abstracted behaviour of a component can be modeled with different repre-
sentations. An abstraction AC of a component C describes the behaviour BC of
C. Every possible execution path of C has a counterpart (trace) in AC . There
exists a mapping from BC to AC .3

An abstraction AC has to implement every path of a component C, every
control flowpath has to be recognized. In the work [27] parameterized context
free systems (equal to PDA) were used to integrate recursion. The parameteriza-
tion is required to implement callbacks. Because we transform a turing-powerful
implementation to a not turing-powerful representation, the created abstrac-
tion AC will approximate the behaviour of C, but this way we find a protocol
violation, if there exists one.

As mentioned above, both representations (Petri nets and PDA) have advan-
tages. We consider a representation which contains parallel semantic (like Petri
nets) as well as sequential semantic (like PDA). Hence the base of this work will
be the use of a representation called process rewrite systems (short PRS) defined
by Mayr [16].

PRS unify the semantic of Petri nets and PDA. Mayr introduced an operator
for parallel composition ”||” and sequential composition ”.”. A process rewrite
system Π = (Q, Σ, I,→, F) is defined as followed:

3 The mapping B → A is often not bidirectional.

Automatic Protocol Conformance Checking 167

Q is a finite set of atomic processes,
Σ is a finite alphabet over actions,
I ∈ Q is the initial process,

→ ⊆ PEX(Q) × (Σ � {λ}) × PEX(Q) is a set of process rewrite rules,
F ⊆ PEX(Q) is a finite set of final processes.

We introduce a special action λ, denoting no action or emtpy word. The set
PEX(Q) contains all process-algebraic expressions over the set of atomic pro-
cesses Q. The process rewrite rules define a derivation relation a⇒ ∈ PEX(Q) ×
Σ∗ × PEX(Q) by the following inference rules (a ∈ Σ ∪ {λ}, x ∈ Σ∗):

(u a→ v) ∈ Π

u
a⇒ v

,
u

a⇒ v

u.w
a⇒ v.w

,
u

a⇒ v

u||w a⇒ v||w
,

u
a⇒ v

w||u a⇒ w||v
,

u
x⇒ v v

a⇒ w

u
x a=⇒ w

LΠ=̂{w : ∃f ∈ F |I w⇒ f} is the language accepted by Π .

Based on the operators Mayr defined a hierarchy of PRS classes that allows
us the classification of process rewrite systems by the appearance of operands.
Mayr uses the following base classes:

– 1: terms are composed of atomic processes only
– P : terms are composed of atomic processes or parallel composition
– S: terms are composed of atomic processes or sequential composition
– G: terms can be formed with all operators

These classes model different behaviour. Hence it is not possible to model all
behaviour of a parallel system only with sequential composition and vice versa
(cf. Figure 3a).

With the four base classes, a hierarchy based on bisimulation was formed (cf.
Figure 3b), which allows us to classify all possible and sensible PRS.4

As we see, the (1, S)-PRS allows rules, which contain a process constant at
the left-hand side and allows the sequential operator at the right-hand side. Thus
this class is equivalent to PDA with one state, which accepts a language, if the
stack is empty. The empty stack is represented in a (1, S)-PRS with the emtpy
process ε. The (S, S)-PRS is the companion piece to PDA with several states.

PRS which allows the parallel operator are among others the class (P, P)-PRS
which is equivalent to the well known Petri nets. The (1, P)-PRS are Petri nets,
where every transition of the net has only one incoming arc, hence it does not
contain synchronization.

By looking at the PRS hierarchy in Figure 3b we see, that if we search for
a fusion of Petri nets with sequential concepts we have to use the (P, G)-PRS
”PAN”5, but also the (1, G)-PRS ”Process Algebra” (short PA) could be inter-
esting, if we have no synchronization of components.
4 [16] points out that the left-hand side of a PRS-rule must be at most as large as the

right-hand side in the sense of Figure 3a.
5 Caused by the fact, that the grammar described by a (S,S)-PRS PDA can be ac-

cepted by a (1, S)-PRS called BPA, which is a pushdown automata with only one
state.

168 A. Both and W. Zimmermann

Fig. 3. a) Hierarchy of basic PRS operators, b) Hierarchy of process rewrite systems
(cf. [2]), classification by appearance of operands on the left-hand side and right-hand
side, (lhs,rhs)-PRS

Using PRS as an abstraction model, we are able to deal with real programs,
because all important behaviour like recursion, threads, synchronous and asyn-
chronous remote function calls can be modeled.

In this paper we will focus on (1, G)-PRS called Process Algebras because it
can handle recursion and parallel behaviour, and our component model does not
contain synchronization. Mayr has shown, that reachability is solvable, therefore
Process Algebras can be considered for our application.

3 Building the Use of Components as PRS

Now we will create an PRS abstraction ΠS = (QS , ΣS , IS , →S , FS) of the
component-based System S in a (1, G)-PRS representation. We assume here,
that the full source code is available. The main ideas for the construction are:

1. Create an atomic process for each program point pi of a component C:
Without loss of generality we assume, that every control flow path of a
method ends with a return-statement. For return-statements no program
point will be created.

2. Create transition rules, which map the control flow of the component in
process rewrite rules: We use the mapping function next : pi → pj , which
results in the program points pj ∈ Q, which are the possible succeeding
program points of pi. The mapping result contains ε if there exists a control
path, that ends in the next step (return-statement).
– If at a program point pi a synchronous method call a is performed,

we create rewrite rules pi
a→S pj . pk and pi

a→S pj || pk, if a is an
asynchronous method call.

– If at a program point pi another operation is performed, we create rewrite
rules pi

λ→ pk, where pk ∈ next(pi). This transition rule has the semantic,
that this operation is not interesting for the protocol verification.

Automatic Protocol Conformance Checking 169

We always update QC , if we create a new rewrite rule.

Note that all these pieces of information can be derived automatically from the
source code of the component and the interfaces used by the component. We have
chosen a left-to-right evaluation order according to semantics of Java or C#. If
the evaluation order of the regarded component is implementation-dependent
one has to choose here the order used by a compiler.

Remark: As in [27], we can encode reference parameters in our component
abstraction too, to regard even recursive call-backs. Also resolving the reference
parameters to all possible dynamically chosen services is possible and equal to
the mentioned earlier work. Because of the lack of space we do not describe these
calculations here.

For technical reasons we add a new start rule IS
λ→ pi, where pi is the first

program point to be executed.
After this construction we get a Process Algebra, but it contains all possible

remote method calls, so we have to eliminate every action which is not included
in the protocol Pi of the component Ci that is checked. For this purpose we use
the following mapping function Φi:

Φi : Σ → ΣCi defined by Φi(x) =

{
x if x ∈ ΣCi

λ otherwise

Where ΣCi containts all remote methods of component Ci. Thus every transla-
tion rule using an action x which is not part of the components protocol alphabet
will be replaced by the same rule which uses λ as action. Now we have a rep-
resentation Πi

S = (QS , Φi(Σ), IS , →S , FS) of the component-based system S
according to the component Ci, it is valid LΠi

S
⊆ LPi . Πi

S is used to create the
Combined Abstraction in the next section.

In Figure 4 the example6 – mentioned before – has been extended by labelled
program points. For better understanding, we chose these labels unique over all
components. In Figure 5 we show the abstraction ΠB

S of the example component-
based system according to the protocol PB of the component B. Because our
example has a main component, we can use the first directive to create a start
rule of S, hence we create one extra start rule only.

4 Combined Abstraction

To verify the component-based system abstraction with respect to a component
Ci, we have to check, if LΠi

S
⊆ LPi , where LPi is the regular language described

by the components protocol PCi , and LΠi
S

is the language over the actions in
Πi

S , specifying a superset of the use of Ci. In order to check LΠi
S

⊆ LPi it is usual

6 Because of the lack of space the example has no reference parameters nor dynamically
chosen services. All components are hard coded.

170 A. Both and W. Zimmermann

Fig. 4. Example. System with labelled program points.

IS
λ→S p1 p4

b→S p10.p5 p8
λ→S p9 p12

λ→S p13

p1
λ→S p2 p5

λ→S p7||p6 p9
λ→S ε p12

λ→S ε

p2
c→S p8.p3 p6

d→S p14 p10
λ→S p11 p13

λ→S p4

p3
λ→S p4 p7

b→S p10 p11
λ→S p12 p14

λ→S ε

Fig. 5. Rewrite rules of Abstraction ΠB
S of the example component-based system ac-

cording to the protocol of the component B

to check the equivalent problem LΠi
S

∩ LPi = ∅. Unfortunately this question is
undecidable.

Theorem 1 (Undecidability of Protocol Checking Problem). It is un-
decidable if LΠ ⊆ LP where Π is a (1, G)-PRS and LP is regular.

Proof (Sketch). As we know from model checkers (e. g. Spin, Moped), for each
propositional LTL-formula φ, a FSM P can efficiently be constructed s. t. L(φ) =
LP , where L(φ) is the set of action sequences specified by φ. Thus if the protocol
checking problem would be decidable, we could also decide LTL-formula model
checking for (1, G)-PRS. Contradiction, because LTL is undecidable in (1, G)-
PRS. [5] �

We therefore construct a (1, G)-PRS K which describes a language L≈, where
LΠi

S
∩ LPi ⊆ L≈. We call K Combined Abstraction. Thus if L≈ = ∅, we know

that LΠi
S

⊆ LPi . However, there might be a sequence w ∈ L≈ s. t. w /∈ LΠi
S
∩LPi .

We call these sequences spurious false negatives.
In the following, we present the construction of the Combined Abstraction.
Roughly spoken the Combined Abstraction encodes in one model K the paral-

lel execution paths of the abstraction of our system Πi
S and the execution paths

(which are forbidden by the regarded protocol Pi of Ci) formulated as finite state
machine P i.

A combination of a protocol (FSM) A and an abstraction (PA) ΠS is to our
knowledge not defined yet. The Combined Abstraction K = (QK , ΣK , IK , →K

, FK) is defined as follows:

Automatic Protocol Conformance Checking 171

QK = QA × QS × QA is a finite set of processes,
ΣK is a finite set of atomic actions,
IK ∈ QK is a start process,

→K ⊆ QK × Σ × QK is a finite set of transition rules,
FK ⊆ QK is a finite set of final processes.

In accordance with [13] the processes (qi, qj, qk) ∈ QK encodes, that the FSM
A is in the state qi while the PA S has the process qj created. The aim of
(qi, qj , qk) is, that qi

x⇒A qk while qj
x⇒ ε can be performed.

The transition rules of the Combined Abstraction K have the same form and
semantic as transition rules of PRS.

The construction of the other transition rules follows the directives shown in
Figure 6 (described below) and is a generalization of the standard construction
of the intersection of a finite state machine and a pushdown automaton in [13].

For technical reasons we also have to introduce the following two sets of rules:

RS = {IK
λ−→ (IA, IS , qFA) : qFA ∈ FA}

RE = {(qA, qP , qA) λ−→ ε : qA ∈ QA, qP ∈ FP }

The chain transition rules R1C and the set of sequential transition rules R1S

are handled similar to creating an intersection of pushdown automata and finite
state machines in [13] (cf. Figure 6). The transition rules with a parallel operator
R1P are constructed as shown in directive r1p. As we see, a transition rule in
the Combined Abstraction is similar to a transition rule in →P .

If one of the parallel threads in K accepts a a ∈ Σ the protocol state in the
other to p parallel threads should change to the same protocol states. With the
transition rules in R0, it is possible to implement these state changes.

The set of transition rules →K is formed by uniting the sets RS , RE , R1C ,
R1S , R1P and R0.

After constructing the transition rules of the Combined Abstraction, we re-
ceive a rewrite system K in the syntax of PRS (we can also call K interleaving
PRS). Now every possible interleaving sequence of the actions contained in the
protocol is represented by at least one path in the Combined Abstraction K.

Theorem 2 (Correctness of construction of Combined Abstraction).
The construction K results in a representation, s. t. LPi ∩ LΠi

S
⊆ LK.

Proof (Idea). Counterexamples constructable only by sequential rules are gath-
ered by using the rewrite rules of R1C and R1S .

If a counterexample is conductable while using parallel rules, we have to look
at rules of the form (p1||p2).p3. Using the construction directive r1p the parallel
traces are calculated independently.

If a rule out of R1P is applied to p1 thus this trace reaches a new state x in
the protocol automaton. However in p2 the protocol automaton has still the old

172 A. Both and W. Zimmermann

R1C = {(s, r, t)
a→K (s′, r′, t) :(s

a→A s′) ∧ (r
a→S r′)∨

(s = s′) ∧ (r
λ→S r′) ∧ (a = λ)} (r1c)

R1S = {(s, r, t)
a→K (s′, r′, s′′).(s′′, r′′, t) :(s

a→A s′) ∧ (r
a→S r′.r′′)∨

(s = s′) ∧ (r
λ→S r′.r′′) ∧ (a = λ)} (r1s)

R1P = {(s, r, t)
a→K (s′, r′, t)||(s′, r′′, t) :(s

a→A s′) ∧ (r
a→S r′||r′′)∨

(s = s′) ∧ (r
λ→S r′||r′′) ∧ (a = λ)} (r1p)

R0 = {(s, r, t)
λ→K (s′, r, t) :(s

a→A s′)} (r0)

with s, s′, s′′, t ∈ QA; r, r′, r′′ ∈ QP ; a ∈ ΣA ∪ {λ};

(s, r, t), (s′, r′, t), (s′, r′′, t), (s′, r′, s′′), (s′′, r′′, t) ∈ QK

Fig. 6. Directives for construction of transition rules of a Combined Abstractions K

state. With a rule from R0, it is possible that p2 reaches x, too, while using a
rule out of R0.

As we can easily see, using the explained construction, we create false negatives,
too. These will be described at the end of the next chapter.

5 Performing Protocol Checking

Now, we want to verify if there exists a path from the start process IK to the
empty process ε. This is a reachability problem.

As seen before we create A = (ΣA, QA, δA, qA, FA), where L(A) = LA =
Σ∗ \ L(A). A contains all possible traces to the final states qFA ∈ FA which are
not part of the protocol A, we want to verify. Using A and P , the Combined
Abstraction K will be created as described in the previous section. After this
construction every existing path IK

∗⇒ ε is a candidate for a counterexample,
because ε encodes the error process. Creating the counterexamples is possible
using the logic EF, which is decidable in the class of (1, G)-PRS. [17]

We get a sequence of actions s as counterexample. Because we named the pro-
cess constants of the system abstraction as program points, we are able to point
out each program point of the regarded component, where a possible protocol
violation can appear.

If we look at the Combined Abstractions in Figure 5 we can easily see that
there is no protocol violation in component A and C. But there is a protocol
violation in B. In Figure 7 a trace constructed by the reachability algorithms
is shown. For the lack of space we reduce the language LB to the one given
in Figure 7 and show only a trace which results in the counterexample cbdb.
This counterexample can appear only, if the method call of e is asynchronously
performed. If we look at the original source code of the component B in Figure
4 we can see, that this sequence of actions really results in a division by zero,
which is a non expected behaviour.

Automatic Protocol Conformance Checking 173

FSM PB′ , that describes a subset of the inverted protocol PB of component B.

PB′ = ({IA, x2, x3, x4, xF }, {b, c, d}, IA, {IA
c→ x2, x2

b→ x3, x3
d→ x4, x4

b→
xF }, {xF }) We can see that LPB′ ⊆ LB .

Trace of K constructing the protocol violation cbdb in component B:

(IA, IS, xF)
λ⇒ (IA, q1, xF)

λ⇒ (IA, p2, xF)

c⇒ (x2, p8, x2).(x2, p3, xF)
λ⇒ (x2, p9, x2).(x2, p3, xF)

λ⇒ (x2, ε, x2).(x2, p3, xF)

λ⇒ (x2, p3, xF)
λ⇒ (x2, p4, xF)

b⇒ (x3, p10, x3).(x3, p5, xF)

λ⇒ (x3, p11, x3).(x3, p5, xF)
λ⇒ (x3, p12, x3).(x3, p5, xF)

λ⇒ (x3, ε, x3).(x3, p5, xF)

λ⇒ (x3, p5, xF)
λ⇒ (x3, p7, xF)||(x3, p6, xF)

d⇒ (x3, p7, xF)||(x4, p14, xF)

λ⇒ (x3, p7, xF)||(x4, ε, xF)
λ⇒ (x4, p7, xF)||(x4, ε, xF)

b⇒ (xF , p10, xF)||(x4, ε, xF)

λ⇒ (xF , p11, xF)||(x4, ε, xF)
λ⇒ (xF , p12, xF)||(x4, ε, xF)

λ⇒ (xF , p12, xF)||(xF , ε, xF)

λ⇒ (xF , p12, xF)
λ⇒ (xF , ε, xF) �

Fig. 7. Example. Trace that will be constructed by the reachability algorithm, it results
in the counterexample cbdb for the protocol of B in Figure 4. For better understanding
the processes of K rewritten in the considered step are underlined.

False Negatives There are two causes of false negatives:

– real false negatives: Because the component abstractions are created with-
out any data flow or control flow analysis, it is possible that a trace will be
contained in the component abstraction, which is not possible in the imple-
mented component. Moreover e. g. a return value can route the control flow,
thus if we have no access to the implementation of the other components of
the component-based system, it is possible to create more false negatives.
The constructable counterexample c in our example is such a false negative.

– spurious false negatives: Because we only construct an approximated inter-
section of the language described by the component-based system and the
regarded protocol, it is possible to get false negatives.

If the component code is not available, it will only be possible to reduce the
spurious false negatives.

6 Component Composablity

We now show how a kind of PRS can be individually computed for each compo-
nent, and how these can be composed in order to obtain a PRS describing the
use of the component whose protocol has to be checked.

As in reality not every component (e. g. Web Service) is accessible by a com-
ponent developer. Thus it is necessary to define an abstraction for each com-
ponent C, which is composable to an abstraction of the full component-based

174 A. Both and W. Zimmermann

system. We call the PRS of a single component C stripped process rewrite system
ΠC = (QC , ΣC , →C , RC , PC). ΠC is defined as follows:

QC is a finite set of atomic processes,
ΣC is a finite set of atomic actions,
→C ⊆ PEX(QC) × (Σ � {λ}) × PEX(QC) is a set of process rewrite rules,
RC is a finite set of required interfaces,
PC : S �→ QC is a mapping from the services to

the first program point in the
provided interfaces.

The foundation for creating →C are the directives described in Section 3. We
extend the considered directives by the following:

– If at a program point pi a synchronous remote method call a is performed, we
create rewrite rules pi

a→C qJ,s . pk, if a is an asynchronous remote method
call we create rewrite rules pi

a→C qJ,s || pk, where qJ,s specifies the interface
J of the required service s, and pk ∈ next(pi). Note if we do not know how
the interface is implemented, we have to create both sets of rewrite rules to
ensure, that we create a conservative abstraction.

– If the considered program point pi is the first in a method implementing a
provided service s, we will extend the mapping PC with s �→ pi.

The set RC contains all interfaces qJ,s where s is a service of a required
interface J . PC mappes the set of services S (provided by the interfaces of C)
to the initial process of the provided interface.

In the case considered in this paper, we have to look at stripped Process Alge-
bras only. You can see the abstractions of the example components in Figure 8.

After having constructed abstractions for each component, we have to com-
bine each component Ci (respectively ΠCi) to the component-based system S
(respectively ΠS) we want to verify. In the first phase, this can easily be con-
structed by uniting the relevant sets. Thus we define the abstraction ΠS =
(QS , ΣS , IS , →S , FS) of S as follows:

QS = {IS} �
⋃
Ci

QCi is a finite set of processes,

ΣS = {λ} ∪
⋃
Ci

ΣCi is a finite set of actions,

IS ∈ QS is a new start process,

→S =
⋃
Ci

→Ci ∪ Init is a finite set of transition rules,

FS =
⋃
Ci

FCi ⊆ QS is a finite set of final processes.

Automatic Protocol Conformance Checking 175

→A = {p1
λ→ p2, p2

c→ qJ,c . p3, p3
a→ p4, p4

b→ qJ,b . p5, p5
e→ qK,e || p6, p6

d→ qJ,d}

→C = {p7
b→ qJ,b}

→B = {p8
λ→ p9, p9

λ→ ε, p10
λ→ p11, p11

λ→ p12, p12
λ→ p13, p12

λ→ ε, p13
a→ qI,a, p14

λ→ ε}
PA(qI,a)
→ p4, PC(qK,e)
→ p7, PB(qJ,c)
→ p8, PB(qJ,b)
→ p10, PB(qJ,d)
→ p14

Fig. 8. Example. Transitions rules of the abstractions ΠA, ΠB, ΠC and mapping of
provided interfaces of components A, B, and C in Figure 4.

To ensure that every initial program point Ii of a component Ci is reachable
from the new start process IS , we add the following transition rules to →S :

(IS
λ→S Ii) iff Ci is the main component/the client of S

(IS
λ→S Ii) iff any component Ci of S can start

(IS
λ→S I0||I1||...||In) iff each component Ci of S can process independently

In the second phase, every used interface has to be resolved to a process, that
specifies the first program point of the called interface implementation. Thus we
have to resolve all interfaces qJ,s ∈

⋃
Ci

RCi using the mapping function PCi of
the component implementing the interface J .

As in Section 3 we still have to create new start rules and eliminate every
action, which is not included in the protocol PCi of the considered component
Ci using the mapping function Φi.

In Figure 8 the abstractions of the components A, B and C are shown. As
can easily be seen the abstraction S of the full system in our example is easy
to build, unifying the sets and resolving the provided interfaces as mentioned
above. It results in the PRS shown in Figure 5.

7 Related Work

Many works on static protocol-checking of components consider local protocol
checking on FSMs. The same approach can also be applied to check protocols
of objects in object-oriented systems. The idea of static type checking by using
FSMs goes back to Nierstrasz [18]. Their approach uses regular languages to
model the dynamic behaviour of objects, which is less powerful than context-
free grammars (CFG). In the work of Yellin and Strom [25] also only regular
representations of the components are used, but they describe a protocol by
send and receive synchronous method calls, and generate adapters if the protocol
check fails. These approaches cannot handle recursive call-backs. [15] considers
object-life cycles for the dynamic exchange of implementations of classes and
methods using a combination of the bridge/strategy pattern. It also based on
FSMs. The approach comprises dynamic as well as static conformance checking.
Tenzer and Stevens [23] investigate approaches for checking object-life cycles.

176 A. Both and W. Zimmermann

They assume that object-life cycles of UML-classes are described using UML
state-charts and that for each method of a client, there is a FSM that describes
the calling sequence from that method. In order to deal with recursion, Tenzer
and Stevens add a rather complicated recursion mechanism to FSMs. It is not
clear whether this recursion mechanism is as powerful as pushdown automata
and therefore could accept general context-free languages. All these works are for
sequential systems. Schmidt et al. [12] propose an approach for protocol checking
of concurrent component-based systems. Their approach is also FSM-based and
unable to deal with recursive call-backs.

Even modeling the use of a component with context-free languages may ab-
stract too much from the real behaviour. Other approaches [9, 20] therefore use
dynamic protocol-checking. Dynamic protocol checking does not exclude pro-
tocol faults as static protocol checking does. On the other hand, they identify
bugs at the right place. In particular, dynamic adapters might support avoiding
protocol faults whenever possible.

An alternative approach for investigation of protocol conformance is the use
of process algebras such as CSP, cf. e. g. [1]. These approaches are more powerful
than FSMs and context-free grammars. However, mechanized checking requires
some restrictions on the specification language. For example, [1] uses a subset
of CSP that allows only the specification of finite processes. At the end the
conformance checking reduces to checking FSMs similar to [12].

FSMs are also used for checking Liskov’s substitution principle for subtyping
in object-oriented systems based on class protocols. Reussner [21] generalizes
on the idea of Nierstrasz and adds counters and conditions over counters to
the regular types to decide, whether Liskov’s substitution principle is satisfied.
Freudig et al. [11] use sub-classes of CFGs for describing protocols and check-
ing Liskov’s substitution principle. They need subclasses of CFGs because the
subset-problem on general context-free languages is algorithmically undecidable.
They do not model calling sequences stemming from a method which is required
for checking whether the use of an object of a certain class conforms to its
protocol.

The work on model checking context-free processes and pushdown systems
started with [6, 7]. The model checking of LTL-formulas can be done linear in
the size of the system and cubic in the number of states [2, 3, 10]. However, these
approaches would require that the complete system is available as a context-
free process or as a pushdown system. The framework described in [4] contains
among others an algorithm for checking whether L(G) ⊆ L(A) for context-free
grammars G and finite state machines A.

The approach in this paper is a generalization of [26, 27]. In these papers
recursion is modeled by CFG, so only sequential behaviour is considered. It is
demonstrated how the approach can be made compositional. Moreover recursive
callbacks are respected, which is possible but not considered within our work.
Like in our approach every components abstraction has to be known at the
verification time, but in contrast to this work counterexamples can be created
exactly, if a fault has been discovered.

Automatic Protocol Conformance Checking 177

Chaki et al. described in [8] a method to verify communicating recursive C
programs. This problem seems to be similar to verification of component-based
systems, although they considered synchronous method calls only. In contrast to
our work they consider even the data manipulation and synchronization state-
ments. The problem can be reduced to the intersection of – by C programs
described – context free languages, which were calculated approximately by a
CEGAR-loop. There are other works [14, 19, 24] which consider the verification
of concurrent programs, but these reduce the problem with bounded context
switching, which results in a bounded parallelism.

8 Summary and Conclusions

In this paper we discussed the automatic verification of components according
to their protocol. This static verification can be used to find semantic errors, i. e.
to verify defined non functional business rules.

To apply our check, we require static knowledge of the used components. But
this abstraction can be part of the component description, so we do not need
access to the components source code. As other works in this research area, we
use FSM for describing component protocols.

In contrast to previous approaches, we are able to handle recursion and par-
allel behaviour in a local and global view without any restrictions using process
rewrite systems to represent the behaviour of each component instead of finite
state machines or context free grammars. The decidability of the reachability
problem has been proven by Mayr. In order to circumvent the undecidability
of the protocol checking problem, we define an approximated intersection of
protocols and Process Algebras – the so called Combined Abstraction.

We implemented a two phase process to consider the component composition,
where in the first phase the components were composed, like in the real system
and in the second phase the required interfaces (and reference parameters) were
resolved, so every information depending on the component-based system can be
included in the system abstraction. Because of this process we are able to compose
the abstractions of the components like the components in reality. Moreover our
approach makes it possible to deal with components implemented in different pro-
gramming languages,because the abstraction layer hides the implementing details.

The tool provides a counterexample if the protocol conformance check fails. So
our approach is a model-checking approach. A counterexample is a word over all
protocol actions, which are remote method calls. A calculated counterexample
may not occur in the real system, because we create a conservative abstraction,
hence false negatives may be delivered. But we are sure to find a counterexample
if any exists.

At this stage of our work we only consider static verification, i. e., the ab-
stractions of each component are known statically. CORBA, COM, .NET and
EJBs also allow dynamic instances of components. It is subject to further work
to handle this property. As demonstrated in [27], a points-to analysis might help
to solve the problem.

178 A. Both and W. Zimmermann

Our approach is adaptable for object-oriented programming where the pro-
tocols are defined over the public interfaces. It will be part of future work to
research if our approach is suitability for daily use in OOP.

We currently implement a framework which creates abstractions of compo-
nents implemented in Python (finished) and C++ (in progress). Creating ab-
stractions of Java components is planed. This framework is currently be used
to verify our approach in industrial case studies. Early results show that our
approach is applicable and can result to real (so far undiscovered) bugs.

False negatives may be reduced by integration of data and control flow analysis
algorithms into the component abstraction process.

We thank Heinz W. Schmidt for pointing us to process rewrite systems.
We are grateful to OR Soft GmbH for providing us with industrial case studies.

References

1. Allen, R., Garlan, S.: A formal basis for architectural connection. ACM Transac-
tions on Software Engineering and Methodology 6(3), 213–249 (1997)

2. Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 207–220.
Springer, Heidelberg (2001)

3. Benedikt, M., Godefroid, P., Reps, T.: Model checking of unrestricted hierarchical
state machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001.
LNCS, vol. 2076, pp. 652–666. Springer, Heidelberg (2001)

4. Bouajjani, A., Esparza, J., Finkel, A., Maler, O., Rossmanith, P., Willems, B.,
Wolper, P.: An efficient automata approach to some problems on context-free gram-
mars. Information Processing Letters 74(5-6), 221–227 (2000)

5. Bouajjani, A., Habermehl, P.: Constrained properties, semilinear systems, and
petri nets. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 481–497. Springer, Heidelberg (1996)

6. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R. (ed.)CONCUR1992.LNCS, vol. 630, pp. 123–137. Springer,Heidelberg (1992)

7. Burkart, O., Steffen, B.: Pushdown processes: Parallel composition and model
checking. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp.
98–113. Springer, Heidelberg (1994)

8. Chaki, S., Clarke, E.M., Kidd, N., Reps, T.W., Touili, T.: Verifying concurrent
message-passing c programs with recursive calls. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006. LNCS, vol. 3920, pp. 334–349. Springer, Heidelberg (2006)

9. Chambers, C.: Predicate classes. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 268–296. Springer, Heidelberg (1993)

10. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

11. Freudig, J., Löwe, W., Neumann, R., Trapp, M.: Subtyping of context-free classes.
In: Proceedings 3rd White Object Oriented Nights (1998)

12. Schmidt, H.W., Krämer, B.J., Poernemo, I., Reussner, R.: Predictable component
architectures using dependent finite state machines. In: Wirsing, M., Knapp, A.,
Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 310–324. Springer, Heidel-
berg (2004)

Automatic Protocol Conformance Checking 179

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

14. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In: Ramakrishnan, C., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

15. Löwe, W., Neumann, R., Trapp, M., Zimmermann, W.: Robust dynamic exchange
of implementation aspects. In: TOOLS 29 – Technology of Object-Oriented Lan-
guages and Systems, pp. 351–360. IEEE, Los Alamitos (1999)

16. Mayr, R.: Process rewrite systems. Information and Computation 156(1-2), 264–
286 (2000)

17. Mayr, R.: Decidability of model checking with the temporal logic ef. Theor. Com-
put. Sci. 256(1-2), 31–62 (2001)

18. Nierstrasz, O.: Regular types for active objects. In: Nierstrasz, O., Tsichritzis, D.
(eds.) Object-Oriented Software Composition, pp. 99–121. Prentice-Hall, Engle-
wood Cliffs (1995)

19. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
TACAS, pp. 93–107 (2005)

20. Ramalingam, G., Warshavsky, A., Field, J., Goyal, D., Sagiv, M.: Deriving special-
ized program analyses for certifying component-client conformance. In: Proceed-
ings of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, pp. 83–94. ACM, New York (2002)

21. Reussner, R.H.: Counter-constraint finite state machines: A new model for
resource-bounded component protocols. In: Grosky, W.I., Plášil, F. (eds.) SOF-
SEM 2002. LNCS, vol. 2540, pp. 20–40. Springer, Heidelberg (2002)

22. Schmidt, H.W., Krämer, B.J., Poernomo, I., Reussner, R.: Predictable component
architectures using dependent finite state machines. In: Wirsing, M., Knapp, A.,
Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 310–324. Springer, Heidel-
berg (2004)

23. Tenzer, J., Stevens, P.: Modelling recursive calls with uml state diagrams. In: Pezzé,
M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 135–149. Springer, Heidelberg (2003)

24. Torre, S.L., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

25. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

26. Zimmermann, W., Schaarschmidt, M.: Model checking of client-component con-
formance. In: 2nd Nordic Conference on Web-Services. Mathematical Modelling in
Physics, Engineering and Cognitive Sciences, vol. 008, pp. 63–74 (2003)

27. Zimmermann, W., Schaarschmidt, M.: Automatic checking of component protocols
in component-based systems. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS,
vol. 4089, pp. 1–17. Springer, Heidelberg (2006)

Structural Testing of Component-Based Systems

Daniel Sundmark, Jan Carlson, Sasikumar Punnekkat, and Andreas Ermedahl

MRTC, Mälardalen University
Box 883, SE-721 23 Väster̊as, Sweden

daniel.sundmark@mdh.se

Abstract. Component based development of software systems needs
to devise effective test management strategies in order fully achieve its
perceived advantages of cost efficiency, flexibility, and quality in indus-
trial contexts. In industrial systems with quality demands, while testing
software, measures are employed to evaluate the thoroughness achieved
by execution of a certain set of test cases. Typically, these measures
are expressed in the form of coverage of different structural test crite-
ria, e.g., statement coverage. However, such measures are traditionally
applicable only on the lowest level of software integration (i.e., the com-
ponent level). As components are assembled into subsystems and further
into full systems, general measures of test thoroughness are no longer
available. In this context, we formalize the added test effort and show to
what extent the coverage of structural test criteria are maintained when
components are integrated, in three representative component models.
This enables focusing on testing the right aspects of the software at the
right level of integration, and achieves cost reduction during testing —
one of the most resource-consuming activities in software engineering.

1 Introduction

The component-based development paradigm has been quite successful in enter-
prise computing and is being explored as an attractive option in other
domains with quality demands, e.g., embedded software systems. However, in
order to gain wide acceptance in such domains, the component-based approach
also needs to devise efficient testing strategies and test management approaches,
since testing accounts for a lion’s share of the development cost in such systems.
Quality concerns also demand that the developer presents evidence of thorough-
ness of verification efforts performed. Structural coverage is a set of measures
for evaluating the thoroughness of software testing, based on how exhaustively
the tests exercise certain aspects of the structure of the software under test [1].
Test criteria based on structural coverage are well-defined for component-level
testing [1,2], but most of these definitions are not generally applicable for test-
ing performed post-integration, where issues of, e.g., multi-tasking and shared
resources come into play.

Building a system out of well-tested components does not necessarily result in
a well-tested system. However, during integration testing, it is possible to make
use of the information available on what aspects of the software that have already

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 180–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Structural Testing of Component-Based Systems 181

been tested before integration. Ideally, during integration testing, testing should
only focus on the correctness of the actual interaction between the integrated
components.

The contribution of this paper is twofold. First, we describe the added test
effort required by component integration, by introducing the concept of composi-
tionally introduced test items. Second, we describe the impact of this concept for
a number of common structural test criteria and three representative component
models. We also outline how this concept can be used in order to maintain the
quality assurance achieved by structural test coverage at an arbitrary level of
integration in multi-level hierarchical development of component-based software.

The main motivation for this work is that it facilitates a less ad-hoc way of
determining the adequacy of integration- and system-level testing in addition to
the functional testing traditionally used at this level, while also clearly separating
the test items that could be tested at component-level from those that need to
be tested post-integration.

2 Background

Testing is the primary means for verification used in the software industry, and
methods and strategies for testing come in many different shapes. Depending on
the type of software system to be developed or maintained, hypotheses regarding
the types of bugs suspected in the software, and many other aspects, the testing
approach will be different. There is, however, a common ground for reasoning
about test techniques.

2.1 Software Testing and Coverage

A test criterion is a specification for evaluating the test adequacy given by a cer-
tain set of test cases. Test criteria are defined in terms of test items, the “atoms”
of test criteria. A test criterion is generally formulated such that test adequacy
(with respect to that criterion) is attained when all test items are exercised dur-
ing testing. For example, for the statement coverage criterion, statements are
the test items. Test items are also called coverage items. Coverage is a generic
term for a set of metrics used for expressing test adequacy (i.e., the thorough-
ness of testing or determining when to stop testing with respect to a specific
test criterion [1]). A coverage measure is generally expressed as a real number
between 0 and 1, describing the ratio between the number of test items exercised
during testing and the overall number of test items. Hence, a statement coverage
of 1 implies that all statements in the software under test are exercised. Rules
for when to stop testing can be formulated in terms of coverage. For example, a
statement coverage of 0.5 (indicating that half of the statements in the software
are exercised) may be a valid, if not very practical, stopping rule.

Test criteria may be structural or functional, where structural test criteria are
based on the actual software implementation, or on abstract representations of
the software implementation (e.g., control flow graphs). As structural test criteria

182 D. Sundmark et al.

are strictly based on the actual software implementation and different inherent
aspects of its structure, these are possible to define formally. Examples of struc-
tural test criteria include exercising of all instructions, all execution paths, or all
variable definition-use paths in the software. It should be noted here that a full
coverage (i.e., a coverage of 1) is not generally achievable for structural test cri-
teria. This is due to the fact that the control flow graph representations used to
define these criteria typically contain infeasible paths or statements (i.e., paths
or statements that are not actually exercisable when executing the code), and
the exact determination of feasible paths and statements is undecidable [3,4].

On the other hand, test case selection based on functional test criteria is, in the
general case, ad-hoc in the sense that it depends on the quality, expressiveness,
and the level of abstraction of the specification. Basically, a more detailed and
thorough specification will result in a more ambitious and thorough functional
test suite. Examples of functional test techniques are boundary value testing and
equivalence class partitioning testing based on the software specification [5].

In the traditional view of the software engineering process, verification test-
ing is performed at different levels. Throughout the literature, many such levels
are discussed, but the most commonly reappearing levels of verification testing
are component, integration and system testing [5,6], see Fig. 1. Component
testing (also known as unit testing) is performed at the “lowest” level of soft-
ware development, where the smallest units of software are tested in isolation.
Such units may be functions, classes or components. Integration testing can
be performed whenever two or more components are assembled into a system
or a subsystem. Specifically, integration testing focuses on finding failures that
are caused by interaction between the different components in the (sub)system.
System testing focuses on the failures that arise at the highest level of inte-
gration [7], where all parts of the system are incorporated and executed on the
intended target hardware(s). The execution of a system-level test case is con-
sidered correct if its output and behaviour complies with what is stated in the
system specification.

Generally, the lower the level of testing, the more likely that both structural
and functional criteria will be considered. In traditional system-level testing,
only functional criteria are considered [6], and integration testing poses several
problems for structural criteria, e.g., definition of control- and data-flow struc-
tures over component boundaries. Hence, as we recognize that structural and
functional techniques complement each other by focusing on different aspects of
the same software, this paper aims at facilitating the additional use of structural
criteria on higher levels of integration. It is our firm belief that, compared to
the traditional testing performed at the higher levels of integration, a combina-
tion of structural and functional testing will provide a more thorough software
verification.

2.2 CBSE and Structural Software Testing

During component integration, the control- and data flow may be modified
or compromised, and coverage based on these concepts may be invalidated.

Structural Testing of Component-Based Systems 183

Component testing

Integration testing [level 1]

Integration testing [level n-1]

Integration testing [level n]
(System testing)

L
ev

el
s

o
f i

n
te

g
ra

ti
o

n

Fig. 1. Testing/integration levels in the software development process

Considering the system-level counterparts of control- and data flow, there are no
widely accepted general definitions of these concepts. Given unrestricted compo-
nent interaction, the control and data flow of a component assembly may exhibit
an unmanageable complexity. However, in practice the interaction between the
software parts in an integration is restricted by several factors, e.g., the run-time
system, and the architectural style used. To prevent an overwhelming complexity,
it is often desirable to adopt some level of component or unit isolation.

In Component-Based Software Engineering (CBSE), software applications are
built by composing software components into component assemblies [8,9]. The
main idea is that, by building systems out of well-tested components, an increase
in the predictability of the behaviour of the software could be gained; provided
that experience from component testing is taken into account.

Components are independent software units that interact via well-defined in-
terfaces. According to the basic CBSE principles, there should be no hidden
dependencies between components, except for those explicitly represented in the
component interfaces. This facilitates reuse, allowing a component to be replaced
without affecting the other components in the system.

In the context of structural testing at higher levels of integration, the additional
information provided by component interfaces could be exploited while reasoning
about the control and data flow in an assembly, and, in a later stage, when generat-
ing test cases. Thus, with a strong notion of component interface, the use of CBSE
gives benefits during integration level testing, compared to traditional approaches
where the corresponding information must be derived from low level code.

In general, system composition out of a set of components is guided by the
architectural style chosen for the system. According to Shaw and Garlan [10],
examples of such architectural styles include:

– Dataflow systems, which include systems based on pipes and filters, where
components act as filters of data, and the interconnections between

184 D. Sundmark et al.

components act as data pipelines. This type of system typically manipu-
lates sequential streams of data passed through components by pipelines.

– Call-and-return systems, e.g., object oriented systems, where the com-
ponents (objects) of the system interact through the use of inter-component
method calls.

– Independent components, e.g., event-based systems, uses an approach
where the invocation of components and component methods are not trig-
gered by explicit calls from other components, or on the explicitly stated
data flow through the system, but rather on the occurrences of internal or
external events.

In the following section, we will consider instances of these styles in order to
see how component composition according to each instance affects component
interaction, and the structural testing thereof. It should be noted that Shaw
and Garlan [10] also mention virtual machines and data centered systems
(repositories) as examples of architectural styles, but we will not consider them
in this paper.

3 Structural Testing of Component-Based Systems

In this section we describe what is required to achieve structural test coverage
for component assemblies, including whole component-based systems. In doing
this, we aim at a software development process where the knowledge of what
has already been tested, and the effects of component interaction, are used in
order to perform a more conscious, non-ad-hoc integration testing. Ideally, we
consider a process as the one described in Fig. 2, where the composition of a set
of components (1) is followed by an analysis determining if any further testing
is required to maintain the desired coverage (2). If such testing is required,
we generate (3) a set of test cases required to achieve the desired coverage,
whereafter test execution (4) and evaluation (5) follows, leading to an integrated
component assembly (or system) with the desired coverage maintained (6).

In doing this, our primary goal is to find a set of test cases that are required in
order to safely cover the aspects of the software added by component integration.
The secondary goal would be to find the minimal set of test cases that fulfils
this criterion. Unfortunately, since we are generally unable to determine exactly
which test items are feasible (i.e., executable on the level of integration where the
testing is performed), any analysis performed to safely determine feasible test
items will be over-approximative, and potentially find false positives [11]. Once
again, it should be noted that this problem is not unique to the higher levels of
testing we consider in this paper (even though it is likely to be more severe),
since not all items are feasible on component-level, and the exact determination
of feasible test items, even on component-level, is provably incalculable [3,4].

Also, note that some test items that are feasible when testing a component in
isolation might be made infeasible by system integration [12]. For example, a def-
inition of a shared variable in one component may influence the flow of control

Structural Testing of Component-Based Systems 185

Set of
components
with desired

coverage

Introduced test
item calculation

Test case
generation

Test
execution

Test
evaluation

Integrated
component

with maintained
coverage

1

2

3 4 5

6

Additional testing not required

Desired coverage achieved
Additional testing required

Desired coverage not achieved

Fig. 2. An outline of the envisioned process

and make paths considered feasible in other components infeasible [13,14,15].
This should be considered when performing testing of multi-tasking (and paral-
lel) systems.

3.1 Impact of Architectural Style

The architecture of the software under test will affect how test criteria will be
affected by component composition, since it, to a large extent, determines the
means of inter-component communication. Further, the choice of architectural
style to different degrees limits the component interaction, e.g., in terms of tem-
poral perturbation.

Although the proposed approach is not limited to a particular component
model or architectural style, it is exemplified by representatives of three different
architectural styles:

– CM1: As an example of the dataflow style, we consider a component model
(see Fig. 3a), similar to that of SaveCCM [16] or PECOS [17]. Contrast-
ing, e.g., the UNIX pipes-and-filters architecture where the filters execute
concurrently, we consider an interleaved model where components execute
non-preemptively. When activated, a component consumes one set of input
data and then executes to completion.

– CM2: Representing call-and-return systems, we consider a more traditional
model (see Fig. 3b), where components are invoked by method calls. Exam-
ples of such models include Sun’s JavaBeans [18], Microsoft’s COM [19], and
the Koala component model [20].

– CM3: As a third example, covering the architectural style of independent
components, we consider a component-based preemptive real-time system
where components correspond to individual tasks executing on an under-
lying real-time operating system (see Fig. 3c). Here, we consider compo-
nents that are strictly periodic, inter-arrival and assume that execution is

186 D. Sundmark et al.

a) Pipes and filters

b) Call and return

c) Independent components

Fig. 3. Architectural Styles

controlled by a system-level scheduler that distributes computation among
the components, based on, e.g., priority levels. Moreover, components are
preemptive, meaning that the scheduler is allowed to interrupt a component
during its execution, should a component of higher priority level become
available for execution. Examples of component models of this type include
Rubus [21] and Autocomp [22].

It should be noted that the components in the third example are only inde-
pendent in the sense that any transfer of control between components is initiated
by the system-level scheduler, and not from within a component. In general, the
components are not functionally independent, since they may communicate via
shared memory. Also, since tasks compete for the same computational resources,
they are clearly not independent with respect to timing.

It should also be noted that different architectural styles are sometimes
adopted at different integration levels of the same system, as in COMDES [23]
or ProCom [24]. For example, a large system might be built from a few in-
dependent components, each of which in turn can be further decomposed into
smaller components interacting in a pipes and filter fashion. The aim of our
method is that the choice of architectural style at lower levels of integration
should be transparent when determining the test coverage at a specific level of
integration.

Structural Testing of Component-Based Systems 187

3.2 Compositionally Introduced Test Items

In this section, we describe what needs to be covered by testing on a certain level
of component integration in order to maintain the coverage held by the compo-
nents to be integrated. This is done by defining the concept of compositionally
introduced test items. Simplified, these are the test items, given a certain test
criterion, that only exist on the current level of integration and above. These
additional test items particularly have two sources: The interaction between the
integrated components, and extra code added merely for the integration of the
components. Starting with the latter, during the development of systems based
on components there could be “extra” code involved, depending on the archi-
tectural style followed. Particularly, this extra code could comprise of different
categories such as:

– operating system code (e.g., driver routines, task switch routines and other
system functions); and

– glue code, written or automatically generated to connect components, and
for configuration and initialization.

For simplicity, we will consider the extra code as completely untested in the
remainder of this paper.

Given the existence of previously non-covered additional code, one will have
to pay special attention to ensure test coverage of this code during the higher
level integration. Also, even if the additional code is already covered, it might
give rise to additional test items for some test criteria and architectural styles,
caused by its interaction with the components in the assembly.

Before formally defining the concept of compositionally introduced test items,
some notation needs to be introduced. We consider an assembly A consisting of
components C1, . . . , Cα, composed in accordance with some component model
(i.e., α denotes the number of components in the assembly). To simplify the
presentation, we denote by C0 all the extra code of the assembly. In all other
aspects, C0 is not to be considered as a component. Moreover, given a particular
test criterion TC , the test items of Ci and A are denoted TITC

Ci
and TI TC

A ,
respectively.

Definition 1. The set of compositionally introduced test items of a test crite-
rion TC and an assembly A, is defined as follows:

CITC
A = TITC

A \
α⋃

i=1

TI TC
Ci

Thus, CITC
A denote the test items of A that are not present when the constituent

components C1, . . . , Cα are considered in isolation. Since most structural test
criteria are defined in terms of control flow paths or control flow graphs, these
concepts must be defined on an assembly level. For this, we denote by Si the
statements of component Ci.

188 D. Sundmark et al.

Definition 2. The statements of an assembly A are denoted SA, and defined
as

SA =
α⋃

i=0

Si.

Definition 3. The control flow graph of an assembly A is a directed graph
where the nodes are the statements in SA, and a directed edge 〈s1, s2〉 represents
a possible control flow from statement s1 to s2.

Definition 4. A control flow path of an assembly A is a finite path in the
control flow graph of A.

The control flow graph of an assembly can be very complex, particularly for
component models where transfer of control from one component to another is
not related to explicit constructs in the component code (as, for example, in
CM3 where the scheduler may preempt a component at any point). Further, we
note that each edge 〈sk, sk+1〉 in the control flow path of an assembly is either

1. part of the local control flow of a component Ci (i.e., 〈sk, sk+1〉 is in the
control flow path of Ci and 1 ≤ i ≤ α);

2. part of the control flow of the additional code C0; or
3. a transfer of control between two components, or between a component and

additional code (i.e., sk ∈ Si and sk+1 ∈ Sj , with i �= j, 0 ≤ i ≤ α and
0 ≤ j ≤ α).

Categories 2 and 3 are of particular interest, since they are the ones introduced as
a result of the composition. The third category is the main source of complexity,
and this is also where the choice of component model has the biggest impact.

For the usage proposed here, i.e., to measure test coverage and guide test case
generation, it is preferrable if the transfer of control between components can be
determined, or approximated, from the component interfaces. The impact of the
component model on the control flow graph is further discussed in Section 4.2.

4 Test Criteria

This section lists a number of structural test criteria, and, for each criterion,
defines its set of compositionally introduced test items. In the cases where the
choice of component model (CM1 –CM3) affects this set, this effect is described
for each different choice. The structural test criteria we investigate in this section
with respect to the set of compositionally introduced test items are:

– Statement coverage is chosen since it is the most basic, and in our experi-
ence, the most widely recognized structural test criterion, even to the point
that it is sometimes used synonymously with code coverage or coverage in
general.

– Branch coverage is chosen since it has a large similarity to statement
coverage, but still differs with respect to compositionally introduced test
items.

Structural Testing of Component-Based Systems 189

– Path coverage is chosen based on the fact that it, in its basic form, requires
the execution of each path through the system. As such, it is one of the more
exhaustive test criteria available.

– Modified condition/decision coverage (MC/DC) is chosen since it is
required as a part of the de-facto standard process in software development
of some safety critical software, e.g., avionics software [25].

– All uses coverage is chosen since it, when considering shared variables
in multi-tasking environments (a typical integration or system-level testing
concern), targets failures related to race conditions and similar interleaving
problems [11,26].

In our work, we make use of definitions of these criteria from [1,27] in defining
the compositionally introduced test items for each of the three representative
component models.

4.1 Statement Coverage Criterion

According to Zhu et al. [1], “a set P of execution paths satisfies the statement
coverage criterion if and only if for all nodes n in the flow graph, there is at least
one path p ∈ P such that node n is on the path p”.

For CM1, CM2, and CM3, the set of compositionally introduced test items
of the statement coverage criterion are just the statements of the additional code,
i.e., CI scA = S0. This follows directly from Definitions 1, 2 and 4, since for each
statement s ∈ SA in the control flow graph of A we have s ∈ Si, 0 ≤ i ≤ α.
Thus, either s ∈ S0 or s is among the test items of component Ci, in which case
it should not be included in CI scA .

4.2 Branch Coverage Criterion

Again, according to Zhu et al. [1], “a set P of execution paths satisfies the branch
coverage criterion if and only if for all edges e in the flow graph, there is at least
one path p ∈ P such that p contains the edge e”.

As discussed in Section 3.2, there are three categories of edges in the assembly
control flow graph: (1) the control flow within the components, (2) the control
flow within the additional code, and (3) the transfer of control between two
components, or between a component and additional code. Edges from the first
category are not included in the set of compositionally introduced test items,
which thus can be described as CIbc

A = B2 ∪ B3, where B2 and B3 correspond
to categories 2 and 3 above, respectively.

Regarding B3, for CM1, these edges go from an exit statement of one com-
ponent to the entry statement of another. Alternatively, if communication is
carried out by glue code, from exit statements to some s ∈ S0 and from some
s ∈ S0 to the entry statement of a component.

For CM2, B3 consists of edges going from a method call statement in one
component to an entry statement in the called component, and from the return
statement of a method to the next statement of a caller, possibly linked by
additional code statements.

190 D. Sundmark et al.

For CM3, let Ci and Ci be two components, such that Cj has strictly higher
priority than Ci. Then B3 contains edges from all statements in Si to the first
statement of Cj , and from each final statement in Sj to all statements in Si. Note
that if the assembly constitutes the entire system, then additional information is
available, such as periods, response times, etc. of all components in the system.
This additional system-level information can be exploited to further reduce the
number of edges in B3.

4.3 Path Coverage Criterion

“A set P of execution paths satisfies the path coverage criterion if and only if
P contains all execution paths from the begin node to the end node in the flow
graph” [1].

For this criterion, the compositionally introduced test items are those paths
in the control flow graph of A which includes a statement from S0, or two
statements sk ∈ Si and sl ∈ Sj , such that i �= j.

For CM1, the paths in CIpcA are sequential combinations of local control flow
paths of the components, respecting the order in which they are connected in
the pipes and filter scheme. For CM2, CI pcA is the set of interleaved control flow
paths, where the points of interleaving are constituted by the calls and returns of
methods between components. For CM3, CI pcA consists of interleaved control
flow paths, where the points of interleaving are governed by component priority
levels, similarly to the branch coverage criterion discussed above.

4.4 MC/DC Criterion

According to Chilenski and Miller [27], the Modified Condition/Decision Cov-
erage (MC/DC) criterion is satisfied when “every point of entry and exit in the
program has been invoked at least once, every condition in a decision in the pro-
gram has taken on all possible outcomes at least once, and each condition has
been shown to independently affect the decision’s outcome. A condition is shown
to independently affect a decision’s outcome by varying just that condition while
holding fixed all other possible conditions”.

For CM1, CM2, and CM3, the set of compositionally introduced test items
is the set of test items introduced by the additional code. To show that these are
the only test items introduced by the integration of components, we establish
that no new points of entry and exit are introduced by composition, and that
the only conditions in the resulting assembly are the conditions residing in the
assembled components.

4.5 All Uses Coverage Criterion

“A set P of execution paths satisfies the all-uses criterion if and only if for
all definition occurrences of a variable x and all use occurrences of x that the
definition feasibly reaches, there is at least one path p in P such that p includes
a subpath through which that definition reaches the use” [1].

Structural Testing of Component-Based Systems 191

The compositionally introduced test items of the all uses criterion is given by
CIus

A = D1 ∪D2, where D1 is the set of pairs of definiton and uses that fulfil the
criterion in the control flow graph of the additional code; D2 is the set of pairs
of definitions and uses that fulfil the criterion, and where the definition of the
variable is performed in a component Ci and the use of the variable is performed
in a component Cj , such that i �= j.

In CM1, all component communication is supposed to take place via the ex-
plicit component ports. If this can be ensured, e.g., by the development frame-
work, D2 is empty. For CM2, it is also the case that D2 is empty if the underlying
formalism does not permit shared variables. Since CM3 allows shared variables,
D2 is simply the set of feasible inter-component shared variable definition and
use pairs.

5 Discussion

Our research so far has been aimed at developing a general formal theory for
identifying additional structural test efforts required under different models of
component interactions. The consideration of three architectural styles and five
test criteria yields fifteen possible architectural style/test criterion combinations,
of which not all are reasonably applicable. Below, we reflect upon the most
notable combinations.

The fact that statement coverage composes nicely might be no major surprise,
since it is intuitive that no new statements are introduced during integration (be-
sides the ones in the extra code). Branch coverage, however, is more interesting
during integration testing, since the set of all compositionally introduced test
items for branch coverage describes all transfers of control from one component
in the assembly to another. For CM3, covering these transfers of control quickly
becomes impracticable without rigid restrictions on the scheduling of compo-
nents, but for CM1 and CM2, covering these branches would be a feasible way
of testing explicit component interactions.

Path coverage suffers severely from complexity issues even at the component
level [1], and would at best be applicable for very small systems conforming to
CM1 and CM2, with a handful of branching statements. Furthermore, the fact
that MC/DC coverage scales well for all architectural styles might be interesting
to component-based software developers building systems that should conform
to a standard that requires such coverage (e.g., [25]). Finally, as related work
shows [11,26], data flow (e.g., all uses) coverage on integration level is useful for
detecting interleaving failures such as race conditions and stale-value errors in
systems conforming to CM3.

6 Related Work

Previous contributions in testing of component-based systems range from verifi-
cation of execution time properties by evolutionary testing [28], through regres-
sion testing of components based on information provided regarding component

192 D. Sundmark et al.

changes [29], to model-based testing of component-based systems [30]. Despite
this variety of contributions in this field, there exists, to our knowledge, no
previous work discussing traditional structural test coverage in the integration
testing of component-based systems. However, the fact that components need to
be tested in the integrated setting in which they are intended to operate is recog-
nized, e.g., by Weyker [31]. It is our firm belief that the quality of the verification
would benefit by complementing the functional testing traditionally performed
during integration with structural coverage as described in this paper.

Outside the component-based development community, the most notable ef-
forts regarding structural testing on integration- or system level has been inves-
tigations of how to achieve structural coverage in concurrent systems of different
flavours (typically focusing on definitions and uses of shared variables [11,26]).
For structural testing of concurrent systems, many approaches combine the in-
ternal control flow structure of concurrent threads with the possible synchro-
nizations between the threads. By doing this, a system-level control flow repre-
sentation for structural testing can be achieved. Also related to this work, are
contributions describing specialized structural test criteria focusing on the con-
trol flow paths of concurrent programs [32,33,34,35]. In contrast to the above
works, the contribution of this paper is an effort to generalize the problem by
considering several architectural styles, and a variety of test criteria.

7 Conclusions and Future Work

Building a system out of well-tested components does not necessarily result in a
well-tested system. Generally, after integration of well-tested components into a
subsystem or a system, the interaction between components remain to be tested.
Using functional testing, we will cover the functional aspects of the integration
(if the specification used as the base for test case generation is of a sufficient
quality), but in order to cover structural and non-functional aspects, structural
testing is required. Furthermore, structural coverage measures are not perfect,
but they constitute the main formal quality assurance measures available in
software testing.

In this paper, we have described the added test effort required by component
integration, by introducing the concept of compositionally introduced test items.
Also, we have described the impact of this concept for a number of common
structural test criteria considering common architectural styles. Second, we have
shown what is required in order to achieve structural test coverage at an arbitrary
level of integration in multi-level hierarchical development of component-based
software. By doing this, we have facilitated a less ad-hoc way of determining
the adequacy of integration- and system-level testing than the functional testing
traditionally used at this level.

Extending this approach to other component models and identifying impacts
of relaxing some of our assumptions will be the immediate followups of this work.
Several interesting questions also need to addressed such as a) what information
we need to provide at the component interface level and b) what happens if

Structural Testing of Component-Based Systems 193

we do not have access to source code. We have also assumed strong adherence
to component model semantics at lower levels of implementation, which cannot
be taken for granted in many systems where the underlying implementation
could be based on languages such as C. Scenarios that are potentially capable of
invalidating the results need to identified and appropriate additional test efforts
need to be incorporated.

Furthermore, in the continuation of this work, a goal would be to, for different
architectural styles, and different test criteria, find a set test cases that safely
covers the set of compositionally introduced test items. A second goal would be
to find the minimal set of test cases that fulfils this criterion.

References

1. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM
Computing Surveys (CSUR) 29(4), 366–427 (1997)

2. Juristo, N., Moreno, A.M., Vegas, S.: Reviewing 25 Years of Testing Technique
Experiments. Journal of Empirical Software Engineering 9(1-2), 7–44 (2004)

3. Frankl, P.G., Weyuker, E.J.: An Applicable Family of Data Flow Testing Criteria.
IEEE Transactions of Software Engineering 14(10), 1483–1498 (1988)

4. Pavlopoulou, C., Young, M.: Residual test coverage monitoring. In: ICSE 1999:
Proceedings of the 21st international conference on Software engineering, pp. 277–
284. IEEE Computer Society Press, Los Alamitos (1999)

5. Craig, R.D., Jaskiel, S.P.: Systematic Software Testing. Artech House Publishers
(2002)

6. van Veenendaal, E.: The Testing Practitioner. Uitgeverij Tutein Nolthenius (2002)
7. Copeland, L.: A Practitioner’s Guide to Software Test Design. STQE Publishing

(2003)
8. Crnkovic, I., Larsson, M.: Building Reliable Component-Based Software Systems.

Artech House Publishers (2002)
9. Lau, K.K., Wang, Z.: A Survey of Software Component Models, 2nd edn., May

2006. Pre-print CSPP-38, School of Computer Science, The University of Manch-
ester (2006)

10. Shaw, M., Garland, D.: Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice-Hall, Englewood Cliffs (1996)

11. Sundmark, D., Pettersson, A., Sandberg, C., Ermedahl, A., Thane, H.: Finding
DU-Paths for Testing of Multi-Tasking Real-Time Systems using WCET Analysis.
In: Proceedings of the 7thInternational Workshop on Worst-Case Execution Time
Analysis (WCET 2007) (July 2007)

12. Pretschner, A.: Compositional Generation of MC/DC Integration Test Suites. Elec-
tronic Notes in Theoretical Computer Science 82(6) (2003)

13. Goldberg, A., Wang, T.C., Zimmerman, D.: Applications of Feasible Path Analysis
to Program Testing. In: ISSTA 1994: Proceedings of the 1994 ACM SIGSOFT
international Symposium on Software Testing and Analysis, pp. 80–94. ACM Press,
New York (1994)

14. Gustafsson, J., Ermedahl, A., Lisper, B.: Algorithms for Infeasible Path Calcula-
tion. In: Sixth International Workshop on Worst-Case Execution Time Analysis
(WCET 2006), Dresden, Germany (July 2006)

15. Hayes, I., Fidge, C., Lermer, K.: Semantic Characterisation of Dead Control-Flow
Paths. IEE Proceedings - Software 148(6), 175–186 (2001)

194 D. Sundmark et al.

16. Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., H̊akansson, J., Möller, A.,
Pettersson, P., Tivoli, M.: The SAVE approach to component-based development
of vehicular systems. Journal of Systems and Software 80(5), 655–667 (2007)

17. Nierstrasz, O., Arévalo, G., Ducasse, S., Wuyts, R., Black, A.P., Müller, P.O.,
Zeidler, C., Genssler, T., van den Born, R.: A component model for field devices. In:
Proc. of the 1st Int. IFIP/ACM Working Conference on Component Deployment,
pp. 200–209. Springer, Heidelberg (2002)

18. Sun Microsystems: JavaBeans Specification 1.01 (August 1997), http://
java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html

19. Box, D.: Essential COM. Addison-Wesley, Reading (1997)
20. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Com-

ponent Model for Consumer Electronics Software. IEEE Computer 33(3), 78–85
(2000)

21. Lundbäck, K.L., Lundbäck, J., Lindberg, M.: Component Based Development
of Dependable Real-Time Applications. Technical report, Arcticus Systems,
http://www.arcticus.se

22. Sandström, K., Fredriksson, J., Åkerholm, M.: Introducing a component technol-
ogy for safety critical embedded realtime systems. In: Crnković, I., Stafford, J.A.,
Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 194–209.
Springer, Heidelberg (2004)

23. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: A Component-Based Framework
for Generative Development of Distributed Real-Time Control Systems. In: Proc. of
the 13th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pp. 199–208. IEEE, Los Alamitos (2007)

24. Bureš, T., Carlson, J., Crnković, I., Sentilles, S., Vulgarakis, A.: ProCom - the
Progress Component Model Reference Manual, version 1.0. Technical Report
MDH-MRTC-230/2008-1-SE, Mälardalen University (June 2008)

25. RTCA: Software Considerations in Airborne Systems and Equipment Certification,
RTCA/DO-178B. RTCA (December 1992)

26. Yang, C.S.D., Pollock, L.L.: All-uses Testing of Shared Memory Parallel Programs.
Software Testing, Verification and Reliability 13(1), 3–24 (2003)

27. Chilenski, J.J., Miller, S.P.: Applicability of Modified Condition/Decision Coverage
to Software Testing. Software Engineering Journal, 193–200 (1994)

28. Groß, H.G., Mayer, N.: Evolutionary testing in component-based real-time sys-
tem construction. In: GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, San Francisco, CA, USA, p. 1393. Morgan Kaufmann
Publishers Inc., San Francisco (2002)

29. Mao, C., Lu, Y.: Regression testing for component-based software systems by en-
hancing change information. In: APSEC 2005: Proceedings of the 12th Asia- Pa-
cific Software Engineering Conference, Washington, DC, USA, pp. 611–618. IEEE
Computer Society, Los Alamitos (2005)

30. Pelliccione, P., Muccini, H., Bucchiarone, A., Facchini, F.: TeStor: Deriving Test
Sequences from Model-based Specifications. In: Heineman, G.T., Crnković, I.,
Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2005.
LNCS, vol. 3489, pp. 267–282. Springer, Heidelberg (2005)

31. Weyuker, E.J.: Testing Component-Based Software: A Cautionary Tale. IEEE
Softw. 15(5), 54–59 (1998)

32. Katayama, T., Itoh, E., Ushijima, K., Furukawa, Z.: Test-Case Generation for
Concurrent Programs with the Testing Criteria Using Interaction Sequences. In:
Proceedings of sixth Asia-Pacific Software Engineering Conference (APSEC 1999),
p. 590 (1999)

http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://www.arcticus.se

Structural Testing of Component-Based Systems 195

33. Taylor, R.N., Levine, D.L., Kelly, C.D.: Structural Testing of Concurrent Programs.
IEEE Transactions on Software Engineering 18(3), 206–215 (1992)

34. Wong, W.E., Lei, Y., Ma, X.: Effective Generation of Test Sequences for Structural
Testing of Concurrent Programs. In: Proceedings of the 10th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS 2005), Wash-
ington, DC, USA, pp. 539–548. IEEE Computer Society, Los Alamitos (2005)

35. Yang, R.D., Chung, C.G.: Path Analysis Testing of Concurrent Program. Informa-
tion and Software Technology 34(1), 43–56 (1992)

Towards Component-Based Design and

Verification of a µ-Controller�

Yunja Choi and Christian Bunse

1 School of Electrical Engineering and Computer Science
Kyungpook National University, Daegu, Korea

yuchoi76@knu.ac.kr
2 School of IT

International University, Bruchsal, Germany
Christian.Bunse@i-u.de

Abstract. Model-driven and component-based software development
seems to be a promising approach to handling the complexity and at
the same time increasing the quality of software systems. Although the
idea of assembling systems from pre-fabricated components is appeal-
ing, quality becomes a major issue, especially for embedded systems.
Quality defects in one component might not affect the quality of the
component but that of others. This paper presents an integrated, for-
mal verification approach to ensure the correct behavior of embedded
software components, as well as a case study that demonstrates its prac-
tical applicability. The approach is based on the formalism of abstract
components and their refinements, with its focus being on interaction
behavior among components. The approach enables the identification of
unanticipated design errors that are difficult to find and costly to correct
using traditional verification methods such as testing and simulation.

1 Introduction

Concerning stand-alone devices, the correctness and reliability of the relevant
control systems have only limited effects. In today’s new computing environ-
ments, such as ubiquitous computing and autonomous systems, however, the
reliability of one, even small, embedded system may affect a large network of
embedded systems. Thus, there is an urgent need for a structured development
methodology with integrated verification support [13]. Model-driven Develop-
ment(MDD), combined with component architecture, has been increasingly at-
tracting researchers and industry practitioners in this regard.

Component-oriented MDD helps to cope with the increasing complexity
of software system development. MDD development processes, such as Mar-

mot [2,4] explicitly distinguish component specifications (contracts or inter-
faces) from component realizations (implementations). The Marmot approach

� A longer version of this paper is under review for publication in Formal Aspects of
Computing.

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 196–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Component-Based Design and Verification of a µ-Controller 197

maintains simplicity through a divide-and-conquer strategy, while keeping con-
tinuity and consistency through systematic, iterative refinements of components
across different life-cycle stages (design, implementation, etc.). Furthermore, it
facilitates automated formal verification as well as model-based simulation and
testing, which can be naturally blended into the abstraction refinement process.

In this paper, we present a formal verification approach integrated into model
driven development process. Our approach is two-fold: (1)We formalize compo-
nents at each iteration of the component specification process and apply model
checking [8] as a formal verification method to ensure behavioral consistency
with the external environment, even before each component is completely re-
alized. (2) We formalize gradual refinements through decomposition and verify
their validity by checking behavioral consistency. While traditional verification
methods, such as testing and simulation, focus on verifying expected outputs from
planned inputs, model checking is based on exhaustive verification for all possi-
ble input sequences, and, thus, is better suited for ensuring high reliability and
safety.

We demonstrate our approach by using a component-oriented MDD frame-
work (based on Marmot) in the development of a mirror-control system (i.e.,
an embedded system controlling the movement of a car’s exterior mirror). The
focus is on checking the behavioral consistency and correctness of the system’s
µ-controller. We present a system model and formalize three important notions,
namely: abstract component, realization, and refinement. These provide the ba-
sis for a systematic transformation into a formal language that can be checked.
The model checker Spin [11] is used for checking interaction consistency and
the essential properties of the controller, which reveals a potentially fatal prob-
lem in the original controller design – the possibility that a user request may
be postponed indefinitely. We have identified the centralized control of events
in the design of the µ-controller as the source of the problem by analyzing the
counter-examples generated by the model checker. We show that changing each
driver component into an independent and active component addresses the issue.
This exemplifies the importance of formal verification in early design stages.

The remainder of this paper is organized as follows; Section 2 and Section 3
provide a brief description of the mirror control system and of using Marmot

for its development. Section 4 defines the notion of abstract components and
their interaction behavior. Section 5 demonstrates how components of a mirror
control system can be formalized and translated into the formal specification
language Promela [10], depending on the level of abstraction, and explains the
effect of formal verification on the change of design. We conclude with a brief
discussion in Section 6.

2 Mirror Control System

The mirror control system is an embedded system composed of electrical and
mechanical components and is used to control the movement of a car’s exterior
mirror. The system allows a mirror to be moved horizontally and vertically into a

198 Y. Choi and C. Bunse

«Component»
ATMega 8

VCC

GND

«Component»
LCD

«Component»
Servo

«Component»
Potentiometer

Crystal

Frequency = 4MhZ

«Component»
Button

Port 16 (PWM)

Control

Port 9,10 Port 2,3 (UART)

+5V

+

Port 1,7,20,21 Port 17, 18, 19 (ISP)

-

Port 8,22Port 25
+ -

Port 2,3,4,5,
6,11,12

,13,14,15

+

-

Port 23,24

-

+

Port 26,27,28
(Unused)

Fig. 1. UML representation of hardware

position that is convenient for the driver. Cars supporting different driver profiles
can store the mirror position and recall it as soon as the profile is activated.

In the context of this paper, the mirror control system was realized in a
simplified version using a µ-controller, i.e., an ATMELTM Mega 8, a button,
and two servos (the Servo-Control System). In detail, this system requires the µ-
controller to read values from the potentiometers (i.e., analog-digital conversion),
converts them into the mirror turning degree, and generates the needed servo
control signals, while at the same time indicating movement and degree on an
LCD display. In addition, the system stores a mirror position that can be recalled
by simply pressing the button. Positions are stored by pressing the button for
more than five seconds. Storing and recalling is also visualized on the LCD
display. Figure 1 shows a simplified UML1 representation of the electronic circuit,
representing the structural model of the mirror control system.

The requirements of the mirror control system are described by use case dia-
grams (Figure 2(a)) and an interaction diagram (Figure 2(b)) representing the
general flow of control. The use case diagrams describe how the actor ‘User’ initi-
ates the task of controlling the servo rotation. The interaction diagram provides
an alternative view of the way in which user tasks are performed and shows the
typical sequence of operations concerning the overall system.

3 Component-Based Development

3.1 Abstract Component and Refinements

Following the component-based development process Marmot [2,4], we view a
system as a tree-shaped hierarchy of components, where the root represents the
system as an abstract component, the parent/child relation represents composi-
tion, and the leaf components represent final implementation. Figure 3 illustrates

1 The Unified Modeling Language [7].

Towards Component-Based Design and Verification of a µ-Controller 199

Servo-Control

User

Control Aptitude

Store Position

«i
nc

lu
de

»

Recall Position

« i
nc

lu
d

e»

(a) Use case diagram (b) Interaction model

sd Servo-Control System

:Servo-Control System

System_On

:User

[2]

[1]

alt

Turned

[2]

[1]

alt

Pressed < 5sec

Pressed >= 5sec

loop

System_Off

Potentiometer

Button

Fig. 2. Mirror control system context realization

the structure of the Marmot component divided into an externally visible con-
tract named specification and the internal realization part; UML class diagrams
and object diagrams are used to specify the external and internal structure of
the component. Activity/interaction diagrams are used to specify external and
internal behavior of the component. Note that we can use HDL or system C for
lower-level component specifications instead of UML diagrams.

com
ponent

(visible)

(internal)

Fig. 3. Structure of a component

3.2 Component Specification

In this section, we illustrate with examples how Marmot (i.e., the MDD
methodology) is applied to the development of the mirror controller. Since the
hardware environment is pre-defined, we focus on the development of the soft-
ware part, namely the Driver and the Application components. The Controller

200 Y. Choi and C. Bunse

Component
Application

<Signal>Button_Pressed,
<Signal> Button_Released

<Signal> Potentiometer_tuned

Component
Controller

Position

1

 1

ha
nd

l e
s

Ready

Timing

System_On System_Off

(a) Application specification - class diagram (b) Application specification - statechart

B
utton_pressed

Button_R
eleased

[tim
e>=5] /store

B
utton_R

eleased
[tim

e<5] /restore

Fig. 4. Specifications for the Application component

component is a container without any software functionality, but contains the
Application component. Figure 4(a) shows the specification-level class diagram
of the Application component in its context. The component does not offer any
operations to the outer world, but reacts to signals. This is denoted by the UML
2.0 stereotype signal. The state diagram of the Application component (see Fig-
ure 4(b)) shows that the Application component is in the ready state, after
the system on event. When the button pressed event happens, the component
transits to the timing state where “the time till the next button released event
occurs” is measured. Depending on whether the time is less than 5 seconds or
not, it signals the restore action or the store action to the Servo component
and transits back to the ready state.

3.3 Component Realization

While the externally visible behavior of the Application component can be
uniquely specified according to the functionality required by the component,
there can be various ways of realizing such functionality depending on the
design decision and available hardware components that can be utilized. The
Marmot realization step specifies how the externally visible behavior of the
component is actually realized through decomposition and collaboration among
sub-components. Figure 5(a) shows the Driver component used to realize the
functionality of the Application component, which is again decomposed into
five sub-components that handle the corresponding hardware component. The
interaction behavior among components is specified in an interaction diagram.
For example, Figure 5(b) specifies the interaction behavior between the Appli-
cation component and the button driver; the button pressed (button released)
event from the user initiates the T imer starts (timer stops) action in the button
driver, and then, depending on the duration of the button pressed event, the Ap-
plication component interacts with the button driver to either set or store the
mirror position in the Servo component.

Towards Component-Based Design and Verification of a µ-Controller 201

:Application

Button

:Driver

Timer_Start<<signal>> Button_Pressed

<<signal>> Button_Released
Timer_Stop

Timer

sd Button

[Timer > 5 sec]

[Timer < 5sec]

alt

Servo_Set(x,y)

Servo_Set(x,y)

LCD_Send(„Goto Position“)

LCD_Send(„Position Stored“)

EEPROM_Retrieve

x,y

EEPROM_Store(x,y)

Component
LCD

Init
Send
Cmd
Clear
Home
On
Off
Goto
Light
Dimmer

Component
Servo

Init
Set

Component
Potentiometer

Read

<<Signal>>
Poti_Turned

<Abstract>Component
Driver

Component
Controller

Component
Timer

Start
Stop

Component
Button

<<Signal>>
Pressed,Released

Component
EEPROM

MemorySize = 1 KByte

Store
Retrieve

(a) realization class diagram (b) realization behavior button driver

Fig. 5. Realization of the Application component

4 Formal Definition and Translation

To ensure the correctness and consistency of its complex behavior produced
by the compositions of dozens, possibly hundreds, of components, we first de-
fine the meaning of component interactions and their inter-relationships using
π-calculus [16], with an emphasis on their communication behavior. The for-
malism defined with π-calculus serves as a basis for defining translation rules
from Marmot components to formal modeling languages such as Promela for
verification purposes. π-calculus supports parallel composition of processes, syn-
chronous communication between processes through channels, dynamic creation
of channels, and non-determinism — characteristics suitable for formalizing ab-
stract components and their interaction behaviors.

4.1 Formal Meaning of the Abstract Component

Figure 6 summarizes the formal descriptions for the major artifacts of a Marmot

component.
We define an abstract component as a composition of two parallel processes

consisting of an interface I and an externally visible body Spec0 (see row 1 of
Figure 6); each Comp spec has pre-defined input/output channels (i, o), a set of
operations op set, and a set of actions action set that are visible from outside
the component. These are used for the component to interact with its exter-
nal environment. The interface I and Spec0 interchange messages and events
through the internal channels u, v. Here, new u, v means that the channels u, v
are dynamically created within the component with a limited scope. The symbol
“ | ” represents parallel composition of two processes.

An interface I(i, o, u, v) (see row 2 of Figure 6) either receives a message x from
input channel i and forwards it to the internal message channel u, or receives a
message y from the internal output channel v and forwards it to output channel o.
Here, i?x, u!x represents an input event on channel i, an output event on channel

202 Y. Choi and C. Bunse

Type

Abstract component

Interface

Component behavior

Abstract implementation

Component realization

Component Relations

Formal description

Comp_spec(i,o,op_set, action_set) = new u,v (I(i,o,u,v) | Spec_0(u,v, op_set, action_set))

I(i,o,u,v) = i?x.u!x.I(i,o,u,v) + v?y.o!y.I(i,o,u,v)

Spec_i(u,v,op_set,action_set) = u?x.[x=op_k].Action_spec_k(u,v,op_set,action_set)
 + u?x.[x!=op_k].Spec_i(u,v,op_set, action_set)

Action_spec_i(u,v,op_set,action_set) = (v!a_j)*.Spec_j(u,v,op_set,action_set)

Comp_real(i,o,op_set,action_set) = new u,v, {(u_i,v_i)}_i
 (I(i,o,u,v) | !_i SubComp_i (u_i,v_i,sub_op_set_i, sub_action_set_i)
 | Composit_Rel(u,v, {(u_i,v_i)}_i)

Composit_Rel(u,v,{(u_i,v_i)}_i) = v_i?x.f(v_i)!x.Composit_Rel(u,v,{(u_i,v_i)}_i)

1

2

3

4

5

6

Fig. 6. Definitions of components and refinements

u, with message/signal x, respectively. Two events that are concatenated with
a “.” symbol occur sequentially; for example, i?x.u!x means that an input event
is followed by an output event. A “+” symbol means a non-deterministic choice
between two different event sequences. Note that I is recursively defined so that
it transits back to itself after any pair of input/output events.

The behavior of a component is defined with a series of processes from Spec0,
representing the process at the initial state, to Speci representing the process
at the ith state, as defined in row 3 in Figure 6; Speci receives a message x,
checks whether it matches one of the operations in the op set, and performs
corresponding actions Action speck if it matches an operation opk, and does
nothing if it does not match any of the operations in the set2. Action speci

(the row 4 in Figure 6) defines a series of actions that need to be performed
by the component for a particular operation. The actions are notified to the
internal output channel v, which is forwarded to the external output chan-
nel o by the interface I3. After all the action outputs, the process reduces to
Specj(u, v, op set, action set) where the mapping from Speci to Specj is pre-
defined by the conditions on the message values. In other words, there is a map-
ping from {(i, x) | process state i, message value x} to {j | process state j}.
This mapping can be extracted from the statechart diagrams in the specification
model.

4.2 Formal Meaning of Component Realization

Specifications of a component uniquely define the externally visible behavior of
the component regardless of how it is realized internally. On the other hand,
each functionality can be realized in many different ways through decomposition
and refinements. The focus of this realization process is to make it as flexible

2 The simplified notation [x = opi].Action speci(u, v, action set) is used instead of
enumerating all possible matches.

3 The simplified notation (v!aj)
∗ is used to denote a series of output actions instead

of v!a1.v!a2.v!a3..v!an.

Towards Component-Based Design and Verification of a µ-Controller 203

as possible so that the change of a certain realization of a component does
not affect the overall interaction behavior. To this end, we formally refine the
abstract component Comp Spec process with the Comp real process, as defined
in the row 5 and row 6 in Figure 6, consisting of a number of parallel SubComp
processes that collaboratively realize the Spec process of Comp Spec. Note that
each SubComp is considered as an independent component on its own, and,
thus, can be recursively specified as an abstract component in the same way as
Comp Spec.

In Figure 6 (Component Realization), {ui, vi}i abbreviates an i number of
input/output channel pairs, and !i abbreviates the parallel composition of a
number of SubComp processes whose interrelation is defined in Composit Rel;
for each component, the destination of its output message is uniquely defined in
Composit Rel in the form of a function f : {v, {vi}i} −→ {u, {ui}i}. This func-
tion f is used to wire sub-components and can be changed independently from
the implementation of each SubComp, supporting flexible design for component-
based development.

4.3 From Marmot to Promela

We use the model checker Spin [11] as a back-end verifier for Marmot models.
There are a couple of automated verification tools directly supporting π-calculus,
such as the Mobility Workbench from Uppsala University. Nevertheless, their ef-
ficiency and usability are not as good as those of general-purpose model checkers
such as Spin and Smv, and, thus, they are not yet suitable for routine use during
the development process.

The use of Spin requires a translation of Marmot models into Promela,
the input language of Spin. The syntactic transformation from Marmot to
Promela is based on the formal meaning of Marmot components defined in the
previous sections. Note that our translation approach is specialized in Marmot

components. For more general translations, please refer to [21].
Figure 7 shows some of the syntactic translation definitions from Marmot to

Promela; the names of operations and actions in a Marmot component are
translated into elements of the Promela mtype construct. Each communication
channel in a Marmot component is declared as a message channel of mtype in
Promela. Each Marmot component specification, component interface, and
component realization corresponds to a proctype declaration. The Promela run
construct is used to activate an interface process or a specification process in a
component. Message sending and receiving actions can be directly translated into
u!x and u?y where x and y are declared as mtype. A behavioral specification
Speci corresponds to a state of a component whose transition is defined by
the transitions in Speci. A similar translation applies to Action speci. Non-
conditional action transitions are translated into sequential actions followed by
a goto statement. The Promela if construct is used for conditional transitions.

Note that we omit detailed translation rules from UML diagrams to
Promela statements to save space. Interested readers may refer to existing
approaches [9,15].

204 Y. Choi and C. Bunse

Marmot construct Promela construct
messages O =

⋃
op set,action set

mtype = {n1, n2, . . . , nk},

where ni ∈ O.
{n | n ∈ op set or n ∈ action set}

channels new u chan u = [1] of mtype

Processes I(i,o,u,v) proctype Interface(chan i,o,u,v)
Comp spec(i,o,op set, action set) proctype Comp spec(chan i,o){. . . }
Comp real(i,o,op set, action set) proctype Comp real(chan i,o){ . . . }

Process Comp Spec(i,o,O,A) = new u,v I(i,o,u,v) | proctype Comp Spec(chan i,o){
Activation Spec(u,v,O,A) chan u = [1] of mtype;

chan v = [1] of mtype;
run Interface(i,o,u,v);
run Spec(u,v); }

actions u?x mtype x; u?x;
u!y mtype y; u!y;

states Speci(u, v, op set, action set) statei :

transitions π.Speci(u, v, op set, action set) π; goto statei;

conditionals u?x.[x = a]Speci(u, v, O, A) if :: u?[a] → goto statei; fi;

Fig. 7. Syntactic translation from Marmot to Promela

5 Applying Formal Methods

Based on the formalism introduced in the previous section, we now transform
the UML representation of the Application component in Figure 4 into formal
models in Promela. Promela [10] is the input language of the Spin [11] model
checker, which is widely used for software verification.

5.1 Formalizing the Specification of the Application Component

Direct Translation. First, we specify the Application component Comp Spec
using the formal definition for abstract components in Figure 6 as follows:

mtype = { system_on, system_off, button_pressed, button_released,
poti_tuned, store, restore};

proctype Comp_spec(chan i, o){
chan u = [1] of {mtype};
chan v = [1] of {mtype};
run Interface(i, o, u, v);
run Spec(u,v);

}

In this specification, mtype declares the set of actions and operations used
in the Application component. The proctype declaration is used to declare the
component process with the name Comp spec and the input, output channels i, o
are declared in the signature of the component. Within the process Comp spec,
u, v are declared as channels with the message type mtype, i.e., the two internal
channels are used to deliver messages/signals of actions and operations. Two
parallel processes, Interface and Spec, are activated by Comp spec as its sub-
processes using the keyword run.

Towards Component-Based Design and Verification of a µ-Controller 205

The next Promela code shows the specification of the Spec process whose
behavior is derived from the statechart of the Application component in Fig-
ure 4(b); the four labels, Spec 0(line 3), Spec 1(line 9), Spec 2(line 16), and
end state, represent the initial state, ready state, timing state, and the final
state, respectively. The Spec process is initially in the Spec 0 state and tran-
sits to the Spec 1 state if the system on signal is received. The transition from
Spec 1 occurs either to Spec 2 or to end state when the button is pressed or
the system off signal is received. In Spec 2, it non-deterministically sends out
store or restore messages and transits to Spec 1 if the button released event
occurs (line 19–line 22). Otherwise, it transits to Spec 2 (line 23). Note that
predicate abstraction [6] is applied to the original guarded action, “if time < 5
then restore, else if time ≥ 5 then store”, so that it is transformed into a
non-deterministic choice of actions between restore and store; we first replace
time < 5 with a boolean variable t transforming the guarded action into “if t
then restore, else if ¬t then store”. Since the value of t is determined non-
deterministically at this abstract level, we replace the guarded action with
“non-deterministic choice between store and restore” as expressed in line 19
– line 22.

The specification for the Interface process is transformed similarly.

1: proctype Spec(chan u,v){
2: mtype x;
3: Spec_0:
4: u?x;
5: if
6: :: x == system_on -> goto Spec_1;
7: :: else -> goto Spec_0;
8: fi;

9: Spec_1:
10: u?x ;
11: if
12: :: x == button_pressed -> goto Spec_2;
13: :: x == system_off -> goto end_state;
14: :: else -> goto Spec_1;
15: fi;

16: Spec_2:
17: u?x;
18: if
19: :: x == button_released -> if
20: :: 1 -> v!store; goto Spec_1;
21: :: 1 -> v!restore; goto Spec_1;
22: fi;
23: :: else -> goto Spec_2;
24: fi;

25: end_state: goto Spec_0;
}

Formal Consistency Checking. Once the abstract component is specified
in Promela, we can check whether the behavior of the abstract component
is consistent with its environment or not, even before we specify the actual
implementation of the component. The notion of interaction consistency, which
is formally defined in [4], can be informally stated as follows;

206 Y. Choi and C. Bunse

A component is consistent with its environment in its behavior if it either
terminates normally or runs infinitely under the infinite sequence of stimuli
generated from its environment.

Note that the negation of the interaction consistency implies a process deadlock
situation, and thus, it is quite important to ensure that the initial design of a
component satisfies the interaction consistency.

The specification for the environment of the Application component is derived
from the use case scenarios shown in Figure 2, which can be directly transformed
into Promela as shown below.

proctype env(chan in, out){
do
:: out!system_on;

do
:: 1 ->

if
:: out!poti_tuned;
:: out!button_pressed;

out!button_released;
fi;

:: 1 -> break;
od;
out!system_off;

:: 1 -> skip;
od;

}

In this specification, the statements enclosed by do..od act like unconditional
while statements in the C language; the statement repeats indefinitely as the
poti tuned signal or the button pressed signal is generated non-deterministically.

This environment process env is composed with the Comp Spec process, pro-
ducing a system model for checking interaction consistency. The abstract Ap-
plication component is verified to be consistent with its environment in this
context using the Spin verifier4; it took about 1 minutes and 521 M of memory
for exhaustive verification, exploring 6 × 106 states and 1.7 × 107 transitions.
Verification was performed on a PC with 2G Herz Pentium II processor and 2G
bytes of memory.

5.2 Formalizing the Realization of the Application Component

The application component for the mirror control system is realized by a number
of device drivers as illustrated in Figure 5(a). The realization behavior is specified
in sequence diagrams defining which sub-components (device drivers) are used to
realize a specific function provided by the Application component; an example is
illustrated in Figure 5(b) for the button driver. Note that all the sub-components
are designed as passive objects in this realization model and the Application
component (the container of the driver components) acts as an active signal

4
Spin verifier provides an invalid end-state option which can be used to check the
behavioral consistency between a component and its environment.

Towards Component-Based Design and Verification of a µ-Controller 207

control center. Each signal passed to the Application component is identified
with its source and handed to the corresponding driver depending on the source
of the signal.

The next section of code shows a major part of the Promela specification
for the realization model of the mirror control system directly translated from
the realization diagrams.

1: proctype ATMega(chan in1,out1, in2, out2, in3, out3, in4,
out4, in5, out5, tin, tout, sys_in, sys_out){

2: mtype m;

3: hw_ready:
4: sys_in?m;
5: if
6: :: m == system_on ->system_state = system_on; goto driver_choice;
7: :: else -> goto hw_ready;
8: fi;

9: driver_choice:
10: if
11: :: in1?[m] -> goto button_driver;
12: :: in2?[m] -> goto servo_driver;
13: :: in3?[m] -> goto LCD_driver;
14: :: in4?[m] -> goto potentiometer_driver;
15: :: in5?[m] -> goto EEPROM_driver;
16: :: sys_in?[m] -> goto sys_control;
17: fi;

18: sys_control: ..
19: button_driver:
20: in1?button_pressed; /* wait for button_pressed event */
21: tin!set; /* set timer */
23: in1?button_released; /* wait for button_released */
24: tin!reset; tout?m; /* reset timer and get the timing info */
25: if /* non-deterministic choice of action */
26: :: 1 -> out2!restore;
27: :: 1 -> out2!store;
28: fi;
29:
30: goto driver_choice;

31: servo_driver: ..
32: potentiometer_driver: ..

}

Note that this realization model specifies the internal implementation of the
system with detailed interactions among drivers and the controller; the ATMega
process is initially in the hw ready state waiting for the system on signal, which
initiates a transition to the state driver choice (line 9–17) from which ATMega
handles incoming messages and signals and chooses an appropriate driver. For
example, if the signal is for the button driver, the ATMega process transits to
the button driver state, where the signal is handled as specified in the realization
behavior in Figure 5(b) (line 20–30).

We have composed the ATMega process with the same environment model
env illustrated in the previous section and checked for interaction consistency
using Spin to verify that the ATMega process is a valid realization of the mirror
control system. Spin verifies the interaction consistency on this model within 4
minutes consuming 549 M of memory, after searching 1.5×107 states and 3.8×107

transitions.

208 Y. Choi and C. Bunse

5.3 Property Verification and Design Change

One of the major purposes of formalizing a design model is to identify and verify
key properties of the design and address issues related to the key properties if
the verification activity reveals design errors. Once the design is formalized, we
can apply automated verification for various design properties. For example, we
may want to make sure that each external event button pressed followed by
button released always has an effect on the Servo component, either setting or
restoring the position of the mirror. This property can be formally stated in
temporal logic5 as

button pressed && ! (servo set || servo restore)→ true U (servo set||servo restore)),

meaning that “for all possible execution traces, if the button is pressed and the
servo is currently neither set nor restored, then the servo will be set or restored
sometime in the future.”

This property is proven to be false in our realization design by the Spin

verifier, which generates counter-examples showing various execution traces vi-
olating this property. For example, one counter-example shows that the system
can stall without making any progress (process deadlock) if the reset signal to
the timer gets lost in the middle of delivery. This is because the model is de-
signed to lose additional messages if the channel is already occupied by another
message. Another counter-example illustrates that there can be an infinite se-
quences of signals from Potentiometer that occupies the signal handler of the
ATMega process all the time so that the handling of the button pressed event is
postponed indefinitely. This problem happens mainly because there is only one
active process handling all the events and messages. If such a process is occupied
by a hostile external component, the system cannot function as expected.

After careful review of the original design and the counter-examples, the re-
alization model is redesigned to address the identified issues. We first introduce
message buffers to make sure that there is no loss of messages directly affecting
the system’s behavior. We also make each driver component an active process
that can handle events/messages on its own, instead of having one central mes-
sage handler. The following illustrates how such a change in design is reflected
in Promela;

proctype ATMega(chan in1,out1, in2, out2, in3, out3,
in4, out4, in5, out5, tin, tout, sys_in, sys_out){

...
run button_handler(in1, out1);
run LCD_handler(in3, out3);
run potentio_handler(in4, out4);
...

}

proctype button_handler(chan in, out, tin, tout){
mtype m;

5 Temporal logic can be considered as propositional logic with the notion of relative
time. Spin is equipped with an automated verification facility for properties written
in temporal logic LTL [18].

Towards Component-Based Design and Verification of a µ-Controller 209

button_driver:
in?button_pressed;
tin!set;
in?button_released;
tin!reset; tout?m;
if
:: 1 -> out!restore;
:: 1 -> out!store;
fi;
goto button_driver;

}

Note that the ATMega process is simplified containing only the statements
initiating different drivers whose behavior is specified as an active and indepen-
dent process. The drivers are connected to the ATMega process by wiring them
with message channels. For example, when the button pressed event arrives in
channel in1, the button handler process directly recognizes this event without
going through the ATMega process and handles it as specified in the button
driver. The behavioral specification for the button handler process is the same
as the one specified under the label button driver(line 19–30) in the previous
design. With this modified design, the same property is verified to be true6.

6 Discussion

The use of formal methods in embedded systems has been an active research
issue for almost a decade [14,23], but, unfortunately, we have not seen active
practice of formal methods in industry, mainly due to lack of experience, sup-
porting tools, and methodologies [13]. We believe this situation can be altered by
integrating formal methods into existing development methodologies so that the
application of a formal method can be seen as a routine task within the process.
As demonstrated in this paper, the use of a structural methodology makes the
application of formal methods simpler and easier by providing gradual yet seam-
less transitions from the early design to actual implementation. Our approach is
partially automated by reusing the Marmot-Promela prototype translation
tool introduced in [4].

There have been other approaches that apply formal methods in embedded
systems; for example, [20] uses a variation of Petri Net as the underlying formal-
ism of a system model and translates it into Promela to use the Spin verifier.
Nevertheless, this approach and other related previous approaches [12,17,23] lack
an association with development methodology. Several approaches have tried
to address behavioral properties in system development [1,3,5,19,22,24], where
some of them use model checking for checking properties of UML diagrams [1,24];
among them, [22] is the closest to our approach in the sense that their approach
is closely coupled with a component-based system development process. Nev-
ertheless, [22] takes a bottom-up approach by identifying properties for each
component under environmental assumptions. Compositional verification is per-
formed by cleverly assembling those properties of each sub-component that have
6 It is verified to be true under fairness constraints that all the processes are executed

infinitely often.

210 Y. Choi and C. Bunse

been already verified. On the other hand, our approach extracts environmental
constraints from the internal behavior of the refined component, which is speci-
fied during the Marmot refinement process, eliminating the need for manually
identifying environmental assumptions [4].

Our approach emphasizes that the use of a structured development method-
ology such as MDD is necessary for achieving a high-quality system, but is not
sufficient for it. While structured methods can cope with structural complexity
using the well-known “divide-and-conquer” principle, the interaction complexity
among decomposed parts of the system tends to get higher, which becomes a ma-
jor problem. We tackle this particular problem with formal methods integrated
into the development methodology.

We note that our approach presented in this paper is work in progress that
requires further investigation on its practical aspects, especially with respect to
usability and efficiency. We need more industrial case studies to claim that our
approach is actually practical. There are other issues to be considered in the
design of embedded systems, such as energy consumption, timing issues, and
utilization of limited memory [13]. We plan to investigate such issues within the
same verification frame in future work.

References

1. Adamek, J., Plasil, F.: Component composition errors and update atomicity: Static
analysis. Journal of Software Maintenance and Evolution: Research and Practice
(September 2005)

2. Atkinson, C., Bayer, J., Bunse, C., et al.: Component-based Product Line Engi-
neering with UML. Addison-Wesley Publishing Company, Reading (2002)

3. Barros, T., Henrio, L., Madelaine, E.: Behavioural models for hierarchical com-
ponents. In: International SPIN Workshop on Model Checking Software (August
2005)

4. Choi, Y.: Checking interaction consistency in MARMOT component refinements.
In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil,
F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 832–843. Springer, Heidelberg (2007)

5. Engels, G., Kuester, J.M., Groenwegen, L.: Consistent interaction of software com-
ponents. Journal of Integrated Design and Process Science 6(4), 2–22 (2003)

6. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

7. Object Management Group. UML2.0 superstructure specifications
8. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking: History, Achieve-

ments, Perspectives. Springer, Heidelberg (2008)
9. Guelfi, N., Mammar, A.: A formal semantics of timed activity diagrams and its

PROMELA translation. In: 12th Asia-Pacific Software Engineering Conference
(2005)

10. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall Soft-
ware Series (1991)

11. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Publishing Company, Reading (2003)

12. Hsiung, P.-A.: Formal synthesis and code generation of embedded real-time soft-
ware. In: 9th International Symposium on Hardware/Software Codesign (April
2001)

Towards Component-Based Design and Verification of a µ-Controller 211

13. Johnson, S.D.: Formal methods in embedded design. IEEE Computer (November
2003)

14. Kern, C., Greenstreet, M.: Formal verification in hardware design: A survey. ACM
Transactions on Design Automation of E. Systems (April 1999)

15. Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.: Implementing statecharts in
PROMELA/SPIN. In: Second IEEE Workshop on Industrial Strength Formal
Specification Techniques (October 1998)

16. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

17. Naeser, G., Lundqvist, K.: Component-based approach to run-time kernel spec-
ification and verification. In: 17th Euromicro Conference on Real-Time Systems
(2005)

18. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. Founda-
tions of Computer Science, pp. 46–57 (1977)

19. Reussner, R.H., Poernomo, I., Schmidt, H.W.: Reasoning about software archi-
tectures with contractually specified components. In: Component-Based Software
Quality: Methods and Techniques, State-of-the-Art Survey (2003)

20. Ribeiro, O.R., Fernandes, J.M., Pinto, L.F.: Model checking embedded systems
with PROMELA. In: 12th IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (2005)

21. Song, H., Compton, K.J.: Verifying pi-calculus processes by promela translation.
Technical report, Department of Electrical Engineering and Computer Science,
University of Michigan (2003)

22. Xie, F., Browne, J.C.: Verified systems by composition from verified components.
In: Proceedings of Joint Conference ESEC/FSE (2003)

23. Yang, W., Moo-Kyeong, Kyung, C.-M.: Current status and challenges of soc ver-
ification for embedded systems market. In: IEEE International Conference on
System-On-Chip (2003)

24. Zimmerova, B., Brim, L., Cerna, I., Varekova, P.: Component-interaction automata
as a verification-oriented component-based system specification. In: Workshop on
Specification and Verification of Component-Based Systems (2005)

ESCAPE: A Component-Based Policy

Framework for Sense and React Applications

Giovanni Russello, Leonardo Mostarda, and Naranker Dulay

Imperial College London, London SW7 2RH, United Kingdom
{russello,lmostard,n.dulay}@imperial.ac.uk

Abstract. Sense-and-react applications are characterised by the fact
that actuators are able to react to data collected by sensors and change
the monitored environment. With the introduction of nodes sporting ac-
tuators, Wireless Sensor Networks (WSNs) are being used for realising
such applications. Sensor and actuator nodes are capable of interact lo-
cally. As a result, the logic that coordinates the activities of the different
nodes towards a common goals has to be embedded in the network itself.
In this scenario, the development of applications becomes more complex.

In this paper, we present a component-based framework that facili-
tates the development of sense-and-react applications promoting reuse
of code. While applications components are used to implement basic
functionalities (sense and reaction) our framework allows the specifica-
tion of application-domain requirements. Our framework is composed
of a Publish/Subscribe Broker, a component-based service layer and a
Policy Manager. The broker manages subscriptions information and the
service layer provides mechanisms orthogonal to publish/subscribe core
(e.g., diffusion protocols, data communication protocols, data encryp-
tion, etc.). The novelty of our approach is the introduction of the Policy
Manager where policies are enforced. Policies are rules that govern the
choices and behaviour of the system. They can be used for specifying
which services have to be associated with the broker operations. More-
over, policies can embed rules for coordinating the activities of the differ-
ent sensors and actuators for reaching the common goals of applications.

1 Introduction

Early applications for WSN focused mainly on sensing the environment and
sending the data to central sink devices with more computational power (e.g.,
PDAs and laptops) and therefore were able to coordinate the activities in the
controlled environment. More recently, with the development of sensor nodes
with more computational power and actuator nodes the sense-and-react appli-
cation paradigm has emerged [1]. Sense-and-react applications are characterised
by the fact that the data gathered by the sensing nodes can be used directly
by actuator nodes that can react and change the sensed environment. Devel-
oping sense-and-react applications for WSNs is complicated by more complex
interactions and the stringent limitations that characterise the devices where
they are deployed. As a result, often applications developed for this scenario

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 212–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ESCAPE: A Component-Based Policy Framework 213

require ad hoc solutions optimised for specific environments. This compromises
the flexibility, maintainability, and reusability of such applications [2,3].

Component-based software engineering (CBSE) can play a crucial role as it
can be used for balancing the need of reusability with that of providing an
efficient programming abstraction [4]. Application components encapsulate the
functionality of the nodes. Components deployed on sensor nodes can be pro-
grammed for sensing data from the environment while components deployed on
actuator nodes gather the data and react accordingly. However, to fully take ad-
vantage of CBSE it is necessary to provide a layer of abstraction to glue together
the functionality of the different components. Components need to coordinate
their functionality to achieve the global goals of the system without having their
code tangled with details concerning OS and networking services. An effective
solution to this problem needs to offer an appropriate level of abstraction to
components without being too demanding in terms of resources. With its loosely-
coupled, event-driven messaging services, the publish/subscribe paradigm offers
to applications simple yet powerful primitives for communication.

Although the publish/subscribe paradigm is quite widely used, different as-
pects of its model concerning notification distribution, delivery and security can
be implemented using different mechanisms. Each mechanism imposes require-
ments in terms of resources and each is more suited for specific class of appli-
cations. For instance, for certain critical applications it is acceptable to use a
reliable delivery protocol even if it requires more resources in terms of energy
consumption and computational overhead. Such aspects are not directly related
to the basic functionality of the application and as such they can be referred to
as extra-functional concerns. The Separation of Concerns (SoC) principle advo-
cates that the basic functionality of an application should be specified in isolation
from details regarding extra-functional concerns [5,6]. Because application code
is not tangled with other details regarding extra-functional concerns, the code
that results is less prone to errors, easier to maintain and far more reusable.

In this paper, we propose a component-based framework for programming
WSNs realised through the publish/subscribe paradigm where extra-functional
concerns are encapsulated in middleware components. Application developers
specify which mechanisms have to be used in their applications in terms of poli-
cies. Policies are rules that govern the behaviour of a system and are an effective
solution for separating the application functionality from low-level mechanisms
[7]. Our framework supports an Event-State-Condition-Action Policy Environ-
ment (ESCAPE) where policies connect components orthogonally to the pub-
lish/subscribe paradigm. Policies define stateful interactions among components
to coordinate their activities and reach system-wide goals.

The contributions of this paper are the followings. Our framework realises a
flexible publish/subscribe system inasmuch as the needs of different application
scenarios can be catered for by the different mechanisms that it can support. Ap-
plication developers use policies to define which of these mechanisms are to be
used. Because policies are defined outside the application code, application com-
ponents (encapsulating application functionality) and middleware components

214 G. Russello, L. Mostarda, and N. Dulay

(encapsulating mechanism implementations) become the unit of reusability that
can be deployed without modification in different scenarios. Moreover, policies
represent also a unit of reusability. Once a specific behaviour is defined in a pol-
icy that policy can be deployed in other applications with similar characteristics.
Finally, our framework is extendible since new mechanisms can be implemented
as middleware components and deployed on the nodes.

The rest of this paper is organised as follows. In Section 2, we discuss the
motivations and requirements of our approach. Section 3 provides a description
of the architecture of our framework. Policy syntax and semantics are described
in Section 4. To validate our approach, we present in Section 5 a case study and
some of the policies used for its realisation. A brief evaluation of the implemen-
tation of our framework is presented in Section 6. In Section 7, we compare our
approach to related research. We conclude by highlighting some future research
direction in Section 8.

2 Motivations and Requirements

Sense-and-react applications represent a class of embedded control systems char-
acterised by the realisation of a feedback-loop between a sensing apparatus and
a reacting apparatus. Some examples of sense-and-react applications are heating,
ventilation, and air conditioning (HVAC) [1], fire alarm systems, and burglar alarm
systems. Nodes capable of sensing the environment provide readings of some pa-
rameters forming the sensing apparatus. Nodes equipped with actuators react to
specific events and change the environment according to user preferences.As a soft-
ware system, a sense-and-react application consists of twoparts: themain function-
ality and the control laws. The main functionality represents the basic logic that is
mapped into application components deployed in each sensor node. For instance,
an application component deployed on a temperature node provides the function-
ality to obtain the readings from the node hardware and make it available to other
nodes in the WSN. The control laws map the sensed data to specific actions that
should comply with user preferences. When the functionality and control laws are
not intertwined then it becomes possible to share the functionality of a node among
different applications controlling the same environment.For instance, the function-
ality of a temperature node could be shared by both a HVAC and a fire emergency
application. The two applications have different control laws however the function-
ality of the temperature node for both applications is the same, e.g. providing read-
ings for the temperature of the environment.

From the above simple example, it emerges that the development of sense-and-
react applications for WSNs is challenging not only for the constrains imposed
by the physical devices but also for the complexity of the interactions that can
be realised among different applications. In the following, we try to identify a
set of requirements to define key aspects for facilitating the development of such
applications.

Minimise functionality to maximise reuse. In our framework, the node function-
ality is encoded as an application component deployed on the node. In order

ESCAPE: A Component-Based Policy Framework 215

to maximise the reuse of such functionality, component functionality should be
agnostic of the control laws enforced in the environment.

Coordination through middleware. WSNs can be seen as miniaturised distrib-
uted systems. The publish/subscribe model offers a very powerful abstraction
for realising loosed-coupled distributed applications and middleware implemen-
tations have been already proposed in WSNs. In particular, the reactive style
of interaction makes the model attractive for sense-and-react applications. No-
tifications sent by the sensing nodes can be used for trigger reactions by actua-
tors. The underlying middleware is also the ideal place where the SoC principle
should be realised. In particular, the middleware should provide to the applica-
tion developers mechanisms that would allow the selection of different strategies
implementing extra-functional concerns that can be subsequently enforced at
runtime. For example, if a particular notification strategy is required, the mid-
dleware should offer such a strategy implemented as a component. Application
developers specify which particular components have to be used with their ap-
plications in terms of policies. If necessary, new mechanisms can be developed
and deployed as well, independent of the application functionality implemented
by components.

Stateful policies. The control laws in sense-and-react applications typically rep-
resent transitions through different states. For instance, a sprinkler node that
receives a temperature reading higher than a certain threshold has to check
that smoke is detected before opening the water. This behaviour can be repre-
sented as two transitions: (i) from a normal state to a pre-alarm state when the
temperature is above a safety threshold; and (ii) from a per-alarm state to an
alarm state when the smoke detector provides a positive reading. To increase
functionality reuse, control laws should be specified in isolation from application
components. Policies represent ideal candidates for specifying the control laws
of the system. In this case, policies need to be able to capture states and specify
how transitions through different states must be executed.

Localised vs distributed computation. Sense-and-react applications are charac-
terised by their capacity of reacting to stimuli coming from the surrounding
environment. Because actuators can be in the proximity to where the data is
generated, it is not necessary to flood the network with all readings. However,
in certain case it is necessary that events have to be spread through the nodes
present in the environment, such as fire alarms.

Multiple interaction patterns. Although reactive interactions characterised sense-
and-react applications, there are still cases where proactive interaction should be
preferred instead. This type of interaction is common in sense-only applications
where data is proactively required by the consumers. In this way, it is possible
to save the energy of the sensing nodes that are requested to generate the data
only when it is needed.

In the following, we describe the architecture of our system to satisfy the
identified requirements.

216 G. Russello, L. Mostarda, and N. Dulay

Fig. 1. Overview of our component-based architecture for a WSN node

3 Architecture

In this section, we discuss the main features of our approach. As shown in
Figure 1, our approach presents a layered structure composed of an application
layer, a middleware layer and a basic layer.

The application layer contains the basic functionality that is deployed on each
sensor node. The functionality provided by a sensor node is encapsulated in
application components. For instance, an application component deployed on a
temperature sensor is responsible for providing temperature readings and acts as
a publisher for this type of notification. Components deployed on actuator nodes
are responsible for controlling and activating the actuator hardware according
to the actual needs. In this case, actuator components act as subscribers of
notifications representing the actual conditions of the environment.

The middleware layer consists of a Publish/Subscribe Broker, a Policy
Manager, and a Services & Extensions described as follows.

Publish/Subscribe Broker. This module provides an API to the application layer
and manages the subscription tables. In our approach, a notification is a tuple of
(attribute,value)-pairs. A subscriber specifies its interest in a notification by is-
suing a subscribe(notification). Although the subscriber cannot directly ex-
press constraints on the content of notification using the API, constraints can still
be expressed in policies. For instance, if a subscriber should be notified only if the
temperature value is higher than 50, then it is possible to write a policy that in-
spects the values of the temperature notifications and discards the notifications
with values lower than 50 (more on this in Section 5). This decoupling of com-
ponent functionality from subscription constraints increases the reusability of the
components without sacrificing the expressivity of the publish/subscribe abstrac-
tion. In our framework content constraints are used for expressing control laws in
the form of policies. A publisher advertises its notifications using

ESCAPE: A Component-Based Policy Framework 217

advertise(notification) and it publishes the data using
notify(notification). Subscription and advertisements can be withdraw using
unsubscribe(notification) and unadvertise(notification), respectively.

Policy Manager. One of the main features of our framework is that the pub-
lish/subscribe core is decoupled from mechanisms related to notification delivery,
subscription distribution, and communication protocols. This design decision in-
creases the flexibility of our approach inasmuch as our middleware is not bound
to any specific mechanisms. Application developers can select the appropriate
mechanisms that suit best their application needs. In contrast to the approach
presented by Hauer et al. [8] where application components have to explicitly
specify the mechanism to be used, in our framework components are completely
agnostic of such specifications. Instead, we propose a policy-based approach
where policies are used for such specifications. The enforcement of policies is
done by a Policy Manager module. Policies can be specified to be enforced at
specific points in our framework. Component-to-broker and broker-to-broker in-
teractions are monitored via Policy Enforcement Points (PEP). Each time a
message is sent through these interaction channels, the corresponding PEP in-
tercepts the message and sends an event to the Policy Manager. The Policy
Manager uses the events to trigger the policies available in its repository defined
for that PEP (more on how policies are specified and enforced in Section 4). An
important feature of our policy environment is that, the Policy Manager sup-
ports the deployment of new policies even during run-time without the need of
taking the running application off-line. This feature increases flexibility of our
framework and it makes particular appealing for WSN applications that required
a high degree of availability.

Services & Extensions. This module provides hooks to the policy environment
for invoking components that implement protocols and services outside the pub-
lish/subscribe core. Each service component is responsible for providing and con-
suming information required for fulfilling their tasks and if necessary to perform
specific actions. Figure 2 shows some of the services components currently avail-
able. Components are organised in two sets: Basic Pub/sub Components and Ex-
tension Components. The Basic Pub/sub Components provide services that are
necessary for realising the publish/subscribe paradigm and are described as fol-
lows:

Fig. 2. A view of the Service & Extensions module

218 G. Russello, L. Mostarda, and N. Dulay

– A Diffusion Protocol Component (DPC) is responsible for routing data be-
tween publishers and subscribers. Initial work on diffusion protocols used a
two-phase pull model [9], where subscriptions are distributed for the seek-
ing of matching advertisements. Once a matching advertisement is found,
the notifications are sent to the subscribers trying to find the best possible
paths. This type of protocol is not suitable for all classes of application. In
applications with many publishers that produce data only occasionally, the
two-phase pull model is inefficient since it generates a lot of control traf-
fic for keeping the delivery route updates. For this class of applications, the
push diffusion protocol was proposed in [10]. According to the push diffusion
protocol, the subscriptions are kept locally and the notifications seek sub-
scribers. Other diffusion protocols have also be proposed, such as a one-phase
pull protocol [10] (an optimised version of the two-phase pull), geographically
scoped protocols [11], and rendezvous-based protocols [12,13]. Our current
implementation provides a Push DCP (PsDCP) and a Pull DCP (PlDCP)
implementing the push and one-phase pull protocols, respectively.

– A Comm Protocol Component (CPC) implements the delivery protocols of
the messages generated by the publishers and subscribers with certain de-
livery guarantees. For instance, in certain cases subscriptions need to be
updated frequently then a CPC that implements a probabilistic communica-
tion algorithm is acceptable. On the other hand, if an application requires a
more reliable subscription distribution then a CPC that offers an algorithm
that performs control traffic communication in the background can be used
(at a higher costs in terms of resources). The former protocol is implemented
by Probabilistic CPC (PCPC), while the latter is implemented by Reliable
CPC (RCPC).

The Extension Components provide extra features to the paradigm. In the
following we describe the components that have been implemented for the real-
isation of our case study discussed in Section 5.

– The Sampling Buffer Component (SBF) provides functionality for storing
data samplings and computing certain predicates on the stored values. For
instance, it could be used for calculating if a recent sampling differs more
than a specified delta value from a stored sampling. Alternatively, it could
just be used as a buffer that stores samplings frequently accessed or that
requires a long time to be collected (i.e., audio signals).

– The Authentication Component and the Encryption Component are used
for implementing Trust Groups of sensors. Trust groups are similar to secure
multicasting groups [14]. Each trust group is associated to a secret key Kg.
In this way, members of the same trust group are able to perform encryption
and authentication within the group.The distribution of the Kg is done as
an out-of-band bootstrapping process. For the encryption/decryption the
component uses the Skipjack algorithm provided by the TinyOS core.

ESCAPE: A Component-Based Policy Framework 219

4 Event-State-Condition-Action Policy Environment
(ESCAPE)

In this section we define the syntax and the semantic of our policy language.
The syntax is defined by using a Backus-Naur form (BNF) while the semantic
is described by defining the run-time behaviour of our policy manager.

1 <Policy > = policyName policyVariables <ESCAlist >

2

3 <ECSAlist > = "on" <Event > <SCAlist > | "on" <Event > <SCAlist > <ECSAlist >

4

5 <SCAlist > = currentState "-" newState "{" condition "}" "->" "{" action "}" <SCAlist >

6 | currentState "-" newState "{" condition "}" "->" "{" action "}"

7

8 <Event > = <Qualifier > <pubSubEvent > | timeout <Timeout >

9

10 <Qualifier > = "B-C" | "C-B" | "B-extB" | "extB -B"

11

12 <pubSubEvent > = "notify(T)" | "advertise(T)" | "unadvertise (T)" | "unnotify(T)" |

13 "unpublish(T)" | "unsubscribe(T)"

Fig. 3. The syntax to our language for specifying ESCA policies

In Figure 3, we show our grammar used to define Event-State-Condition-
Action (ESCA) policies. The notation < symbol > is used define a non-terminal
symbol, the character " is used to enclose language’s keywords while words are
terminals (i.e., symbols that never appear on the left side of a definition).

A policy is composed of a policyName followed by a policyV ariables and
an ESCAlist. The terminal policyV ariables denotes variable declarations that
can be used inside condition and action definitions. An ESCAlist is a list of
event-state-condition-action each starting with the keyword on followed by an
event and its state condition action list (i.e., SCAlist). A state-condition-action
(SCA) is of the form currentState-newState condition − > action where: (i)
currentState is an integer that denotes the current policy state; (ii) condition is
a predicate that must be true in order to apply the action action; (iii) newState
is the new policy state after the action application.

In our approach, policies can be enforced when pub/sub operations are ex-
ecuted. Each of these operations is associated with a corresponding event of type
pub-sub defined as following: notify(T), advertise(T), subscribe(T),
unnotify(T), unadvertise(T), unsubscribe(T). T is represented by a tuple.
With T.x we denote the value of the parameter x in the tuple. For example,
a policy defined on an event subscribe(T) will be triggered each time the oper-
ation subscribe(T) is executed. However, our enforcement mechanism is able
to capture the execution of an operation in 4 different points. This means that
a pub-sub event associated to an operation can be generated in each of these
points. In order to specify at which particular point a policy should be triggered,
each pub-sub event must be always preceded by a qualifier that can be: (i) C-B
specifying that the pub-sub event is sent from the component to its local broker;
(ii) B-C specifying that the pub-sub event is sent from the local broker to a
local component; (iii) B-extB specifying that a pub-sub event is sent from the
local broker to an external one; (iv) extB-B defining an pub-sub event sent by

220 G. Russello, L. Mostarda, and N. Dulay

an external broker to the local one. Characterising a pub-sub event based on
its local source and its local destination allows the description of flexible policy
specifications. For instance policies can include component-broker interactions
in order to filter pub-sub event content while broker-broker interactions allow
the introduction of new features (e.g., security) without affecting the middleware
basic mechanisms.

We also support timeout events for a node. A timeout event is of the form
timeout t and is executed when for t seconds no event is observed. Generally
speaking, a timeout is a way to perform actions when no pub-sub events are
observed within a time interval.

Predicates can refer to event parameters, contain policy variables and invoke
external libraries. Actions can modify policy variables, modify event parameters,
execute any pub/sub operations (e.g., notify(T), subscribe(B), etc.) and call
external libraries.

The action specification must always end either with the outcome accept or
discard. Accept (discard) specifies that the pub/sub operation that triggered
the policy must be completed (discarded) after the action execution terminates.

4.1 Policy Execution Model

In our model, the enforcement of policies is triggered by events. One event may
trigger multiple policies at the same time. In the following, we define our policy
execution model, that is the policy manager run-time behaviour. We denote with
P the set of all policies and p1, . . ., pn are elements in P . A policy p in P is a set
of events {e1, . . . , en}. Each event e has related a SCAlist containing a sequence
of elements of the form (csi, nsi, conditioni, actioni), representing the current
state, the new state (after the action is executed), the condition, and action,
respectively. In order to refer to one of these elements we prefix it with the event
name followed by the symbol “.”. For instance if e is an event then e.conditioni

and e.actioni denote the action and the condition related to ith element in the
SCAlist of e.

Policies are executed by our policy manager that receives each event e and
invokes the execute procedure, as shown in Figure 4. The execute procedure
takes as an input an event e and defines a local list Outcome that will contain

1 void execute(event e)
2 Outcome []={}; //the set of outcomes for each executed action

3 if no policy defines e then

4 accept;

5 return;

6 for each policy p that defines e do

7 let CS be the current state of the policy p
8 for i = 0 to p.e.SCAlist size do

9 if (p.e.csi == p.CS) and (p.e.conditioni) then

10 execute p.e.actioni;

11 add the outcome of p.e.actioni in Outcome [];

12 break;

13 select an outcome from Outcome [];

Fig. 4. Policy execution

ESCAPE: A Component-Based Policy Framework 221

the outcomes of all policies triggered by the event e. If no policy is triggered by
the event e, then the operation that generated the event e is accepted (line 4)
and the procedure terminates. On the other hand, for each policy p that defines
e (line 6), then a SCAlist element must be selected. An element in the SCAlist
is selected when the current state defined in the element (p.e.csi) is the same as
the current state of the policy (CS) and the condition defined in the element
(p.e.condition) is satisfied (line 9). In this case, the action corresponding to that
element is executed and the outcome statement of the action (either accept or
discard) is inserted in the Outcome set. When the actions of all policies defining
the event e have been executed, the policy manager analyses the Outcome set.
Because the same event may trigger several policies, the action outcomes that
are inserted in the Outcome set are in conflict, i.e. both the statements accept
and discard are present in the set. In our approach we allow policy writers to
specify which of the two statements must be given priority per event. They can
associate with each event e a default statement (either accept or discard) that
is executed each time a conflict is detected. This choice allows us to have a fine-
grain conflict resolution strategy at runtime that undertakes different statements
for different types of events.

4.2 Tool and Policy Analysis

In this section, we describe the process that leads from policy definitions to
code generation. This process is implemented by using two separate tools, i.e.,
an ESCA translator (shown in Figure 5) and the GOANNA tool [15] (shown in
Figure 6). The ESCA translator parses each policy and translates it in a state-
transition (a state machine). These state machines are input to the GOANNA
tool that can show them in a graphical form, performs different semantic checks
and generate the policy manager code. In the following we show how the ESCA
translator translates a policy and we show the basic components of the GOANNA
tool.

A translator checks that each policy p is syntactically correct and produces
a state machine Ap. In particular for each event e the translator considers each
state-condition-action (e.g, currentState-newState condition − > action) and
adds to Ap a transition that exits from the state currentState, is labelled with
[condition] e action and enters in newState. In other words when the state
machine is in the state current-state, the event e is observed and the condition
is true than the state machine can move to newState. In Figure 6 we show the
state machine related to the following policy:
1 TemperaturePolicy

2 on C-B advertise(Temperature ,t_value)

3 0-1: true ->{accept ;}

4 on C-B notify(Temperature ,t_value)

5 1-1: {t_value <50} -> {discard ;}

State machines in this form can be loaded by the GOANNA tool that performs
some semantic checks (possibly because of the state machine structure) and
generates the policy manager code.

222 G. Russello, L. Mostarda, and N. Dulay

GOANNA
ESCA

policies

parser
Semantic
analyzerGUI

Front-end

ContikiTinyOS 2

back-ends
Policy manager

code

ESCA
translator

Fig. 5. Process of code generation Fig. 6. GOANNA tool

GOANNA uses a front-end and a set of back-ends used for checks and code
generation, respectively. The front end is composed of three main components:
a GUI, a parser and a semantic analyser. The GUI implements a graphical tool
to visualise the policy in a graphical form (i.e., a state machine based form).
The parser and semantic controller take as input state machines and perform
all syntactic and semantic checks, respectively. In the following we introduce the
main semantic checks the tool performs, i.e., state reachability, correct sequence
and recursive event detection.

State reachability ensures that each event-state-condition-action can be ap-
plied, i.e., all states inside a state machine definition can be reached. Correct se-
quence analyses the state machine definition and verifies correct ordering among
system events, e.g., a notify of an event is preceded by a publication. Recursive
event detection avoids policies leading to livelock. In the simplest case we can
have a policy in which an event e is defined, the new state is equal to the current
one (a transition that enters and exits in the same state) and its action define
a notify of the same event e. In this case the policy can generate an infinite
number of events e without making any progress. Generally speaking a policy
can defines a chain of events that produces livelock. For instance a policy can
define the events e1 and e2 and the state machine is such that: (i) e1 changes the
state from q1 to q2 and its action generates an event e2; (ii) e2 changes the policy
state from q2 to q1 and its action generates the event e1. Our tool tries to visit
each state machine, detect possible livelock conditions and produce warnings.
As future work we are adapting other well known state machines verifications
to our particular context. For instance we are planning to apply checks defined
over several state machines by defining composition among state machines and
performing checks on it.

5 Case Study

This section presents a case study related to a cultural asset transportation ser-
vice used to securely move cultural assets from one venue (museum) to another.
The service was developed as part of the EU CUSPIS project [16].

In the transportation service, a lorry transports a set of packages each con-
taining a cultural asset. As shown in Figure 7, the lorry is equipped with sen-
sors and actuators on which several sense-and-react applications are deployed.

ESCAPE: A Component-Based Policy Framework 223

Fig. 7. An overview of the deployment of the sensors and actuators for the CUSPIS
case study

During transportation, the lorry is monitored by the Emergency Central Station
(ECS) that is in contact with police and emergency units (such as fire fighter
stations). To send alarms to the ECS, the lorry is equipped with multiple alarm
units that include a GSM transmitter and GPS sensor. The lorry driver can use
a portable wireless computer, such as a PDA, to check sensor readings and be
notified in case of any alarms.

The following sense-and-react application are deployed:

– Fire Alarm Application is responsible for detecting and taking initial actions
against the fire inside the lorry. Temperature sensors provide readings for the
actual temperature and smoke detectors are used for sensing the presence
of smoke. If the temperature rises over a given threshold and the smoke
detectors provide positive smoke readings then the water sprinklers must be
activated and a fire alarm sent. Issuing a fire alarm activates the alarm unit
that informs the lorry driver through the PDA and sends an alarm message
to the ECS.

– Air Conditioning Application is responsible for maintaining temperature and
humidity within the lorry to given values. Temperature sensors (shared with
the Fire Alarm Application) and humidity sensors provide reading of the air
quality in the lorry. An air conditioning unit (ACU) uses the readings from
the sensors to increase or decrease the temperature and humidity to keep
those values within the target values set by the driver.

– Package Tampering Monitor is responsible for the integrity of the pack-
ages containing the artifacts and to raise an alarm in case the packages are
tampered with. Each package contains sensors that collect readings for tem-
perature, humidity and light. An indication that a package was opened can
be signaled when a reading deviates significantly from the previous values.
For instance, when the package is opened the amount of light and tempera-
ture inside the package increases and such variation can be captured by the
sensor. If this is the case, then the sensor notifies the driver’s PDA and the
alarm unit. The latter sends an alarm (together with the GPS position) to
the ECS to summon the intervention of the police.

In the following, we discuss the policies used for specifying the control laws
of the applications. For brevity reasons, we cannot present the complete set of

224 G. Russello, L. Mostarda, and N. Dulay

1 global target_t , delta_t ;

2 TemperaturePolicy

3 on C-B notify ((Temperature ,t_value))

4 0-0: {t_value <50 && !SBC.deviateOrZero(target_t , delta_t ,t_value)}

5 -> {discard ;}

6 on B-extB notify ((Temperature ,t_value))

7 0-1: {t_value >50} -> {PsDPC.notify ((Temperature ,t_value));

8 RCPC.notify ((Temperature ,t_value));

9 accept ;}

10 on B-extB notify ((Temperature ,t_value))

11 0-0: {SBC.deviateOrZero(target_t , delta_t ,t_value)}

12 -> {PlDPC.notify ((Temperature ,t_value));

13 PCPC.notify ((Temperature ,t_value));}

14 accept;

Fig. 8. The temperature policy defining the control laws for the Fire Alarm and Air
Conditioning Applications

policies used for the case study but we have to limit our discussion to the most
significant ones. We assume that to avoid the injection in the system of notifica-
tions generated from sensors outside the lorry, all the message exchanged use the
authentication and encryption components for a trust group communication.

Content-based filtering. The application component deployed on the temperature
sensors provides readings of the temperature inside the lorry. Each component
acts as a publisher of the notification type (Temperature,t value). This type
of notification is shared by the Fire Alarm and Air Conditioning Applications.
Instead of flooding the network with every temperature sampling, only notifi-
cations with meaningful values should be allowed to leave the publisher node.
In particular, for the Fire Alarm Application, only samplings with values over
50 should be allowed. For the Air Conditioning Application a different approach
is used: a notification is published if the difference between the actual value is
either more than delta from a target value or it is equal to zero. In the first case,
this means that the Air Conditioning Unit (ACU) has to be activated to bring
the temperature within the desired target; while in the second case the ACU can
be switched off since the desired target is reached. This content-based filtering
can be specified by a policy as shown in Figure 8. When the component sends
a notification (line 3), the policy checks whether the value of the temperature is
less than 50 and that the predicate deviateOrZero, provided by the Sampling
Buffer Component (SBC), is not satisfied (line 4). In this case the notification
is discarded.

However, when the notifications have to be delivered, two different delivery
protocols must be used for the two applications. For the Fire Alarm Applica-
tion, the notification should be spread as quickly and reliably as possible. In
this case, the notifications are associated with the diffusion protocol component
that implements the push model (PsDPC) using a reliable communication pro-
tocol component (RCPC) (line 6-9). On the other hand, for the delivery of the
temperature notifications for the Air Conditioning Application (11-14) the pull
model with the probabilistic communication protocol is used (implemented by
the PlDPC and PCPC, respectively).

ESCAPE: A Component-Based Policy Framework 225

1 TamperingPolicy

2 on C-B advertise((PackageTemperature, t_value))

3 0-1: true -> { advertise((PackageAlarm));

4 subscribe((PackageTemperature,t_value));

5 accept ;}

6 on C-B notify ((PackageTemperature, t_value))

7 1-1: {!deviateDelta(t_value , delta_value)} -> {discard ;}

8 1-2: {deviateDelta(t_value , delta_value)} -> {startTimer(3);

9 accept ;}

10 on B-C notify ((PackageTemperature, t_value))

11 2-2: {notification_id == this.node_id } -> {discard ; \\ignore : this is my

notification}

12 2-1: {node_id != this.node_id } -> {discard ; \\false alarm: increase in

temp in other sensors }

13 on timeout ()

14 2-3: true -> {notify ((PackageAlarm));

15 discard ;}

Fig. 9. The policy for setting off alarm notifications when the packages are tampered
with

Localised computation. The Package Tampering Monitor is responsible for mon-
itoring the integrity of the packages containing the artifacts and for raising an
alarm in case the packages are tampered with. Each package contains a sensor
that raises an alarm if the readings for temperature, humidity and light drasti-
cally change. For instance, when the package is opened the amount of light and
temperature inside the package increases and such changes are can be captured
by the sensor. However, care must be taken to avoid notification of false alarms.
For instance, if the temperature in the package increases it could be an effect due
to the increase of temperature inside the lorry (i.e., the air conditioning unit is
not working properly). If this is the case, then the sensors in the other packages
also register an increase in temperature. Therefore, before sending the alarm
notification, the sensor that first registers an increase of temperature sets off a
timer and waits for notifications from the sensors in other packages that signify
an increase in temperature. If these notifications from other sensors arrive before
the timer timeouts then no alarm is sent. Otherwise, the alarm notification is
sent.

This behaviour can be codified using a policy as shown in Figure 9 (note that to
improve readability we removed all details related to diffusion and communication
protocols). This policy captures only the case for variations in temperature read-
ings. The policy starts registering the node as a publisher for the PackageAlarm
notification and as subscriber of the PackageTemperature,t valuenotifications.
The publishing of the temperature readings uses a “send-on-delta” approach,
where a notification is published only if varies more than a given delta from the
previous published notification. The predicate deviateDelta is used for checking
whether the difference between the actual reading and the previous published one
is grater than delta. If the difference in not more than delta, the notification is
blocked (line 7). Otherwise, if the notification deviates more than delta, the noti-
fication is sent and a 3 second timer is started (line 8). At this stage, the following
can happen:

226 G. Russello, L. Mostarda, and N. Dulay

Component type Description Code (bytes) Data (bytes)

Temperature Component Senses the temperature 4530 40

Broker Maintains table 1234 21

Policy Manager Instrumentation code 1120 58

Tampering policy the policy code 870 12

PsDPC Push diffusion 680 55

PlDCP Pull diffusion 730 90

Fig. 10. Code and data size information

– a notification arrives but is the one that was just sent by the node itself (line
11). In this case, the state of the policy is not changed.

– a notification arrives from other nodes (line 12). This means that the increase
of temperature is not local to this package but other sensors are registering
it as well. Therefore this is a false alarm and should be ignored.

– the timer expires and a timeout event is sent (line 13). This means that no
other sensors registered the increase in temperature. In this case a
PackageAlarm notification is sent (line 14).

6 Implementation

We have used our approach to implement the requirements of our CUSPIS ap-
plication. We have used the TinyOS operating system running on Tmote Sky
motes. In particular, we have built basic monitoring components that only sense
environmental data (i.e., temperature, smoke, light) and have added our frame-
work to build CUSPIS functionalities.

In Figure 10 we show information about the code / data size of both appli-
cation components and our framework. We emphasise that the policy manager
size is independent from policy specifications and all other components. In other
words the policy manager is a container that manages the policy life cycle (i.e.,
it loads, executes and deletes policies) so that its size is always the same. In our
case the temperature components is bigger than the tampering policy since the
temperature component must embed all code needed to sense and to manage
the timer (the sensing is performed at each tick) while the policy only embeds
few if statement and few variables to implement the state machines.

7 Related Work

The TeenyLIME middleware is specifically designed to address the requirements
of sense-and-react applications for WSNs. TeenyLIME provides a programming
model based on the tuple space paradigm. The tuple spaces in TeenyLIME rep-
resents a shared memory that is shared among sensors within a one-hop re-
gion. Although the TeenyLIME offers a simple but powerful abstraction, it lacks
the flexibility of our approach. In fact, extra-functional mechanisms that are

ESCAPE: A Component-Based Policy Framework 227

provided with the middleware are fixed to specific hard-coded modules. For
instance, in TeenyLIME tuples are distributed according to a communication
protocol that supports only one-hop communications. In our case, notifications
can be distributed using several diffusion protocols, according to the needs of
the applications.

TinyCOPS [8] is a publish/subscribe middleware that uses a component-based
architecture for decoupling the publish/subscribe core from choices regarding
communication protocols and subscription and notification delivery mechanisms.
The middleware can be extended with components that provide additional ser-
vices (i.e., caching of notifications, extra routing information, etc.). The spec-
ification of which particular mechanism has to be used is done by means of
metadata information that the application components have to provide through
the publish/subscribe API. In our case, application components are agnostic
of such extra-functional concerns since policies are used for specifying which
mechanisms have to be used.

The Mires middleware [18] is also a publish/subscribe service that uses the
component architecture of TinyOS 1.x. Like our approach, it uses a topic-based
naming scheme. However, differently than in Mires, we can support content-
based filtering by means of policies. Although in Mires it is possible to introduce
new services (like aggregation) using extension components, the choice of the
communication protocols is fixed.

MiLAN [19] is a middleware for WSNs that provides application QoS adapta-
tion at run-time. The middleware continuously tracks the application needs and
optimises network usage and sensor stacks for an efficient use of the energy. As
such, MiLAN focuses more on a class of resource-rich wireless networks that can
support well the impact of the monitoring overhead. In our approach, we con-
centrate more on sensors with limited resources, where optimisations are mainly
performed at compile-time.

8 Conclusions and Future Work

In this paper, we have described a component-based framework for WSNs based
on publish/subscribe paradigm where ESCA policies can be enforced. Compo-
nent applications implement the basic functionality of the wireless nodes (sense
and reaction capabilities) while policies implement all extra-functionalities that
are domain specific. Policies are specified using our state machine language that
includes variables and libraries in order to define complex policies. Policies are
input in our tool that performs semantic checks and generate all needed code
to execute them. We have applied our approach to a case study where a sensor
network is deployed in lorries that transport cultural assets between museums.
The system has been developed for the TinyOS2 operating system.

Our future work aims to optimise the code generation for TinyOS2 and to
carry out a detailed evaluation of the run-time costs. Another direction to ex-
plore is to provide to application developers means for selecting the mechanisms
that suit best the needs of their applications. Moreover, as the needs of the

228 G. Russello, L. Mostarda, and N. Dulay

applications changes after deployment, an autonomic approach that would select
the best mechanisms for the actual needs of the application would be ideal. How-
ever, such an approach requires continuously monitoring of the activities that
would incur in some overhead. In our future work, we want to study whether the
monitoring and adapting overhead is sustainable compared to the overall gain
in performance.

Acknowledgments

This research was supported by the UK EPSRC, research grants EP/D076633/1
(UBIVAL) and EP/C537181/1 (CAREGRID). The authors would like to thank
our UBIVAL and CAREGRID collaborators and members of the Policy Research
Group at Imperial College for their support.

References

1. Deshpande, A., Guestrin, C., Madden, S.: Resource-aware wireless sensor-actuator
networks. IEEE Data Engineering 28(1) (2005)

2. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking
(TON) 11(1) (2003)

3. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: An acqui-
sitional query processing system for sensor networks. ACM Trans. Database
Syst. 30(1) (2005)

4. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System archi-
tecture directions for networked sensors. In: ASPL 2000. Proc. of the ninth in-
ternational conference on Architectural support for programming languages and
operating systems (2000)

5. Dijkstra, E.W.: Selected Writings on Computing: A Personal Perspective, pp. 60–
66. Springer, Heidelberg (1982)

6. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

7. Sloman, M., Magee, J., Twidle, K., Kramer, J.: An Architecture for Managing
Distributed Systems. In: Proc. 4th IEEE Workshop on Future Trends of Distributed
Computing Systems, pp. 40–46 (1993)

8. Hauer, J., Handziski, V., Kopke, A., Willig, A., Wolisz, A.: A Component Frame-
work for Content-Based Publish/Subscribe in Sensor Networks. Wireless Sensor
Networks, pp. 369–385 (2008)

9. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable
and robust communication paradigm for sensor networks. In: Proceedings of
the ACM/IEEE International Conference on Mobile Computing and Networking,
Boston, MA, USA, August 2000, pp. 56–67. ACM, New York (2000)

10. Heidemann, J., Silva, F., Estrin, D.: Matching data dissemination algorithms to
application requirements. In: SenSys 2003. Proc. of the 1st international conference
on Embedded networked sensor systems, New York, USA (2003)

11. Yu, Y., Govindan, R., Estrin, D.: Geographical and energy aware routing: A re-
cursive data dissemination protocol for wireless sensor networks. Technical Report
TR-01-0023, University of California, Los Angeles, Computer Science Department
(2001)

ESCAPE: A Component-Based Policy Framework 229

12. Braginsky, D., Estrin, D.: Rumor routing algorithm for sensor networks. In: Pro-
ceedings of the First ACM Workshop on Sensor Networks and Applications, At-
lanta, GA, USA, October 2002, pp. 22–31. ACM, New York (2002)

13. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., Shenker, S.:
GHT: A geographic hash table for data-centric storage. In: Proceedings of the
ACM Workshop on Sensor Networks and Applications, Atlanta, Georgia, USA,
September 2002, pp. 78–87. ACM, New York (2002)

14. Rafaeli, S., Hutchison, D.: A Survey of Key Management for Secure Group Com-
munication. ACM Computing Surveys 35(3), 309–329 (2003)

15. Mostarda, L., Dulay, N.: GOANNA: State machine monitors for sensor systems
(2008), www.doc.ic.ac.uk/∼lmostard/goanna

16. European Commision 6th Framework Program - 2nd Call Galileo Joint Undertak-
ing. Cultural Heritage Space Identification System (CUSPIS) (2007),
http://www.cuspis-project.info

17. Costa, P., Mottola, L., Murphy, A.L., Picco, G.P.: Programming Wireless Sensor
Networks with the TeenyLIME Middleware. In: Proceedings of the 8th ACM/I-
FIP/USENIX International Middleware Conference (Middleware 2007), Newport
Beach, CA, USA, November 26–30 (2007)

18. Souto, E., Guimares, S., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C., Kelner,
J.: Mires: A publish/subscribe middleware for sensor networks. Personal Ubiquitous
Comput. 10(1) (2005)

19. Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to
support sensor network applications. IEEE Network 18(1) (2004)

www.doc.ic.ac.uk/~lmostard/goanna
http://www.cuspis-project.info

Experiences from Developing a Component Technology
Agnostic Adaptation Framework

Eli Gjørven1, Frank Eliassen1,2, and Romain Rouvoy2

1 Simula Research Laboratory,
P.O.Box 134, 1325 Lysaker, Norway

eligj@simula.no
2 University of Oslo, Dept. of Informatics,

P.O.Box 1080 Blindern, 0314 Oslo, Norway
frank@ifi.uio.no, rouvoy@ifi.uio.no

Abstract. Systems are increasingly expected to adapt themselves to changing
requirements and environmental situations with minimum user interactions. A
challenge for self-adaptation is the increasing heterogeneity of applications and
services, integrating multiple systems implemented in different platform and lan-
guage technologies. In order to cope with this heterogeneity, self-adaptive sys-
tems need to support the integration of various technologies, allowing the target
adaptive system to be built from subsystems realized with different implementa-
tion technologies. In this paper, we argue that state-of-the adaptation frameworks
do not lend themselves to ease technology integration and exploitation of ad-
vanced features and opportunities offered by different implementation technolo-
gies. We present the QUA adaptation framework and its support for technology
integration and exploitation. Unlike other adaptation frameworks the adaptation
framework of QUA is able to exploit a wide range of adaptation mechanisms
and technologies, without modification to the adaptation framework itself. As a
demonstration of this property of QUA, we describe the integration of an ad-
vanced component model technology, the FRACTAL component model, with the
QUA framework. Our experience from this exercise shows that the QUA adapta-
tion framework indeed allows integration of advanced implementation technolo-
gies with moderate effort.

1 Introduction

Increasingly dynamic computing environments require software developers to support a
wider range of technologies with applications that need to handle continually evolving
situations and environments. Well designed component models enforce separation of
concerns, thus relieving application developers from having to address concerns, such
as extensibility, distribution, and reconfiguration of the application, and letting them
focus on business and application logic. In order to ease the tasks of system develop-
ers and administrators, separation of concerns can be supported by a generic adapta-
tion framework for handling self-adaptation of applications and services [1,2,3]. Self-
adaptation includes the ability to self-configure automatically and seamlessly according
to higher-level policies. By the same approach, the application developer can model a
set of components and their non-functional properties, and leave it to an underlying

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 230–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Experiences from Developing a Component Technology 231

middleware to reason about changes in context and how these changes should impact
and possibly reconfigure the application components to provide the optimal end-user
satisfaction with the service. This way, adaptive behavior is developed separately from
the application business logic.

However, a challenge for self-adaptation is the increasing heterogeneity of applica-
tions and services, integrating multiple systems implemented in different platform and
language technologies [4,5,6]. In order to cope with this heterogeneity, self-adaptive
systems need to support technology integration, which is the process of building
a system from subsystems technologies. Successful technology integration includes
overcoming three challenges: i) ensure that the integrated subsystems are able to in-
teroperate safely, ii) integrate into the adaptation framework the different technolo-
gies used in the system to be adapted, and iii) whenever possible exploit the specific
features and opportunities offered by the different implementation technologies used.
The latter is generally preferable as it will reduce duplication of efforts when using
advanced implementation technologies, such as state-of-the-art component platforms.
Recently, much effort has been spent on interoperability, in particular in the area of
Service-Oriented Architectures (SOA) [7] and web-services composition [8,9]. How-
ever, SOA focus on solving the first problem by standardizing the interaction between
services, thus hiding the service implementation platforms. Consequently, SOA does
not facilitate the exploitation of adaptation-related features that service implementation
platforms may provide. Thus, adaptation techniques are limited to the specification and
orchestration of workflows through dedicated languages and engines.

In this paper, we focus on the second and third problems, namely technology inte-
gration and exploitation, in the context of self-adaptive systems. In order to fully sup-
port technological heterogeneity, self-adaptive systems must support integration and
exploitation also of adaptation-related technologies, while ensuring that the resulting
system as a whole performs as expected. In order to be applicable to applications and
adaptation mechanisms implemented with different technologies, the adaptation frame-
work of a self-adaptive system needs to be technology agnostic. It must be able to adapt
the behavior of applications and services without depending on knowledge of particular
adaptation mechanisms, and application implementation technologies. In contrast, cur-
rent adaptation frameworks are bound to particular adaptation mechanism technologies,
such as component models, middleware, or communication infrastructures [2,3]. Inte-
grating new technologies into these adaptation frameworks may require major changes
to be made both to the integrated systems and the framework itself. Furthermore, the
resulting system may not be able to exploit the specific capabilities of the integrated
technology. Such a tight coupling between the adaptation framework and the adapta-
tion mechanisms does not facilitate an easy technology integration.

This paper describes the QUA adaptation framework and its support for technology
integration and exploitation. As a demonstration of the latter, we describe our experi-
ence with integrating an advanced component model technology, the FRACTAL com-
ponent model [10], with the QUA framework. Unlike other adaptation frameworks, the
adaptation framework of QUA is able to exploit a wide range of adaptation mecha-
nisms and technologies, without modification to the adaptation framework itself. In or-
der to establish a clear separation between the adaptation framework and the adaptation

232 E. Gjørven, F. Eliassen, and R. Rouvoy

mechanisms, we apply the Dependency Inversion Principle [11] to the QUA architec-
ture. Under this principle, higher level policies do not depend on the modules imple-
menting the policies, but rather on abstractions. Specifically, by expressing adaptation
policies as utility functions [12], we enable the specification of adaptation policies that
are independent from the technologies used to implement the adaptation actions en-
forcing the policies. Furthermore, rather than defining yet another component model,
the QUA adaptation framework defines a concise, technology-agnostic, meta-model
that abstracts over the various legacy component models, which can be plugged in to
the adaptation framework.

In the remaining of the paper, we first study the requirements that self-adaptive sys-
tems must satisfy in order to facilitate easy technology integration, and we introduce
the design principles that support these requirements (cf. Section 2). These principles
are demonstrated through the QUA adaptation framework design (cf. Section 3), and
the integration of the FRACTAL component model (cf. Section 4). We discuss the expe-
riences made from this integration (cf. Section 5) before concluding and presenting our
future work (cf. Section 6).

2 Technology Integration and Adaptation Frameworks

This section analyzes the challenges of designing an adaptation framework support-
ing technology integration and further motivates the need for clearly separating the
adaptation concerns. Then, the main design principles adopted for achieving a better
separation of adaptation concerns in the QUA framework are introduced.

2.1 Limitation of Technology Integrations in Self-adaptive Systems

Conceptually, a self-adaptive system consists of three parts: the adaptation framework,
the adaptation mechanisms, and the target adaptive system.

The adaptation framework (also known as control loop) is responsible for control-
ling the ongoing adaptation processes. The adaptation framework constantly observes
and analyzes the behavior of the target adaptive system, and instantiates, plans, and ex-
ecutes adaptations when necessary. The adaptation framework is based on adaptation
policies, used to decide which adaptation to carry out in each situation. The adapta-
tion framework depends on adaptation mechanisms, which perform adaptation related
actions, such as collecting and processing information about the target adaptive sys-
tem and its environment, evaluating alternative adaptation actions, and performing the
selected ones. Examples of such mechanisms are context monitoring, component life-
cycle handling, and reconfiguration mechanisms.

The target adaptive system represents the target of adaptation. The adaptive system
spectrum covers application software, middleware infrastructure (e.g., communication,
transaction, persistence), lower level operating system modules (e.g., scheduler, driver),
or device resources (e.g., screen resolution, network interface).

The current direction in self-adaptive software research is to isolate the adapta-
tion concerns from the application logic using generic adaptation frameworks [2,3].
However, state-of-the-art adaptation frameworks and corresponding adaptation policy

Experiences from Developing a Component Technology 233

specification languages are tailored to specific component models and platforms. The
adaptation policy languages, such as SAFRAN [2] or PLASTIK [3], can be used to define
both coarse-grained adaptations, such as replacing one component with another, and
more technical and fine-grained adaptations, down to the level of setting the value of a
component parameter. These adaptation frameworks impose a tight coupling between
the adaptation policies—stating what adaptations should be carried out and when—
and the adaptation mechanisms—implementing the corresponding adaptation actions.
Typically, the adaptation policy refers directly to the adaptation actions themselves.

Actually, the integration of a new technology can have the following impacts:

→ integration of adaptive systems requires porting the target adaptive application or
service to the technology platform of the adaptation framework, and to integrate
associated adaptation mechanisms into the framework;

→ integration of new adaptation mechanisms requires updating the adaptation frame-
work with knowledge about the new mechanisms;

→ updating the adaptation framework requires careful evaluation of the effects that
the updates will have on other mechanisms and adaptive systems controlled by the
adaptive systems.

Thus, a possible, and unfortunate, consequence of the above dependencies may be
that adding a new component to a target adaptive system requires updating the higher
level adaptation policies. In order to overcome the above challenge, design principles
for building technology-agnostic adaptation frameworks are needed. Technology ag-
nostic adaptation frameworks preserve the technological heterogeneity of the target
systems, while exploiting adaptation-related features provided by their implementation
platforms. We argue that to achieve the above, separation of adaptation concerns should
be enforced when designing and implementing the adaptation behavior. In particular, by
handling the three parts as separate concerns, we are able to reduce the dependencies
between them, and thereby facilitate the integration of new solutions in each concern
with less impact on the others.

2.2 Providing a Clear Separation of Adaptation Concerns

In the area of agile programming, the Dependency Inversion Principle (DIP) has been
introduced as a fundamental design principle, which contributes to improving software
maintainability and extendability [11]. The DIP can be applied to systems where higher
level modules, containing the important policy decisions and business models of an
application, controls lower level modules, containing the implementation of the higher
level policies. Thus, according to this principle:

a) high level modules should not depend on low level modules. Both should depend
upon abstractions;

b) abstractions should not depend upon details. Details should depend upon abstrac-
tions.

We apply the DIP to the case of an adaptation middleware consisting of a higher
level module, the adaptation framework containing the adaptation policies and lower
level modules, containing the adaptation mechanisms.

234 E. Gjørven, F. Eliassen, and R. Rouvoy

In [11], the author points out two consequences of applying the DIP. The first, and
most obvious, consequence is that no implementation class should depend on another
implementation class, but rather on abstractions. The second consequence is that the
abstractions should be owned by the higher level policies, rather than the lower level
implementations. From this, we formulate the following requirements for the design of
the adaptation framework:

1. the adaptation framework and the adaptation mechanism should depend on adap-
tation mechanism abstractions (according to DIP a)),

2. the adaptation mechanisms and the adaptation target should depend on adaptation
target abstractions (according to DIP a)),

3. the adaptation mechanism abstraction should be owned by the adaptation frame-
work rather than the mechanisms (according to DIP b)),

4. the adaptation target abstraction should be owned by the adaptation mechanism,
rather than the adapted system (according to DIP b)).

Figure 1 illustrates the design of an adaptation framework that satisfies the DIP prin-
ciple. The modelling convention used here, and in the rest of the paper, is that closed
arrows represent an implementation relationship from the implementing class to the
interface, while open arrows represent associations and dependencies.

Adaptation
Framework

«interface»
Adaptation Mechanisms

Adaptation Mechanisms
Provider

Adaptation Target
Provider

«interface»
Adaptation Target

**
uses

**
uses

implements

implements

Fig. 1. Applying dependency injection principle to adaptation frameworks

Many adaptation frameworks satisfy the requirements 1, 2, and 4 [2,3,13]. They typi-
cally define adaptation-related interfaces that must be implemented by target systems in
order to conform to the adaptation mechanisms. However, as discussed in Section 2.1,
these frameworks use adaptation policies that tightly couple the adaptation framework
and the mechanisms, making the adaptation mechanism abstraction not truly owned
by the adaptation framework as specified by requirement 3. Below, we discuss how to
design adaptation policies, making possible to fully satisfy the DIP.

2.3 Using Technology-Independent Adaptation Policies

The adaptation framework depends on an adaptation policy, which is applied to de-
cide which mechanism to use in a certain situation. Many adaptation frameworks are
based on variants of rule-based adaptation policies [2,3], where policies are specified
using condition-action expressions. Rule-based approaches can be simple and practi-
cal, at least as long as the rule-set is small. However, adaptation rules do not separate

Experiences from Developing a Component Technology 235

well between the adaptation framework and adaptation mechanism. Rules map adap-
tation conditions directly to detailed knowledge about the target adaptive system, and
the available adaptation mechanisms. When integrating new adaptation mechanisms
into the rule-set, at best, new rules have to be added to the rule-set. In order to keep
the rule-set consistent, then the entire rule-set has to be checked for completeness (all
conditions map to an action) and conflicts (conditions mapping to multiple actions that
are contradictory). At worst, the policy language is not expressive enough for the new
mechanism. For example, the policy language designed for supporting the capabilities
of a given component model, may not be directly applicable to another component
model. The essential problem is that the rule-based policy languages are owned by the
mechanisms, producing dependencies that are difficult to handle when integrating new
technologies.

Utility-based adaptation policies have been elaborated as an alternative to rule-based
policies in self-managing systems [12]. Utility-based policies are expressed as functions
assigning to each configuration alternative—including adaptation mechanisms neces-
sary to implement the alternative—a scalar value indicating the desirability of this alter-
native. A utility-based adaptation framework discovers a set of configuration alternatives,
computes their utility, and selects the one with the highest utility. This way, utility func-
tions introduce a level of indirection between the adapted system and the mechanisms
implementing a configuration, and its desirability. The utility value is calculated from
metadata describing the functional and qualitative properties of a configuration, rather
than the technical implementation knowledge. Thus, utility functions provide a higher-
level, mechanism and technology independent adaptation policy language. The reader
can refer to [14] for a detailed discussion about the characteristics of utility functions.

2.4 Reflecting the Target Adaptive System Properties

In order to be able to compute utility values, metadata about the functional and qual-
itative properties of configuration alternatives and adaptation mechanisms must be
available to the adaptation framework. Thus, the adaptation framework depends on a
technologically independent meta-model that is able to express information about the
required properties.

In order for the adaptation framework to be independent of the existence of particular
reflective capabilities provided by target technologies, the metadata must be provided
by a separate module. A variant of traditional reflection, called mirror-based reflec-
tion [15], can be used to define reflective APIs suitable for technologically independent
adaptation frameworks. In mirror-based reflection, the reflective capabilities are pro-
vided by separate objects called mirrors, instead of by the reflected objects themselves,
as is common in traditional reflection. The reader can refer to [15] for a detailed discus-
sion about the characteristics of mirror-based reflection.

3 Designing the QUA Adaptation Framework

This section introduces the design of the QUA adaptation framework, which proposes
to improve the state-of-the-art adaptation middleware approaches by offering a modular
support for reflecting, reasoning, and deploying services.

236 E. Gjørven, F. Eliassen, and R. Rouvoy

3.1 An Overview of the QUA Middleware

The QUA middleware supports middleware-managed adaptation, which means that the
adapted system is specified by its behavior, and then planned, instantiated, and main-
tained by the middleware in such a way that its functional and qualitative requirements
are satisfied throughout its lifespan. In order to be able to represent the adapted system
from specification to termination, the unit of adaptation in QUA is a service, which we
define as:

A service describes a set of capabilities that are defined by i) a group of oper-
ations and their input and output data, and ii) a contract (explicit or implicit)
describing the work done, as delivered output data, when invoking these oper-
ations with valid input data. The service lifespan encloses its specification of
behavior, association with implementation artifacts, service instantiation, exe-
cution, and termination.

Thus, a service may be associated with implementation artifacts implementing its be-
havior, or running objects performing its behavior. Service implementation artifacts al-
ways require a particular service platform, which can be used to instantiate a service by
interpreting the implementation artifacts. Finally, service implementations may depend
on other services in order to implement the promised functionality.

A QUA client is typically a client application, using QUA to instantiate services, or
service a development tool, using QUA to deploy service implementations and meta-
data. QUA defines a programming API that can be used to invoke the QUA middleware
services from tools or applications, and providing the following operations:

– Publication of service implementations: service implementations may include dif-
ferent types of implementation resources, such as implementation classes (Java
classes or library modules), component descriptors (ADL or XML documents),
interface definitions etc., depending on the type of technology used to implement
the service.

– Advertising service implementation meta-data: Meta-data describing the static and
dynamic properties of service implementations can be advertised to the middle-
ware.

– Instantiation of services: service instantiation means evaluating, selecting, and in-
stantiating service implementations, and perform initial service configuration. The
resulting service will be maintained by the QUA middleware throughout its lifespan
through adaptation.

– Reflection on services: the QUA middleware defines a reflective API, called the
Service Meta Object Protocol (SMOP), used to inspect and manipulates services.

In contrast to other adaptation frameworks, which mixes the adaptation policies with
the adaptation mechanisms, QUA identifies a clear separation between the three adap-
tation concerns described in Section 2.

Conceptually, we order the three adaptation concerns horizontally, as depicted in
Figure 2. By applying the Dependency Injection Principle (DIP), we achieve an hor-
izontal separation of concerns by establishing an ordering of module pairs where the
higher level module always owns the interfaces shared with next lower-level modules.

Experiences from Developing a Component Technology 237

«interface»
Planning

Framework

«interface»
Service

Meta-Object Protocol

«interface»
Platform

Framework

QuA Adaptation
Framework

Service
Planner

Adaptation Target
Service Mirror

Service
Platform

«interface»
Adaptation Target

Adaptation Target
Provider

implementsimplements implements

implements

*

*

uses

*
* uses

*

*

uses
Adaptation
Framework

Adaptation
Mechanisms

Adaptation
Targets

**
uses

*

*

uses

*

*

reflects

*

*

uses

Fig. 2. Design of the QUA adaptation framework

The adaptation framework module define three abstractions; The Planning Frame-
work is responsible for selecting service implementations, while the Platform Frame-
work is responsible for managing service implementations during their execution. The
Service Meta-Object Protocol (SMOP) can be used to inspect and manipulate ser-
vices throughout their lifespan.

The planning and platform frameworks abstractions are implemented by concrete
planning and implementation mechanisms. The planning framework is implemented by
Service Planners that use metadata provided by the SMOP to find alternative service
implementations, analyze their expected behavior, and select an alternative that match
the service requirements. The platform framework is implemented by Service Plat-
forms that enclose technology specific code and mechanisms supporting service instan-
tiation and adaptation, including binding and rebinding of service dependencies. Such
adaptation mechanisms typically define adaptation-related interfaces implemented by
the target systems. Service Platforms are responsible for maintaining the causal con-
nection between Service Mirrors implementing the SMOP, and the Adaptation Tar-
gets. In the adaptation target layer, we find the Adaptation Target Providers, which
are the base level objects implementing the adaptation targets.

3.2 Reasoning Support: The Utility-Based Planning Framework

The planning framework applies utility-based adaptation policies [12] as a way to
keep the adaptation framework independent of integrated technologies and mecha-
nisms. Each service may be associated with a utility function, which is applied by the
planning algorithm to metadata describing the qualitative properties of each alternative
service implementations. Metadata about the qualitative properties of a service imple-
mentation can be expressed by quality predictors, which are functions of the run-time
environment, and the quality provided by other services that the service depend on, if
any. Such predictor functions are written by the implementation developer, and made
available through the SMOP. By computing utility functions and quality predictors, the
utility of a particular implementation can be calculated based on the desirability of al-
ternative behaviors, rather than knowledge about the alternative implementations and
mechanisms.

238 E. Gjørven, F. Eliassen, and R. Rouvoy

The planning process can be implemented by numerous algorithms. By applying
the DIP also to the planning framework, the adaptation framework is protected from
changes in the mechanisms used by the planning framework.

3.3 Technology Support: The Platform Framework

When an implementation has been selected by the planning framework, the platform
framework is responsible for applying the correct mechanisms for instantiating the ser-
vice. A service platform is able to interpret implementation artifacts of certain types,
instantiate services from those artifacts, and provide a run-time environment for the in-
stantiated services. For example, a Java Service Platform provides access to a Java
Virtual Machine, and is able to instantiate Java objects hosted by that machine, from
Java classes. The platform also defines the types and natures of service collaborations
defined by the technology, such as component composition through component connec-
tors, or specialized communication patterns, such as event-driven communication and
data streaming.

Upon service instantiation, a service platform receives from the adaptation frame-
work, metadata describing the required service, implementation artifacts that have been
selected by the planning framework during initial planning, and services that the im-
plementation depends on. Adaptation-aware platforms monitor their managed services,
and when they find it necessary, trigger the adaptation framework for a re-planning. The
result from the re-planning is a new set of metadata and implementation artifacts that
can be used by the platform to perform an adaptation.

In order to hide the details of service instantiation and configuration from the adap-
tation framework, we apply the DIP to the platform framework. The adaptation frame-
work invokes a service platform to instantiate a service with a package encapsulating
the implementation artifacts, called blueprint, as a parameter. As the type of implemen-
tation artifacts used by a certain technology is highly technology specific, blueprints
are black boxes to the adaptation framework. The blueprint may contain technology
specific information related to different types of adaptation mechanisms, such as com-
ponent replacement, component parametrization, insertion of interceptor or monitors,
etc. The QUA adaptation framework does not define the format of a blueprint, nor does
it ever inspect or manipulate its content. Blueprints are created by technology expert
developers, and deployed to the QUA middleware using technology specific tools.

The platform depends on technology specific mechanisms in order to instantiate and
adapt the service. Examples of such services are component factories, parsers for com-
ponent descriptors, binders and configurators, resource managers, etc. These mecha-
nisms may either be implemented as a part of the platform, or they may be deployed to
the middleware as services that the platform depends on. Based on the simple abstrac-
tions described above, multiple adaptation techniques can be integrated and exploited
through the platform framework concept [2,3,4,5,6,13].

3.4 Reflection Support: The Service Meta-object Protocol

The QUA middleware defines a service meta-object protocol that can be used to re-
flect on services in all phases of their life-cycle. The SMOP is based on a services

Experiences from Developing a Component Technology 239

is in

refers Behavior State

Service

Implementation Instance

Type

Utility
Function

QoS
Predictor

Blueprint
*

* has

*
*

1

*
defines0..1 *

encloses

1 *

*
*

expresses

1 *
refers

*

*

requires
1

*

hosted by

1

*

realizes

Fig. 3. The QUA service meta-model

meta-model, which is used to describe exactly the aspects of a service related to plan-
ning, instantiation, and execution of services managed by QUA—i.e., its behavior (re-
quired or provided type, and utility function), implementation (including blueprint, re-
quired service platform, and implementation dependencies), and instances if any. Fig-
ure 3 describes the QUA service meta-model.

In order to conform to the DIP, the SMOP must provide the adaptation framework
with a technologically independent reflective API. The QUA reflective API is based
on mirror reflection, where the meta-level facilities are implemented separately from
the reflected system as described in Section 2.4. Thus, mirror-based reflection does not
require any changes to be made to the reflected system, and it allows the coexistence
of technology specific reflective APIs required by service platforms and their mech-
anisms. In [16], we describe a comprehensive application scenario demonstrating the
application of the service meta model, including examples of quality prediction and
utility functions.

4 Implementing the QUA-FRACTAL Adaptation Middleware

In [14], we have shown that the framework is applicable to simple programming models,
such as the Java programming languages, by designing lightweight component models
based on this language. In order to confirm the ability of the QUA adaptation frame-
work to integrate and exploit concrete adaptation technologies, we need to apply the
framework to an adaptation technology that provide a rich set of features. To this end,
we consider the FRACTAL component model [10] as an interesting candidate technol-
ogy. The FRACTAL component model is a lightweight and hierarchic component model
targeting the construction of efficient and highly reconfigurable middleware systems.
FRACTAL has been used in several projects to implement advanced adaptive and self-
adaptive behavior [17,2,18]. Thus, if we are able to successfully integrate and exploit
the rich set of available mechanisms and tools provided by FRACTAL ecosystem, with-
out coding FRACTAL-specific knowledge into the generic adaptation framework, it is a
strong indication that the QUA adaptation framework has the expected capabilities with
regards to supporting integration.

The work presented in this paper is based on integrating the powerful, expressive, and
flexible component reconfiguration mechanisms provided by FRACTAL. In particular,
the FractalADL Factory is a component factory that instantiates FRACTAL components
and composites from architecture descriptions written in the FRACTAL Architecture

240 E. Gjørven, F. Eliassen, and R. Rouvoy

Description Language (FRACTALADL) [19]. The FSCRIPT engine interprets configu-
ration scripts written in the FRACTAL-based configuration language FSCRIPT [2]. The
FSCRIPT language includes primitives for standard FRACTAL component management,
and can be extended in order to support more advanced configurations.

4.1 The FRACTAL Component Model

The reconfiguration capabilities are defined by controllers that defines the level of in-
trospection and control of a component (life-cycle, attributes, bindings, interfaces, etc.).

Application

Client

Server1

Server2
B C

CA

run
*

**

**

Composite
Component

Primitive component

Shared
Component

Server
Interface

Client
InterfaceController

BindingContent

Internal
Interface

Collection
Interface

c lc bc

c lc cc

c lc cc

c lc cc

c lc bc c lc ac

c lc bc c lc ac

Control
interface

Fig. 4. Architecture of a FRACTAL component

Figure 4 illustrates the different entities in a typical FRACTAL component architec-
ture. Thick black boxes denote the controller part of a component, while the interior
of these boxes correspond to the content part of a component. Arrows correspond to
bindings, and tau-like structures protruding from black boxes are internal or external
interfaces. Internal interfaces are only accessible from the content part of a compo-
nent. External interfaces appearing at the top of a component represent reflective con-
trol interfaces, such as the Life-cycle Controller (lc), the Binding Controller (bc) or
the Content Controller (cc) interfaces. The two dashed boxes (C) represent a shared
component.

4.2 The QUA-FRACTAL Middleware

The QUA-FRACTAL middleware has been implemented as a service platform, Frac-
tal Platform, that includes an implementation of the JULIA run-time, the FractalADL
factory, and the FScript engine, as illustrated in Figure 5.

The FRACTAL platform instantiates services from FRACTAL blueprints, containing
FRACTALADL descriptors, implementation classes, and FScript configuration scripts.
It extracts ADL descriptors and implementation classes from the blueprint, and invokes
the ADL factory to instantiate components from the descriptors. The ADL factory de-
pends on the JULIA run-time to create the component instances from the implementa-
tion classes. Finally, FScripts are extracted from the blueprint, and the FSCRIPT engine
is invoked to perform configuration based on the FScripts. FRACTALADL and FSCRIPT

Experiences from Developing a Component Technology 241

«interface»
Platform

Framework

Fractal
Platform

«interface»
Adaptation Target

FScript

implements

Adaptation
Mechanisms

Adaptation
Targets

**
uses

Adaptation
Framework

FractalADL

Julia Runtime

implements

1

1
uses

1 1
uses

1

1
uses

Fractal Component
Provider

1 1
includes

1

1
includes

1

1
includes

Fig. 5. Architecture of the FRACTAL platform

use standard FRACTAL controllers to perform component management tasks, such as
binding, life-cycle management, and parameter configuration.

In order to be able to exploit different combinations of FRACTAL components, we
have to enable the QUA planning framework to plan alternative FRACTAL components
independently. For example, in the case of composite components, we want to be able
to plan certain sub-components independently, in order to find the combination of com-
ponents that best satisfy the service requirements. The recursive meta-model provided
by QUA enables such a nested planning through the definition of implementation de-
pendencies. Instead of publishing an ADL descriptor describing the complete composi-
tion, we extract ADL descriptions describing sub-components into separate FRACTAL

blueprints. Thus, in the case where several implementations of a sub-component are
available, the planner will select the one giving the highest utility.

4.3 The Comanche Application

Below, we illustrate our prototype application Comanche: a legacy web server devel-
oped by the FRACTAL community. Comanche is a lightweight web server implemented
with the FRACTAL component model1. This implementation provides the core features
of a web server as a proof of concept of the relevance of FRACTAL for building middle-
ware systems.

In its initial version, Comanche is made of several components that identify the var-
ious concerns of a web server, as depicted in Figure 6.

Receiver

Scheduler

Analyzer Logger

File Handler

Error Handler
Dispatcher

Comanche

Frontend

Backend Handlers

Fig. 6. Architecture of the Comanche web server

1 Comanche tutorial: http://fractal.ow2.org/tutorial.

242 E. Gjørven, F. Eliassen, and R. Rouvoy

In particular, Comanche contains a component Scheduler that schedules the treat-
ment of incoming requests (see Figure 6). The implementation of this component con-
trols the allocation of dedicated activities for analyzing incoming requests. The initial
implementation of the scheduler creates a thread per incoming request without control-
ling the number of activities created. In the SAFRAN project [2], an alternative to the
scheduler proposes to use a pool of threads to control the number of threads used by
the web server. However, the thread pool scheduler provides lower response times than
constantly creating new threads.

1ServiceMirror comancheMirror = QuA.createServiceMirror(Comanche);
2comancheMirror.setUtilityFunction(ComancheUtility);
3comancheMirror.setImplBlueprint(ComancheBlueprint);
4comancheMirror.setImplQoSPredictor(ComanchePredictor);
5comancheMirror.setImplDependencies("s", Scheduler);

Listing 1.1. Service mirror reflecting the Comanche web server.

In order to be able to apply the QUA-FRACTAL middleware to the configuration
of the Comanche web server, we had to deploy the Comanche application, including
ADL descriptors, FScripts, and implementation classes, to the QUA middleware as a
blueprint, and to advertise the necessary meta-data, including utility function and qual-
ity predictors, to the middleware (see the QuA-specific code for advertising metadata,
represented as a service mirror in Listing 1.1).

1<definition name="Frontend" extends="FrontendType">
2<component name="rr" definition="Receiver"/>
3<component name="s" definition="Scheduler"/>
4<!-- Definitions of bindings -->
5</definition>

Listing 1.2. FRACTALADL descriptor of the Comanche front-end.

The ADL for the Comanche front-end is depicted in listing 1.2. The utility of the
Comanche server is expressed by a function that returns high utility values for low re-
sponse times, and low utility values for high response times. Listing 1.3 contains the
component replacement script replace-scheduler, used to replace one scheduler com-
ponent with another. The script uses a number of primitive operators, such as stop,
bind, and remove, in order to implement the routine that has to be followed in order to
safely replace one component with another. These operators are mapped by FSCRIPT

to invocations of standard FRACTAL controller interfaces.

1action replace-scheduler(comanche, scheduler) {
2stop($comanche);
3var frontend = $comanche/child::fe;
4unbind($frontend/child::rr/interface::s[client(.)]);
5remove($frontend, $frontend/child::s);
6add($frontend, $scheduler);
7bind($frontend/child::rr/interface::s, $scheduler/interface::s);
8start($comanche);
9return $comanche;
10}

Listing 1.3. FSCRIPT statements replacing component in Comanche.

Experiences from Developing a Component Technology 243

5 Evaluating the QUA-FRACTAL Implementation

In order to evaluate the adaptation framework presented in Section 3, we have to
consider to what degree the combined QUA-FRACTAL middleware was able to solve
the challenges mentioned in Section 1, namely: ii)to integrate into the adaptation
framework different technologies used in the system to be adapted, and iii) to whenever
possible exploit the specific features and opportunities offered by the different imple-
mentation technologies used. With regard to ii), we have managed to integrated the
FRACTAL run-time and FRACTAL components into the QUA adaptation framework.
The integration required an acceptable amount of work, given the availability of
developers that have moderate knowledge about the QUA middleware, and some
knowledge about the FRACTAL middleware. With regard to iii), we have managed to
exploit two FRACTAL specific adaptation mechanisms, namely the FRACTALADL
factory and the FSCRIPT language.

In order to reflect the amount code in the resulting middleware that is technology
agnostic, technology specific, and application specific, Table 1 presents the number of
classes and the byte-code size of the different parts of the resulting middleware and
application. As indicated by the table, the FRACTAL mechanisms contribute with by
far the largest amount of files and byte-code. The QuA middleware consists of a rather
small middleware core, which byte-code size is less than 10% of the size of QUA-
FRACTAL platform. Furthermore, the number of QUA-specific files required in order to
implement the QUA-FRACTAL platform was only 8. This number includes both the def-
inition of the QUA-FRACTAL platform interface, the QUA-FRACTAL implementation
classes, the QUA-FRACTAL blueprint used to encapsulate FRACTAL implementation
artifacts, and an helper platform used to instantiate the QUA-FRACTAL platform itself,
as a service.

Table 1. Distribution of code in QUA-FRACTAL

Concern Number of class files Byte-code size (Kb) Distribution (%)

QUA middleware 53 276 7
QUA-FRACTAL platform 8 76 2
JULIA run-time 300 1,782 45
FRACTALADL factory 171 816 21
FSCRIPT engine 151 828 21
Utility classes 33 168 4

QUA-FRACTAL total 716 3,946 100
Comanche application 17 76

The relatively small size of the QUA middleware is the result of keeping the re-
sponsibility of the QuA middleware small and concise, and independent of technology
specific details and knowledge by the application of the DIP and utility functions. Due
to these principles, we are able to control an advanced and comprehensive adaptation
middleware technology from this small and generic adaptation framework.

244 E. Gjørven, F. Eliassen, and R. Rouvoy

6 Conclusions

Due to the growing heterogeneity of technologies used to implement nowadays dis-
tributed systems, existing adaptation middleware faces more and more difficulties to
perform technology agnostic adaptations. This phenomenon is particularly true in the
component-based software engineering community where most of the state-of-the-art
approaches to adaptation suffer from their tight coupling to a particular component
model [2,3]. This strong dependency restricts the integration of new technologies (e.g.,
component models or middleware frameworks) to the fixed set of abstractions supported
by the adaptation middleware, thus avoiding the integration of technology-specific
adaptation capabilities.

The contribution of this paper is to present the implementation of a modular adap-
tation middleware, called QUA, whose design supports the integration of various tech-
nologies. This design combines the definition of a Meta-Object Protocol [15] and the
application of the Dependency Inversion Principle [11]. The former is used to reflect
the meta-data associated to technology artifacts, while a utility-based planning frame-
work and a platform framework apply the latter to reason about the reflected metadata
and perform adaptations, respectively. We validate this design by reporting the integra-
tion of the FRACTAL component model into the QUA middleware, and we illustrate the
resulting adaptation middleware on the adaptation of a component-based application:
the Comanche web server. By facilitating the integration of technologies, this approach
clearly separates the adaptation concern from the application and the technology.

As a matter of perspective, we plan to extend the set of supported technologies and
experiment the consistent adaptation of cross technology applications.

Acknowledgements

The authors thank the reviewers of the CBSE conference for valuable comments. This
work was partly funded by the European Commission through the project MUSIC (EU
IST 035166).

References

1. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems 14(3), 54–62 (1999)

2. David, P.C., Ledoux, T.: An Aspect-Oriented Approach for Developing Self-Adaptive Frac-
tal Components. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089. Springer,
Heidelberg (2006)

3. Batista, T.V., Joolia, A., Coulson, G.: Managing Dynamic Reconfiguration in Component-
based Systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp.
1–17. Springer, Heidelberg (2005)

4. Sun microsystems: Java Platform, Enterprise Edition (Java EE),
http://java.sun.com/javaee

5. OSGi Alliance: OSGi Service Platform Release 4, http://www.osgi.org
6. Microsoft. Net: Microsoft. NET Framework 3.5, http://www.microsoft.com/net

http://java.sun.com/javaee
http://www.osgi.org
http://www.microsoft.com/net

Experiences from Developing a Component Technology 245

7. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice-Hall,
Englewood Cliffs (2005)

8. Erradi, A., Maheshwari, P., Tosic, V.: Policy-Driven Middleware for Self-adaptation of Web
Services Compositions. In: van Steen, M., Henning, M. (eds.) Middleware 2006. LNCS,
vol. 4290, pp. 62–80. Springer, Heidelberg (2006)

9. Kuropka, D., Weske, M.: Implementing a Semantic Service Provision Platform Concepts
and Experiences. Journal Wirtschaftsinformatik – Special Issue on Service Oriented Archi-
tectures and Web Services 1, 16–24 (2008)

10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The FRACTAL compo-
nent model and its support in Java. Software Practice and Experience – Special Issue on
Experiences with Auto-adaptive and Reconfigurable Systems 36(11/12), 1257–1284 (2006)

11. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices. Prentice-Hall,
Englewood Cliffs (2002)

12. Kephart, J.O., Das, R.: Achieving Self-Management via Utility Functions. IEEE Internet
Computing 11(1), 40–48 (2007)

13. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for Distributed
Systems. In: 1st International Workshop on Self-Healing Systems (WOSS 2002), pp. 33–38.
ACM, New York (2002)

14. Alia, M., Eide, V.S.W., Paspallis, N., Eliassen, F., Hallsteinsen, S.O., Papadopoulos, G.A.: A
Utility-Based Adaptivity Model for Mobile Applications. In: 21st International Conference
on Advanced Information Networking and Applications (AINA 2007), pp. 556–563. IEEE,
Los Alamitos (2007)

15. Bracha, G., Ungar, D.: Mirrors: Design Principles for Meta-level Facilities of Object-
Oriented Programming Languages. In: 19th Annual Conference on Object-oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2004), pp. 331–344. ACM, New
York (2004)

16. Gjørven, E., Eliassen, F., Lund, K., Eide, V.S.W., Staehli, R.: Self-Adaptive Systems: A Mid-
dleware Managed Approach. In: Keller, A., Martin-Flatin, J.-P. (eds.) SelfMan 2006. LNCS,
vol. 3996, pp. 15–27. Springer, Heidelberg (2006)

17. Bouchenak, S., Palma, N.D., Hagimont, D., Taton, C.: Autonomic Management of Clustered
Applications. In: International Conference on Cluster Computing (Cluster 2006). IEEE, Los
Alamitos (2006)

18. Roy, P.V., Ghodsi, A., Haridi, S., Stefani, J.B., Coupaye, T., Reinefeld, A., Winter, E., Yap,
R.: Self-management of large-scale distributed systems by combining peer-to-peer network-
sand components. Technical Report18, CoreGRID - Network of Excellence (2005)

19. Leclercq, M., Özcan, A.E., Quéma, V., Stefani, J.B.: Supporting Heterogeneous Architec-
ture Descriptions in an Extensible Toolset. In: 29th International Conference on Software
Engineering (ICSE 2007), pp. 209–219. IEEE, Los Alamitos (2007)

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 246–261, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Practical Approach for Finding Stale References in a
Dynamic Service Platform

Kiev Gama and Didier Donsez

University of Grenoble, LIG laboratory, ADELE team
{Kiev.Gama,Didier.Donsez}@imag.fr

Abstract. The OSGi™ Service Platform is becoming the de facto standard for
modularized Java applications. The market of OSGi based COTS components is
continuously growing. OSGi specific problems make it harder to validate such
components. The absence of separate object spaces to isolate components may lead
to inconsistencies when they are stopped. The platform cannot ensure that objects
from a stopped component will no longer be referenced by active code (a problem
referred by OSGi specification as stale references) leading to memory retention and
inconsistencies (e.g., utilization of invalid cached data) that can introduce faults in
the system. This paper classifies different patterns of stale references detailing them
and presents techniques based on Aspect Oriented Programming for runtime detec-
tion of such problems. We also present a fail-stop mechanism on services to avoid
propagation of incorrect results. These techniques have proven to be effective in a
tool implementation that validated our study.

Keywords: OSGi, stale references, dynamic services, memory leaks, runtime
diagnostics, component validation.

1 Introduction

The OSGi service platform [1] is a framework targeting the Java platform, providing
a dynamic environment for the deployment of services and modules (referred as bun-
dles in OSGi terminology). The OSGi architecture provides a hot deployment feature
by allowing modules to be dynamically added, updated or completely removed during
application execution without the need to restart the JVM. OSGi is being used in a
myriad of applications (e.g., desktop and server computers, home gateways, automo-
biles) and is becoming the de facto standard for modularized Java applications [2] [3]
[4] [5]. A milestone of OSGi’s acceptance in software industry is its adoption in the
Eclipse Platform [6].

Although the OSGi platform has evolved and matured in several aspects, its run-
time environment does not enforce the isolation of bundles. A certain level of isola-
tion by means of class loaders is provided by the OSGi platform, but bundles are not
truly isolated from each other under a memory perspective. There are no separate
object spaces between bundles that would guarantee a safe and complete removal of a
bundle from the platform. Bundles may freely exchange objects, but there is no
mechanism to enforce that an object will not be referenced when its bundle stops.

 A Practical Approach for Finding Stale References in a Dynamic Service Platform 247

Even with events notifying the departure of services and bundles, the current OSGi
programming model is not trivial to follow and the handling of such events is error
prone. Due to bundle programming flaws, object instances may be kept by a con-
sumer bundle after the provider bundle stops. The usage of such objects leads to
memory retention preventing the classes from stopped bundles to be unloaded from
memory. Faulty components can be introduced in the system due to propagation of
incorrect results (e.g., old or invalid cached data) that may result from calls to those
stale objects.

The OSGi specification briefly describes this issue and refers to it as Stale Refer-
ences. Avoiding it is a matter of good programming practices since the environment
cannot control or inspect it. Although there are mechanisms to minimize the occur-
rence of this problem, it is not possible to assure that every possibility of stale refer-
ence is being taken care of. This problem is difficult to detect in existing diagnostic
applications (e.g., Eclipse TPTP, Netbeans profiler, Borland Optimizeit) because it is
a consequence of particularities in the OSGi dynamic environment.

The market of OSGi based Commercial-Off-The-Shelf (COTS) components is rap-
idly growing [2]. Under the perspective of the OSGi dynamicity aspects that we have
presented, existing tools or testing suites cannot guarantee or evaluate that OSGi
based COTS components can be safely introduced in an OSGi platform without
bringing any problems such as stale references upon OSGi life cycle events.

This paper proposes techniques that enable such type of validation for the OSGi
environment. We go deeper in the stale references problem by classifying and detail-
ing different patterns of stale references. We propose and validate diagnosis tech-
niques that rely on Aspect Oriented Programming [7] to change OSGi framework
implementations enabling them to provide information to detect those patterns during
application runtime. We found that a static analysis approach may impose several
constraints and it is not suitable to a dynamic environment such as OSGi. We also
transparently introduce a fail-stop approach on calls to stale services to avoid the
propagation of incorrect results.

Our detection techniques make possible to identify and visualize stale references,
achieving an OSGi specific inspection feature that is not yet available in existing
diagnostic tools. By identifying such problems it is possible to provide information
that can help correcting bundle source code, allowing developers to guarantee the
quality of their OSGi targeted applications and components.

All the techniques explained here were validated with the development of a diag-
nostic tool [8] that can be used to inspect OSGi targeted applications and components.
The analysis of four open source OSGi based applications presented stale references
after simulating life cycle (update, stop, uninstall) events.

The remaining sections of this paper are organized as follows: section 2 gives an
overview of the dynamics in OSGi and its implications; section 3 details different
patterns of stale references; section 4 explains the techniques for runtime detection of
those patterns; section 5 presents the results of an experiment with 4 open source
application as a part of the validation of our work; section 6 talks about related work;
and, at last, section 7 presents the future work and conclusion.

248 K. Gama and D. Donsez

2 OSGi Dynamics and Implications

The OSGi framework provides a straightforward service platform for the deployment
of modules and services. The deployment unit in OSGi is called bundle, which is an
ordinary compressed jar file with classes and resources. The jar file manifest contains
OSGi specific attributes describing the bundle. A bundle can be dynamically loaded
or unloaded on the OSGi framework and may optionally provide or consume services,
which can be any Java object. Applications can take advantage of the dynamic load-
ing feature to update software components without the need to stop the application.
For example, a production system may have a bundle updated with a new version due
to minor bugs fixed or other types of improvements.

Bundles can access the OSGi framework through a BundleContext object which
becomes available in the bundle’s activation process. Through that object they can
register and retrieve services. In OSGi, services are ordinary Java objects that are
registered into the framework service registry under a given interface name. The basic
process to retrieve a service instance consists in two steps: it is necessary to ask the
BundleContext for the desired interface, resulting in a ServiceReference object which
holds metadata of a service. The next step is to use the BundleContext again to re-
trieve the service instance that corresponds to that ServiceReference object.

Upon service registration, modification or unregistration—either explicit or im-
plicit when the defining bundle is stopped— the framework notifies the subscribers of
the ServiceListener interface. Therefore, it is possible for service consumers to know
when services become available (registered) or unavailable (unregistered).

Any OSGi targeted code should be written considering the arrival and departure of
bundles and services. The code must release references appropriately upon such
events. Service consumers must be aware that a service departure means that a service
instance or its ServiceReference must not be used anymore. Any usage of the unregis-
tered object may lead to inconsistency.

2.1 Bundles Isolation through Class Loaders

Whenever a bundle is loaded —either during startup or later during runtime— it is
provided with its own class loader. Classes and resources from a bundle should be
only loaded through its class loader. This individual class loader mechanism permits
to unload from memory all classes provided by a given bundle when it is stopped.

The OSGi framework provides a basic level of isolation between bundles by means
of that class loading mechanism. A bundle may choose which packages will be visible
to other bundles by defining in its manifest an attribute with a list of exported pack-
ages. Only classes from exported packages (specified in the bundle manifest) may be
instantiated by other bundles, which also need to explicitly specify in their manifest
what packages they import. Whenever a bundle tries to reference a type, its class
loader will enforce if the visibility rules are followed. Other mechanism that can be
seen also as an isolation enforcement is the utilization of optional framework security
permissions (AdminPermission, PackagePermission, and ServicePermission) which
can provide a fine grained control to grant authority to other bundles perform certain
actions, for example to retrieve a given service instance.

 A Practical Approach for Finding Stale References in a Dynamic Service Platform 249

2.2 Isolation Limitations

Although there is some isolation level between bundles, this mechanism cannot en-
sure complete or safe removal of bundles from memory. During bundle active time
objects can be exchanged freely between bundles. For instance, a service may receive
a parameter object that comes from other bundle. If the bundle that provided the pa-
rameter object is stopped there is no guarantee that the service will stop referencing
the object it received as parameter, even if the bundle of origin of that object unin-
stalled from the framework.

There is no security enforced communication channel (e.g., communication via
proxy objects) that can be closed upon bundle departure, nor a protection domain (i.e,
individual object spaces in memory) that enforces communication restrictions or other
forms of application isolation.

The OSGi platform does not provide a true means of isolation between bundles. It
mostly relies in a set of good programming practices to avoid the misreferencing of
objects after bundles are stopped.

2.3 Stale References

The OSGi specification, release four, defines in the section 5.4 a stale reference as

“a reference to a Java object that belongs to the class loader of a bundle
that is stopped or is associated with a service object that is unregistered”

The utilization of such objects after the provider bundle being stopped leads to in-
consistencies such as (1) incoherent operation results (e.g., stale services returning old
data from stale caches) or erroneous behaviour due to the stale object’s context (e.g..,
network connections, binary streams) be released or de-initialized; (2) garbage collec-
tion obstruction of the retained object, its class loader, and the class loader’s loaded
types, leading to a memory leak.

Utilizing a ServiceTracker or an OSGi component model helps to minimize the oc-
currence of stale references. The ServiceTracker is a utility class in the OSGi frame-
work for providing a transparent means for locating services but it is error prone since
service consumers may not release the consumed service instances appropriately.
OSGi Declarative Services (part of the OSGi R4 compendium specification), Service
Binder [9], iPOJO [10] and Spring Dynamic Modules [11] are OSGi component mod-
els that provide the transparent handling of services arrival and departure. However,
their usage would not avoid all possible types of stale references. Other patterns of
stale references which are detailed in the next session may not be avoided by such
mechanisms.

2.3.1 Propagation of Incorrect Results
The usage of an unregistered service may lead to inconsistent method calls. If a bun-
dle unregisters a service, it is likely that the service needs to be disposed; therefore it
may release internal resources (open file streams and database connections, etc) and
calls on that object would produce erroneous behaviour. Exceptions may be raised

250 K. Gama and D. Donsez

(e.g., access to a method that internally would try to use a closed connection) when
methods of stale references are used. However if such method calls do not fail but
produce incorrect results, there is a worst scenario where faulty components are intro-
duced into the system with risks to propagate inconsistencies throughout the whole
application. This can happen due to the stale object’s internal state being invalid or
stale (e.g., old cached data), which compromises the accuracy of operations involving
that object. Such types of faults are harder to detect since the system would hide these
issues and continue to work apparently without any problem.

A service failure mechanism, as presented in [12], currently is not enforced by the
platform. A fail-stop strategy would be able to make the faults more explicit when
using stale references. If any calls to stale references would result in a crash (an ex-
ception thrown) there would be no propagation of incorrect results, and bugs would
be evident.

2.3.2 OSGi Specific Memory Leaks
While the previous problem may sometimes be identified due to exceptions thrown,
memory retention is rather difficult to be seen. In addition, the retention of class load-
ers impedes OSGi to dynamically unload the classes from a stopped bundle.

Fig. 1. The arrow from BundleB to BundleA illustrates a stale reference that prevents the ap-
propriate unloading of BundleA from memory

According to the Java Language Specification [13], a class or interface reification
(a java.lang.Class instance) may be unloaded if and only if its defining class loader
may be reclaimed by the garbage collector. As long as an object from a stopped bun-
dle is reachable (Figure 1) we will have a reference to that object’s type as well,
which references the bundle class loader which keeps all loaded types. Consequently,
the classes can never be unloaded due to the presence of stale references.

 A Practical Approach for Finding Stale References in a Dynamic Service Platform 251

3 Patterns of Stale References

As stated previously, the framework cannot guarantee that the objects provided by a
bundle will no longer be referenced when the bundle stops. Neither the OSGi frame-
work itself nor the mechanisms mentioned in section 2.3 can completely avoid stale
references. In the current OSGi specification, the framework needs to share responsi-
bilities with bundles. The bundle side is error prone as it depends on good program-
ming practices to correctly handle the departure of services and bundles.

The correct handling mentioned previously will handle only a few patterns of stale
references. We have classified three main patterns: (1) Stale services; (2) forwarded
objects and (3) active threads from stopped bundles.

3.1 Stale Services

Stale services are a pattern of stale references that can be found when an unregistered
service is still being referenced by active bundles. We considered that there are two
levels of service referencing: reference to a service instance and reference to a Ser-
viceReference instance. The former is the service object itself and the latter is a
framework metadata object which is necessary to get a service instance. We kept
references to ServiceReference instances as a simple case, but we classified a spe-
cialization of the reference to service instances as two possibilities: services from
stopped bundles and services from active bundles. Therefore, we present the concept
of stale services as three variations:

• Reference to an unregistered instance of a service whose bundle is still active
(has not stopped);

• Reference to an unregistered instance of a service from a stopped bundled
(update or uninstallation would lead to stopping the bundle as well);

• References to unregistered org.osgi.framework.ServiceReference objects.

The first case can happen during the active life-time of a bundle which may unreg-
ister a service due to an internal bundle change, for example. If after unregistration
the service instance is retained by service consumers from other bundles we have a
case of stale reference. In this case, the service can propagate incorrect results and it
will also be prevented to be garbage collected.

The second pattern is rather similar to the first one, but now the propagation of er-
rors is more likely because the bundle has been stopped and may have suffered some
de-initialization code. In addition, the bundle class loader and classes would be pre-
vented to be unloaded from memory.

The latter case of stale service (references to unregistered ServiceReference ob-
jects) does not prevent the unloading of bundle classes because there would be no
reference to a bundle object, since the ServiceReference object is provided by the
framework. Because of that, one may argue that this pattern does not fit the stale ref-
erence definition. However, this case has been added to our patterns because it may
bring faults to the application and also characterizes the mishandling of service unreg-
istration. When a ServiceReference is unregistered, subsequent calls to the framework
using that ServiceReference object would return a null value, leading to a Null-
PointerException upon any method call attempt on the resulting value.

252 K. Gama and D. Donsez

3.2 Forwarded Objects

Bundles may freely exchange messages between them by means of service method
calls. Ordinary objects may be passed as method parameters across bundle boundaries
without restriction. Also, there is no restriction for a service to retain an object re-
ceived as a method parameter or to forward that object reference to objects from other
bundles. If the bundle that provides that forwarded object is stopped, the same mem-
ory retention problem as the stale service pattern would happen. The same also ap-
plies when objects are registered in server object repositories (e.g., MBean server,
RMI registry) and are not appropriately unregistered when bundles are stopped.

We have identified two variations of the forwarded objects pattern:

• Forwarding of ordinary (non-service) objects
• Forwarding of services as ordinary objects

Figure 2 shows an example of the forwarding of an ordinary object. Consider that
the code on that example runs on an object from Bundle X, and foo.BarService is
provided by an object from Bundle Y. Bundle X calls a method on a service from
Bundle Y and sends a parameter, which is a local ordinary (non-service) object from
Bundle X. That parameter will be retained as an attribute in the Bundle Y service. If
Bundle X is stopped, uninstalled or updated, the object that was sent to Bundle Y’s
service will fit in the regular case of stale reference: impossibility to garbage collect
the referenced object (localObj) and to unload the classes previously provided by
Bundle X’s class loader.

//Code on a BundleX retrieves a service from a BundleY
ServiceReference ref =
ctx.getServiceReference("foo.BarService");
BarService bar = (BarService)ctx.getService(ref);

//LocalObject is created in (and provided by) BundleX
LocalObject localObj = new LocalObject();

//service from BundleY will hold an object from BundleX
bar.setAttribute("anAttribute", localObj);

Fig. 2. Forwarding of an ordinary object

The second type of forwarded object pattern is detailed in Figure 3. It shows that
the Bundle X uses a service instance from Bundle Z and forwards that instance to a
service from a third bundle (Bundle Y). Bundle Y now references an object from
Bundle Z without knowing that it is a service. Although at that time the
foo.BarService service holds an instance of xyz.AService, most likely it would ignore
the unregistration of xyz.AService, since the setAttribute method semantics does not
expect a service. If Bundle Z (the provider of the xyz.AService “attribute service”) is
ever stopped, the foo.BarService will not release the reference to the xyz.AService

 A Practical Approach for Finding Stale References in a Dynamic Service Platform 253

object. Bundle Y would point to a stale reference that prevents the unloading of
classes from Bundle Z.

A significant difference between referencing an ordinary (non-service) object from
a stopped bundle and referencing a service instance from a stopped bundle is the ab-
sence of framework events to notify the departure of ordinary objects. But if a for-
warded service is treated as an ordinary object, notifications of service unregistration
are ignored and do not help.

//Code on a BundleX retrieves a service from a BundleY
ServiceReference ref =
ctx.getServiceReference("foo.BarService");
BarService bar = (BarService)ctx.getService(ref);

//Code on a BundleX retrieves a service from BundleZ
ServiceReference anotherRef =
ctx.getServiceReference("xyz.AService");
AService servObj = (AService)ctx.getService(anotherRef);

//service from bundleY holds a service as an attribute
bar.setAttribute("anAttribute", servObj);

Fig. 3. Forwarding of a service instance as an ordinary object

3.3 Active Threads from Stopped Bundles

According to the OSGi specification, when a bundle is stopped it has to immediately
stop all of its executing threads. Since there is no isolated bundle space in memory,
the framework cannot cancel a bundle’s set of executing threads. So, it must rely on
good OSGi programming practices leaving that responsibility to the bundle developer.

Table 1. Summary of stale references

Referred object Memory Retention
(bundle objects

and class loader)

Incorrect Results

Unregistered Service instance
(Stopped bundle)

Yes Yes

Unregistered Service instance
(Active bundle)

Yes
(but no class loader

retention)

Yes

Unregistered ServiceReference

instance
No Yes

(NullPointerException)
Active Thread (stopped bundle) Yes Yes
Forwarded object (stopped bundle) Yes Yes

254 K. Gama and D. Donsez

If the thread is not stopped in such cases, the same stale reference issue is found:
an object (the Runnable object) from a stopped bundle is still reachable in memory,
preventing garbage collection of its class loader (the bundle class loader) and the
loaded types of that bundle.

4 Detection Techniques

Information to track object references and diagnose stale references is not present in
implementations OSGi of the framework. Several reasons have led us to think that
changing the source code of OSGi implementation to add that information would not
be adequate. It would be needed to inspect the registration and retrieval of services,
class loader creation, etc. The custom code to track such objects would be scattered
all over the OSGi framework implementation code. It is clear that a solution which
customizes a given OSGi implementation would compromise the portability to other
OSGi implementations. In addition, other problems such as tracking the creation of
threads would concern bundles but not the framework. This would imply in changing
bundle code as well, which we most likely don’t have access in all applications.

The whole situation led us to choose the application of Aspect Oriented Program-
ming (AOP) [7] techniques. Instead of adding a cross-cutting concern to the code of
OSGi implementations, we left the tracking code as separate aspects. AOP would
enable to weave those aspects into different OSGi implementations. The process
would be the same for all of them: each implementation would have its bytecode
changed resulting in a composed implementation capable of providing information to
identify stale references.

The reference tracking techniques presented here rely on a special type of reference
provided by the Java programming language, called weak reference. Weak references
are different than ordinary (strong) references. They do not prevent a referred object
to be reclaimed from memory and are able to tell if an object has been garbage
collected.

4.1 Point Cut Definitions

AOP introduces the concept of joint points, which are well defined points in the pro-
gram flow (e.g., method call, constructor call). Point cuts are elements that pick one
or more specific join points in the program flow. We have defined two different sets
of point cuts. One was responsible for aspects that would be applied to the frame-
work, for example tracking service registration and retrieval, bundle start up, class
loader creation, etc. The other set of join points was responsible for the aspects on
bundles, which so far were limited to the creation and start up of threads.

The code that is injected into point cuts during the weaving process is called advice
in AOP terminology. The portions of code defined in the advices are executed during
method interception. In the techniques that we have developed and tested, the advices
contained the calls to the code that enabled the tracking of objects.

 A Practical Approach for Finding Stale References in a Dynamic Service Platform 255

4.2 Detection of Stale Services

With AOP, service registration can be intercepted and each ServiceReference object
tracked with weak references. Our technique consists also in track the garbage collec-
tion of each instance provided by a ServiceReference. Multiple service instances can
be served by the same ServiceReference when the service provider is a ServiceFac-
tory, which can provide one service instance per bundle.

In order to verify the existence of stale services, it is necessary to analyze tracking
information relative to unregistered ServiceReference objects. There are two straight-
forward manners to know the existence of stale services. One is checking if the unreg-
istered ServiceReference object has not been garbage collected, and the other is to
verify if all service instances of each unregistered ServiceReference have been
garbage collected. The former would characterize the pattern of a reference to an
unregistered ServiceReference. The latter identifies the pattern of a reference to an
unregistered service instance.

4.3 Detection of Active Threads from Stopped Bundles

The detection of thread creation and its start up in bundle code is necessary in order to
have more information about them. Instead of weaving the framework, this approach
implies in weaving the bundles. Two options are possible: static weaving or dynamic
(runtime) weaving. The same aspects are reusable in both approaches.

The static weaving is easier to perform but adds the step of externally weaving the
bundles before loading them into the platform. The dynamic approach is more flexible
but adds the overhead of weaving while loading the bundles in runtime. It is also
necessary to add code in the framework, by AOP as well, to intercept the loading of
bundles and dynamically weave them.

The information on thread point cuts allows establishing a bundle-thread relation
that can be stored for later inspection. Running threads that are in the bundle-thread
map can have their metadata inspected (e.g. the class loader of the bundle that started
the thread) and compare it with logged information of the bundle that started the
thread. It is possible to identify if the bundle that started the thread has been update,
stopped or uninstalled.

4.4 Identifying Forwarded Objects

Identification of forwarded objects was found to be more difficult and depends on the
inspection of dumps of memory, as the one provided by tools such as jmap which
comes with the Java 6 SDK. It is necessary to inspect a memory dump and verify if
there are reachable objects whose class loader belongs to a stopped bundle. Jhat is a
tool also available in the Java 6 SDK which allows performing queries o memory
dumps. Its API can be integrated into applications that can programmatically perform
queries on memory.

Establishing a relation between runtime information and memory dump informa-
tion is difficult. An object’s id in the heap is a sort of JVM private information that is
not available to the runtime objects via a Java API. User intervention constructing ad-
hoc queries has proven to be more precise some times. This happened due to the fact
that automated inspection extracted runtime information of private attributes by

256 K. Gama and D. Donsez

means of reflection and compared it with results from queries on memory dumps. The
results most of the times would return a list of suspects that would need to go through
a manual inspection by the user.

5 Validations and Experiments

The techniques to detect the patterns of stale references presented here were devel-
oped, tested and validated. We have developed a diagnostic tool called Service Coro-
ner [8] which examines the “dead” objects from stopped bundles. Our work comprises
the implementation of the aspects to track the code, the classes to perform the queries,
the tool that visualizes the problems and a fail-stop mechanism to avoid calls on stale
services. The latter was developed as a side experiment that we detail in the end of
this session.

Aspects were developed and weaved with AspectJ [14] and each technique was ini-
tially validated by bundles that were intentionally developed with errors that would
present stale reference problems. A series of life cycle events (stop, update or
uninstall) would lead to stale references that were diagnosed by the tool.

The diagnostic tool and the results of an initial experiment are presented in [8]. We
have extended that experiment by adding two other open source applications and also
analyzing stale threads. The tool is able to inspect OSGi applications and diagnose the
patterns presented in this paper.

5.1 Portability Across OSGi Implementations

Althought the process of weaving an OSGi implementation may be seen as intrusive
due to the changes it performs in the bytecode, the techniques that we have developed
as separate aspects where easy to be applied to different OSGi implementations. As
part of the validation, we have achieved to weave the diagnostics aspects into the
three main implementations of the OSGi specification, Release 4: Equinox [15], Felix
[16] and Knopflerfish [17]. All of the weaved platforms were successfully tested with
our bundles that present the stale references patterns.

From a source code point of view there was no need to change any of the imple-
mentations. The process of aspect weaving was the same on all of the three platforms,
and consisted on a simple build process that basically compiles the Service Coroner
tool, the aspects and then weaves the aspects into the OSGi implementation.

5.2 Experiment on Open Source OSGi Applications

We have validated the diagnostic tool in an application scenario where errors would
not be intentional like in our test bundles. Four open source applications constructed
on top of OSGi were inspected with the Service Coroner tool: JOnAS1 5.0.1 [18], SIP
Communicator Alpha 3 [19], Newton 1.2.3 [20] and Apache Sling [21]. JOnAS is a
JEE application server; SIP Communicator is a multi-protocol instant messenger
application; Newton is a distributed component framework that provides an

1 We have also inspected Apache Geronimo and Glassfish V3 JEE servers, however analyzing

them would not bring significant results since they do not use the OSGi service layer.

 A Practical Approach for Finding Stale References in a Dynamic Service Platform 257

implementation of the Service Component Architecture (SCA) standard [22]; and
Sling is a web framework that uses a Java Content Repository. All applications are of
significant size, especially JOnAS, whose core is about 400 000 lines of code but
comes to over 1 500 000 when the other components are taken into account.

Table 2 presents an overview of the experiment that was run on a Sun HotSpot
JVM 1.6.0u4. All OSGi implementations utilized have been previously weaved with
the aspects that we have developed. The line IV of table 2 shows that JOnAS, SIP
Communicator and Sling are partially developed with component models for the
OSGi Platform: iPOJO, Service Binder and Declarative Services, respectively. Never-
theless, Newton which provides an implementation of SCA has not been developed
with a component model.

Table 2. Overview of the experiment. Lines VIII to XI present the results.

I Application JOnAS SIP Comm. Newton Sling

II Version 5.0.1 Alpha 3 1.2.3
2.0 incubator

snapshot
III OSGi Impl. Felix 1.0 Felix 1.0 Equinox 3.3.0 Felix 1.0

IV

Bundles using
Component
Models

20
iPOJO [10]

6
Service

Binder [9]

02 18
Declarative
Services [1]

V Lines of Code
Over

1 500 000
Aprox.
120 000

Aprox.
85 000

Over
125 000

VI Total Bundles 86 53 90 41

VII
Initial No. of
Service Refs. 82 30 142 105

VIII
No. of Bundles
w/ Stale Svcs. 4 17 25 2

IX
No. of Stale
Services Found 7 19 58 3

X
No. of Stale
Threads 2 4 0 0

XI
Stale Services
Ratio (IX/VII) 8.5 % 63 % 40.8% 2.8%

The tool was capable of executing scripts that could simulate life cycle events (up-

date, start, stop, uninstall). A script executed by the tool simulated the update of com-
ponents during runtime by performing calls on the update method of bundles that
provide services (except for bundles related to the OSGi framework or component
models). We used a standard 10 seconds interval between each bundle life cycle
method call. With Newton and Sling we had to adapt the script because of exceptions
being raised during bundle update. Instead of the update method, we performed a call
to the stop and start methods with the standard interval between each call.

2 Actually the whole Newton implementation is an SCA constructed on top of OSGi, but its

bundles did not use an OSGi component model like the other analyzed applications did.

258 K. Gama and D. Donsez

5.3 Fail-Stop Calls on Stale Services

A crash-only principle, as provided in [12], could be adapted to services in the OSGi
environment. We have implemented this fail-stop approach to avoid the propagation
of incorrect results when calling methods on stale services. Any method call on stale
services would throw an exception. Actually such calls were being done through a
proxy object dynamically generated.

We have added another point cut to intercept the calls of the getService method in
the BundleContext. Whenever a service instance was requested, the result would be a
proxy object that wrapped the service instance. The proxy would receive the calls and
delegate them to the actual service. Upon service unregistration, the proxy object had
its state invalidated. Subsequent calls to the invalidated proxy would throw a runtime
exception. Proxies were cached to avoid creating multiple proxies for the same ser-
vice instance if it was requested multiple times.

The experiment presented previously did not utilize the fail-stop services. We have
successfully tested it in a controlled environment where we developed all bundles
deployed in the framework. Other adjustments would be necessary to make our im-
plementation more robust and usable in other scenarios. This strategy could be taken
further to minimize the impact of stale services, the strategies to handle such excep-
tions would allow the auto correction of applications that upon such crashes could
react trying to retrieve a valid service or aborting the operation if no valid instance of
the service is found.

5.4 Limitations and Drawbacks

Some drawbacks have been found regarding the implementation of the techniques
presented here. The first one is regarding the OSGi optional security layer when using
digitally signed jars files. Since we have utilized bytecode weaving, the resulted jar
file will be different from the original one. Thus, the loading of the changed frame-
work jar file will imply in security errors that will impede the start up of the OSGi
platform. This could be found with Equinox [14] version 3.3.2 which provides the
digitally signed jars feature, a security feature whose objective is to ensure that jars
contents are not modified. In order to utilize our tool, such security option would have
to be disabled. We have achieved to turn that off on Equinox by removing all infor-
mation about security on the manifest and the jar file.

The second drawback was found when doing inspections of memory dumps using
the jhat API integrated to our tool. The process of reading memory dumps consumes a
large amount of memory and occasionally would lead to out-of -memory errors. An
alternative would be using such tools as a parallel auxiliary tool instead of trying to
integrate it with the running application.

Although we have removed the propagation of incorrect results produced by stale
services and made their utilization explicit by throwing exceptions, generally the
proxy solution of our fail-stop approach has two limitations. It does not completely
solve the memory retention problem. Upon service unregistration the proxy can free
the reference to the actual service, but the service class loader (and all java.lang.Class
objects it has loaded) would still hang in memory.

 A Practical Approach for Finding Stale References in a Dynamic Service Platform 259

6 Related Work

Our work addresses a problem which is a consequence of code isolation limitations in
a specific Java-based middleware for services and components. The same issues apply
in environments with similar modularity approaches based on the concepts of OSGi,
such as the upcoming Java Module System [23]. Thus theses techniques could be
adapted to detect the same problem when that system becomes available.

We focus on the dynamic diagnosis of OSGi applications, evaluating OSGi spe-
cific problems during runtime. There are other mechanisms partially addressing this
problem in OSGi and in other platforms as well. OSGi component models [9], [10]
and [11] provide mechanisms that automate service location and handle service depar-
ture but do not avoid all patterns of stale references, as previously mentioned.

A formal model was built on [24] for OSGi verification. By doing that formal
analysis they were able to check and identify stale references problems. However
their solution was coupled to a specific OSGi implementation (Knopflerfish) and
constrained by the limitation of the environment that was used for formal verification.
Only applications with a maximum of 10 000 lines of code could be analyzed. They
proposed three different solutions to avoid stale references. On each solution the ser-
vices would have to extend from a default service superclass that provides a lock
object. All solutions would depend on synchronization on that object in order to ac-
quire a lock to access the service.

A service failure approach [12] presents a fail-stop solution to handle faults in the
composition of services in SOA environments where consumers of a service must
anticipate that any service provider will crash from time to time. Another work [25]
presents, like ours, a proxy-based service solution to deal with fault tolerance. How-
ever, their approach to is different and does not prevent the stale service from being
called. Their proxy implementation is responsible for dynamically locating the best
service implementation, and in case of faults it tries to locate another service.

Concerning isolation mechanisms, other environments such as .NET [26] have
concepts like application domains which resemble lightweight processes isolated from
one another and can even be terminated without interfering in the other domains exe-
cution. Communication across application domains is done in an RPC fashion and
objects are sent via marshalling. Application domains can be dynamically loaded but
have limitations in being unloading.

In Java, an effort on JSR 121 [27] provides an environment where applications can
be isolated from each other by means of Isolates, which are application units which
resemble lightweight processes. Applications are isolated in different object spaces
but they can share some resources like runtime libraries. Communication between
isolates can be done through Java RMI (remote method invocation) based mecha-
nisms which imply in marshalling objects across contexts.

7 Conclusions and Future Work

The OSGi service platform is a dynamic environment for modules (bundles) and
services, but it still does not provide a completely isolated environment where ser-
vices and bundles may be transparently removed during runtime without the risk of

260 K. Gama and D. Donsez

having their objects still being referenced by active code. Memory instrumentations
tools currently available (e.g., Eclipse TPTP, Netbeans profiler, Borland Optimizeit)
do not consider such particularities of the OSGi framework such as bundle life cycle.
The problem of stale references described in the OSGi specification may happen if
misprogrammed bundles do not handle correctly services unregistration and bundles
unavailability. The utilization of stale references introduces memory leaks and faulty
components into the system due to the propagation of incorrect results (e.g., a stale
service that provides invalid cached data).

This paper presents different patterns of stale references, techniques to diagnose
them and a fail-stop mechanism to minimize inconsistent results due to the utilization
of stale services. The runtime diagnosis techniques presented here were implemented
and validated in a tool called Service Coroner, and were effectively tested against four
open source applications. Our detection techniques provide a solution that is portable
across different OSGi implementations, without needing to change their correspond-
ing source codes. We rely on AOP to keep the tracking code as separate aspects that
can be weaved into different OSGi implementations. Weak references were used to
identify which tracked objects have been garbage collected or not.

In a COTS market that targets OSGi application it would be necessary to somehow
measure the quality of the components. For example, if they are able to be updated in
the system without leaving any weak references or if they would not provoke such
problems in the system.

The diagnostics tool that is part of our work addresses OSGi specific issues not
covered by currently available tools. Our techniques have proven that it is completely
feasible to analyze large OSGi applications and components during runtime, allowing
to detect the presence of implementation flaws that lead to stale references. We were
able to evaluate if the applications’ components are ready to handle some dynamic
characteristics of the OSGi platform like being able to cope with module updates.

The initial fail-stop mechanism that we provided invalidates any method call on
stale services, avoiding the propagation of incorrect results and facilitating to know
where stale services are being used in the application. Some improvements need to be
done in that mechanism in order to run it in any type of OSGi application.

In our future work, we also plan to provide a more automated test approach by
wrapping the script execution on unit tests. A wider range of OSGi based applications
should be tested. It would also be important to adapt the presented techniques for
providing the runtime inspection of the Eclipse platform’s extension points (although
constructed on top of OSGi, Eclipse has its own dynamic plugin mechanism).

References

[1] OSGi Alliance, http://www.osgi.org
[2] OSGi Alliance. About the OSGi Service Platform, Technical Whitepaper Revision 4.1,

http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePap
er.pdf

[3] Delapp, S.: Industry Use of OSGi Continues to Increase (retrieved April 9, 2008),
http://www.infoq.com/news/OSGi-Use-Increases

[4] Chappel, D.: Universal Middleware: What’s Happening With OSGi and Why You Should
Care (retrieved April 9, 2008),
http://soa.sys-con.com/read/492519_3.htm

 A Practical Approach for Finding Stale References in a Dynamic Service Platform 261

[5] Desertot, M., Donsez, D., Lalanda, P.: A Dynamic Service-Oriented Implementation for
Java EE Servers. In: 3th IEEE International Conference on Service Computing, Chicago,
USA, pp. 159–166 (2006)

[6] Gruber, O., Hargrave, B.J., McAffer, J., Rapicault, P., Watson, T.: The Eclipse 3.0 plat-
form: Adopting OSGi technology. IBM Systems Journal 44(2), 289–300 (2005)

[7] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin,
J.: Aspect-Oriented Programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997.
LNCS, vol. 1241. Springer, Heidelberg (1997)

[8] Gama, K., Donsez, D.: Service Coroner: A Diagnostic Tool for Locating OSGi Stale Ref-
erences. In: Proceedings of the 34th Euromicro Conference on Software Engineering and
Advanced Applications, Parma, Italy (2008)

[9] Cervantes, H., Hall, R.S.: Automating Service Dependency Management in a Service-
Oriented Component Model. In: Proceedings of the 6th International Workshop on Com-
ponent-Based Software Engineering, Portland, USA (2003)

[10] Escoffier, C., Hall, R.S., Lalanda, P.: iPOJO: An extensible service-oriented component
framework. In: IEEE International Conference on Service Computing, Salt Lake City,
USA, pp. 474–481 (2007)

[11] Spring Dynamic Modules for OSGiTM Service Platforms,
http://www.springframework.org/osgi

[12] Hobbs, C., Becha, H., Amyot, D.: Failure Semantics in a SOA Environment. In: 3rd Int.
MCeTech Conference on eTechnologies, pp. 116–121. IEEE Computer Society, Montréal
(2008)

[13] Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edn.,
pp. 330–331. Addison-Wesley, Reading (2005)

[14] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Over-
view of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–355.
Springer, Heidelberg (2001)

[15] Equinox Framework, http://www.eclipse.org/equinox/framework
[16] Apache Felix, http://felix.apache.org
[17] Knopflerfish OSGi, http://www.knopflerfish.org
[18] JOnAS Open Source Java EE Application Server, http://jonas.objectweb.org
[19] SIP Communicator, http://www.sip-communicator.org
[20] Newton Framework, http://newton.codecauldron.org/
[21] Apache Sling, http://incubator.apache.org/sling/
[22] Service Component Architecture Specifications – Open SOA Collaboration, http://

www.osoa.org/display/Main/Service+Component+Architecture+Spe
cifications

[23] JSR 277: Java Module System, http://jcp.org/en/jsr/detail?id=277
[24] Chen, Z., Fickas, S.: Do No Harm: Model Checking eHome Applications. In: Proceedings

of the 29th Intl. Conference on Software Engineering Workshops, Minneapolis, USA
(2007)

[25] Ahn, H., Oh, H., Sung, C.O.: Towards Reliable OSGi Framework and Applications. In:
Proceedings of the 2006 ACM symposium on Applied computing, Dijon, France, pp.
1456–1461 (2006)

[26] Escoffier, C., Donsez, D., Hall, R.S.: Developing an OSGi-like service platform for. NET.
In: Consumer Communications and Networking Conference, Las Vegas, USA, pp. 213–
217 (2006)

[27] JSR 121: Application Isolation API Specification,
http://jcp.org/en/jsr/detail?id=121

Towards a Systematic Method for Identifying Business
Components

Antonia Albani1, Sven Overhage2, and Dominik Birkmeier2

1 Information Systems Design,
Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands
a.albani@tudelft.nl

2 Component and Service Engineering Group,
Business Informatics and Systems Engineering Chair,

University of Augsburg,
Universitaetsstrasse 16, 86159 Augsburg, Germany

{sven.overhage,dominik.birkmeier}@wiwi.uni-augsburg.de

Abstract. The identification of business components, which together define a
modular systems architecture, is a key task in todays component-based devel-
opment approaches for the business domain. This paper describes the Business
Component Identification (BCI) method which supports a systematic partitioning
of a problem domain into business components. The method allows the designer
to state preferences for the partitioning process and uses them as the basis to pro-
duce an optimized balance between the business components’ granularity on the
one hand and their context dependencies on the other hand. It makes use of busi-
ness domain models specified during the definition of system requirements and
can be integrated into the early design phase of a component-based development
process. The paper also shows how the produced partitioning can easily be re-
fined into an architecture specification and thus can be used as a starting point for
the technical design of a software system and/or its business components.

1 Motivation

Modern component-based approaches allow developers to realize software systems in
business domains by partitioning a problem space into a set of proper business com-
ponents, developing or discovering suitable candidates, and assembling them to obtain
the aspired solution [1,2,3]. This modular way of systems development promises to
bring many advantages, among which especially a reduced time to market, the increased
adaptability of systems to changing requirements and, as a result, reduced development
costs are of key importance for the IT strategy of todays enterprises [1,4].

A prerequisite for the envisioned breakthrough of component-based approaches in
practice, however, is to better support the underlying modular development paradigm
with specialized methods and tools. Although the modular paradigm sounds rather
straight-forward at a first glimpse, it introduces a variety of methodological challenges
when being analyzed more closely. As a consequence, both the partitioning as well as
the composition process continue to pose research questions. Compared to the composi-
tion process, where a lot of research is ongoing and for which methods to browse, adapt,

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 262–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards a Systematic Method for Identifying Business Components 263

as well as to assemble components in a predictable way have already been proposed
[5,6,7,8,9], especially the question of how to partition a problem space into modular
components still remains to be addressed.

In line with this observation, component identification strategies found in literature
are usually limited to basic guidelines or general advices. The established partitioning
principle of maximizing cohesion and minimizing dependencies between components,
e.g., states that contextually related functions and data should be grouped together and
ideally constitute a single component [10,11,1]. This principle, however, does not make
a statement about an optimal component granularity. Consequently, it might be con-
ceivable to design coarse-grained components containing all required functionality and
having no context dependencies at all. Because this leads to redundant implementations
of supporting functions and makes components more difficult to maintain, an alterna-
tive is to outsource supporting functions into separate components and opt for a better
reuse grade. In practice, designers will have to strive for an optimal balance between
self-containedness and implementation reuse [1]. This means that even with the advices
and guidelines from literature taken for granted, a component-based system can well be
partitioned into parts of varying size and context dependencies. To date, there only exist
generalized approaches that show how a grouping of functions can technically be re-
alized (see e.g. [12]) and discussions about different aspects that have to be taken into
account (e.g. selected aspects of scale and granularity presented in [1]). The partitioning
itself is still left completely to the designer and his or her personal skills, though.

In this paper, we present the Business Component Identification (BCI) method, which
systematically supports the partitioning process and helps designers to find an optimized
set of business components. The presented method takes results from the requirements
definition as input and forces designers to make their partitioning preferences explicit.
Based on these preferences, it generates an optimized partitioning of a problem space
into business components, which provides a basis for further refining. It allows de-
signers to make use of a rational, unequivocal partitioning procedure and validate the
stability of the result against modified preferences. In doing so, the BCI method con-
tributes to evolve the partitioning of component-based systems from handcrafting to an
engineering process. The key research questions addressed in this paper are a) how the
information modeled in business domains can be used to identify business components
in a formal way and b) which optimization methods are suitable for the identification of
business components leading to better results than existing solutions. Principally, the in-
troduced partitioning algorithm is not limited to business domains, since it uses process
and concept models as inputs which are being created in many application domains. To
date, however, we have only applied BCI in business domains.

In section 2, we firstly discuss how to integrate BCI into the component-based de-
velopment process. This discussion will also elaborate on the input that can be taken
as a basis for the partitioning as well as the output that has to be generated by the BCI
method. In section 3, we will then describe the BCI method in detail and present the
algorithms used for the generation as well as the optimization of a partitioning. Section
4 briefly presents related approaches. We conclude the paper with a discussion of addi-
tional aspects that will be taken into consideration in the future and the work that has
been done to validate the results of BCI in practice.

264 A. Albani, S. Overhage, and D. Birkmeier

2 Systems Development and Component Identification Process

The partitioning of a problem space into components is a core part of the component-
based development process and has a significant impact on the quality of both the
resulting software system as well as its constituent components. Component-based
development process models presented in literature therefore typically either comprise
an explicit component identification phase before the actual design starts or at least
include this task as an early step of the system design phase [2,13,12]. The extent, to
which a partitioning has to be made from scratch, of course, depends on the availability
of components that eventually can be reused.

With mature component markets in place and components preferably being reused in-
stead of being newly developed, the partitioning process during the design of a software
system needs to be driven by two determinants: the predefined architecture imposed by
reusing existing components and the conceptual models created during the requirements
definition. The conceptual models describe processes and information of the problem
domain which have to be managed. There are various process models that can be used
to develop component-based systems with reuse, among which the Reuse-Oriented and
Reuse-Driven Development approaches [2] as well as the Assemble Route of Catalysis
[13] are the more prominent ones. In such a reuse-oriented scenario, the partitioning of
a problem domain into components also is an important step during the so-called devel-
opment for reuse, which provides reusable components for the development of systems.
Reusable components are usually not being developed in isolation, but in so-called do-
main engineering approaches in which entire problem spaces are being partitioned.

The before-mentioned reuse-based development has repeatedly been described as an
ideal component-based software engineering scenario in literature. Using a component-
based development approach, however, even is able to bring substantial benefits where
component markets and in-house reuse are not established, since modular systems with
easily replaceable parts better support managing changes [12,1]. Cheesman and Daniels
have presented a process model that supports component-based systems development
without a special focus on reuse [12]. In this case, the partitioning process can begin
from scratch. It solely depends upon domain-oriented conceptual models that have been
created during the requirements definition. Notably, however, is the fact, that none of
the process models mentioned in this chapter describes how to achieve a good parti-
tioning in detail. Instead, all of them are limited to giving very heuristic advice or to
introducing technical means which merely help to capture relationships and dependen-
cies between parts of the domain models. To advance the state of the art, we integrate
a rational partitioning procedure, namely the BCI method, into the component-based
development process.

The integration is demonstrated for the UML Components process model introduced
by Cheesman and Daniels [12], which we have chosen for several reasons: firstly, ma-
ture component markets today are rather the exception than the rule and especially the
development of business systems can not yet systematically include the reuse of existing
components. Furthermore, the UML Components process model is well-established,
easily applicable in practice, and – thanks to its close relationship to Catalysis as well
as to other approaches [12, p. xv] – the transfer of our results to different process models
is rather straightforward.

Towards a Systematic Method for Identifying Business Components 265

The UML Components process already includes an explicit component identifica-
tion phase. It is part of the system specification and follows immediately after the re-
quirements engineering (see fig. 1). The goal of the component identification phase is
to come up with an initial specification of the system’s architecture and its constituent
components, which is then refined during the next design steps. The system partitioning
is driven by the description of the problem domain and – following established software
engineering principles – separates the discovery of system components (the front-end
side) from the discovery of business components (the server side providing the business
functions).

In this paper, we focus on the discovery of business components, which is based upon
the business concept model and the associated business processes. The business concept
model documents the information which is being processed in the application domain.
It consists of information objects (concepts) and identified structural relationships be-
tween them. The business processes describe workflows of the business domain which
have to be supported by the software system. They contain business functions (modeled
as process steps) as well as the temporal relationships between them.

Requirements

Specification

Provisioning

Assembly

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Component
Identification(1) Develop Business

Type Model

(3) Create Initial Comp
Specs & Architecture

(2) Identify Business
Interfaces & Ops

Identify System
Interfaces & Ops

Business Concept
Model & Processes Use Case Model

Component Specs &
Architecture

Business
Interfaces

System
Interfaces

Fig. 1. UML Components process and component identification stage (cf. [12])

To identify business components, Cheesman and Daniels recommend to formalize
the business concept model into a more detailed and technical business type model (see
fig. 1 (1)). The next step is to identify so-called core business types, which represent
information that can stand alone in the business domain. For each core business type,
a business interface has then to be created (see fig. 1 (2)). A business interface has to
manage the information represented by an independent core type and thus is a candidate
to constitute a business component. The so identified business components finally have
to be specified in detail and, together with identified system components, can be formed
into an initial systems architecture (see fig. 1 (3)).

While this procedure may serve as a very heuristic approach to get to an initial set
of business components, it has a variety of drawbacks. Firstly, even information that
can stand alone in the business domain may likely have relationships to other informa-
tion objects. Cheesman and Daniels acknowledge this and recommend to convert such

266 A. Albani, S. Overhage, and D. Birkmeier

Component
Identification(1) Denote Partitioning

Preferences

(3) Create Initial Comp
Specs & Architecture

(2) Create & Validate
Optimized Partitioning

Identify System
Interfaces & Ops

Business Concept
Model & Processes Use Case Model

Component Specs &
Architecture

Business
Interfaces

System
Interfaces

Fig. 2. Integration of the BCI method into the UML Components process

relationships into component dependencies. This might, however, not lead to an opti-
mal partitioning, e.g., when components have to be easily replaceable and dependencies
have to be kept at a minimum. Furthermore, the procedure is focused solely on a modu-
larized management of information objects. Most business systems, however, will also
have to include business components that manage entire processes or parts of business
workflows [3]. These business components will then automatically have dependencies
to all the business components governing relevant information in a process. Design-
ers will hence have to take business functions and information (with their respective
relationships to each other) into account when partitioning a problem space [10].

With the BCI method, the procedure proposed by Cheesman and Daniels can be
replaced (see fig. 2). In line with their procedure, BCI also takes a business concept
model and specified business processes as input to create a partitioning. In a first step,
the designer will have to denote his partitioning preferences (see fig. 2 (1)). Thereafter,
an optimized partitioning with respect to the given preferences is derived and has to be
validated (see fig. 2 (2)). The resulting partitioning clusters process steps and informa-
tion objects to form a set of business components. The identified business components
are then to be refined, technically specified, and, together with the required system com-
ponents, formed into a systems architecture (see fig. 2 (3)).

3 The Business Component Identification Method

The set of domain models and the defined metrics of maximizing cohesion and mini-
mizing dependencies constitute the basis for the identification of business components.
The identification is strongly dependent on the underlying domain models [14,15]. Only
a domain model reflecting the business in a concise, complete and comprehensive way
can lead to an adequate component model and therefore to a corresponding application
system. In this paper we will not discuss the advantages and disadvantages of domain
modeling methodologies. Instead, we will show how the information modeled in busi-
ness domains can be used to identify business components in a formal way using the
BCI method. Data from the domain of Strategic Supply Network Development (SSND)
is used in the figures below to better visualize the identification process. The example
domain comes from the area of strategic purchasing, where networks of suppliers are

Towards a Systematic Method for Identifying Business Components 267

analyzed and selected in order to define an adequate purchasing strategy. It is not our in-
tention to explain the SSND example in this paper, we rather focus on the formal method
for identifying business components using the data of the SSND example. For details
about the SSND domain we refer to [16]. In the following, the single BCI process steps
– (1) Denote Partitioning Preferences, (2) Create and Validate Optimized Partitioning,
and (3) Create initial Component Specification and Architecture – introduced in fig. 2
will be described.

3.1 Denote Partitioning Preferences

The BCI method uses the information objects from the concept models and the process
steps from the process diagrams of the business domain, including their relationships.
One can distinguish between three types of relationships necessary for the identifica-
tion of business components: the relationships between single process steps, the re-
lationships between information objects, and the relationships between process steps
and information objects. A relationship type distinguishes between subtypes expressing
the significance of a relationship. E.g., a relationship between single process steps ex-
presses – based on their cardinality constraints – how often a process step is executed
and therefore how close two process steps are related to each other in that business
domain. The relationships between information objects define how loosely or tightly
the information objects are coupled, and the relationships between process steps and
information objects define whether a corresponding information object is, e.g., used
or created while executing the respective process step. All types of relationships are
of great relevance and build the basis for the BCI method. In order to apply a formal
method for the identification of business components, we map the domain models to a
weighted graph. As the nodes represent information objects and process steps, the edges
characterize the relationships between the nodes. Weights are used to define the differ-
ent types and subtypes of relationships. They build the basis for assigning process steps
and information objects to components. The mapping of information objects and pro-
cess steps from the domain models to nodes in the weighted graph is straightforward.
Whereas, the definition of the relationship subtypes and the assignment of weights to
corresponding edges is heavily dependent on the importance of the relationships in the
underlying domain models. Therefore, domain knowledge and know-how is required
for this step and the designers need to denote their partitioning preferences by intro-
ducing relevant relationship subtypes and assigning weights to them. The relationship
subtypes as well as the weights may therefore differ dependent on the domain models
and the preferences specified by the designers.

The BCI-3D Tool was developed to support the application of the BCI method. Due
to display reasons the weighted graph is visualized in a three-dimensional representa-
tion having the process steps and information objects arranged as nodes in circles. The
nodes representing the information objects are shown on top of fig. 3, and the nodes
representing the process steps are shown on the bottom of fig. 3. The edges representing
the relationships between information objects connect the top nodes to each other, the
ones representing the relationships between process steps connect the nodes on the

268 A. Albani, S. Overhage, and D. Birkmeier

Fig. 3. BCI – defined preferences

Table 1. Assignment of process step names to shortcuts

process steps name shortcut process steps name shortcut
request offering T01/rq state exploration T03/st
promise offering T01/pm accept exploration T03/ac
produce offering T01/ex request evaluation T04/rq
state offering T01/st promise evaluation T04/pm
accept offering T01/ac produce evaluation T04/ex
request engineering T02/rq state evaluation T04/st
promise engineering T02/pm accept evaluation T04/ac
produce BoM explosion T02/ex request conclusion T05/rq
state engineering T02/st promise conclusion T05/pm
accept engineering T02/ac produce concluded contract T05/ex
request exploration T03/rq state conclusion T05/st
promise exploration T03/pm accept conclusion T05/ac
produce contract T03/ex

bottom and the edges representing the relationships between information objects and
process steps connect the nodes on top with the nodes on the bottom, shown in fig. 3.
The weights assigned to the relationship subtypes are listed in a separate window on the
right of fig. 3. Shortcuts are used to describe the process steps and information objects.
The full names can be found in table 1 and table 2.

Towards a Systematic Method for Identifying Business Components 269

Table 2. Assignment of information object names to shortcuts

information object name shortcut
Product P
Assembly A
Contract C
Evaluated Contract EC
Potential Contract PC
Concluded Contract CC
Offered contract OC

3.2 Create and Validate Optimized Partitioning

For the identification of business components, as implemented by the BCI method, the
weighted graph needs to be partitioned by assigning information objects and process
steps to single components. The grouping should satisfy the defined metrics of maxi-
mizing cohesion and minimizing dependencies and should take all domain information
into account which has been mapped to the weighted graph .

The problem of partitioning a graph G = (V, E), with vertices V and edges E, into
subsets of nodes of a defined size is known to belong to the class of NP-complete prob-
lems [17]. A clustering of the given example with 32 nodes into, e.g., three components
of approximately equal size can be achieved in over 1012 different ways. Therefore, a
direct calculation of the best solution by comparing all combinations is unreasonable,
but heuristics can be used to find a best possible solution in suitable time. BCI applies
an opening heuristic first, that gives a starting partition, and enhances this partition with
an improving heuristic.

In general, a better starting partition is more likely to lead to better optimization
results. We achieved the best results with the Start Partition Greedy heuristic shown in
fig. 4. This is a greedy graph partitioning algorithm. In each iteration the most promising
step is taken [18, p. 127]. The Start Partition Greedy utilizes a priority queue (PQ) to
order the edges e ∈ E, whereby a higher priority is assigned to higher weighted edges.
In the case of edges having equal weights, the weights of all edges adjacent to the end
nodes are added. This allows for a fine-grained ordering. Beginning with unmarked
vertices v ∈ V , the heuristic sequentially takes the edges in the PQ, and examines their
end nodes. In the case of two unmarked nodes, a new component is generated. Whereas,
in the case of one unmarked node, it is added to the marked node’s component. Finally,
all remaining unmarked nodes are collected in a last new component.

An advantage of our opening heuristic is, that there is no need to define the number
of components in advance. It is determined by the Start Partition Greedy algorithm,
depending solely on the given domain models and based on priority ordering of the
edges. The idea is to cluster nodes, that are highly connected to their neighbors into
one and the same component. An evaluation of different starting heuristics on various
models, emphasized this method as leading to the most promising starting solutions.

After obtaining a primary solution for the optimization problem, various heuris-
tics can be used to further improve the component structure. In 1970, Kernighan and
Lin developed an algorithm for the enhancement of a given clustering of a graph into

270 A. Albani, S. Overhage, and D. Birkmeier

Fig. 4. UML Activity Diagram of the Start Partition Greedy heuristic

equal sized subgraphs [19]. Numerous variations of this method where proposed since
then and all are based on the same concept (cf. [20,21,22]). We adopted the original
Kernighan-Lin heuristics to improve the starting solution. This method does not con-
sider all components at once, but rather a pair of two components in each step. At the
beginning, all pairs are unmarked. In each step an unmarked pair is picked at random
and the components are optimized, with respect to the heuristics. If any changes are
made, all pairs are going to be unmarked again. Whereas, if no action is taken, the pair
will be marked. This is repeated until no unmarked pairs are left and the component
structure is optimized.

In order to compare different component structures and to be able to optimize
them, we defined the cost C(A, B) of a partitioning into components A and B as
C(A, B) =

∑
a∈A,b∈B w(a,b), where w(a,b) is the weight of the connection between

the single nodes a ∈ A and b ∈ B. The goal is to minimize the cost of the partitioning
for each pair of components (A, B). Furthermore, we defined internal I(a) and external
E(a) costs of a node a according to Kernighan and Lin [19]:

I(a) =
∑

x∈A,x =a

w(a,x), E(a) =
∑
b∈B

w(a,b)

Moreover, the D-value of a node is referred to as the difference between its external and
internal costs, D(a) = E(a) − I(a). The gain g(a, b) of exchanging the nodes a and b
between the components A and B is then calculated by g(a, b) = D(a)+D(b)−2w(a,b).
The basic procedure of a two-component optimization step corresponds to Kernighan-
Lin and is shown in fig. 5.

Towards a Systematic Method for Identifying Business Components 271

Fig. 5. UML Activity Diagram of the adopted Kernighan-Lin algorithm

The process of identifying business components by applying the BCI method and
satisfying defined metrics is an iterative process. The business components resulting
from BCI need to undergo a sensitivity analysis check before taken for granted. In
analyzing the process steps and information objects assigned to the resulting compo-
nents, inconsistencies and errors in the underlying domain models can be identified
and corrected correspondingly. Additionally, the resulting component model should re-
main stable even if the weights in the weighted graph are slightly changed. By changing
weights of the relationships and reapplying the BCI method, the stability of the resulting
component model can be analyzed.

Applying the BCI method to the graph introduced in fig. 3 results in the following
graph clustering (see fig. 6). The figure shows the identified business components and
the dependencies between them. Additionally, the window on the right lists the single
process steps and information objects as assigned to the identified components by BCI.

3.3 Create Initial Component Specification and Architecture

Two business components can be identified immediately. While looking at the process
steps and information objects clustered within the components, the designer can identify
the business functionality of the two business components: one containing the business
tasks related to Product Management and one containing the business tasks related to
Contract Management.

From fig. 6, the services provided and required by each component can be derived.
We distinguish between two types of services: inter-component services and informa-
tion services. Inter-component services are services, which are required by another
component in order to provide a specific functionality. The inter-component services

272 A. Albani, S. Overhage, and D. Birkmeier

Fig. 6. BCI – optimized partitioning

Fig. 7. UML Component Model of the identified components

are apparent in fig. 6 as the edges connecting two process steps, each located in a dif-
ferent component. E.g., the edge connecting the T01/pm (promise offering) and T05/rq
(request conclusion) defines an inter-component service. The service provided by the
Contract Manager component relates to the conclusion of the contract, and is therefore
called ProduceConcludedContract. Which business component requires or provides
that service becomes clear when looking at the process step diagrams of the relevant

Towards a Systematic Method for Identifying Business Components 273

business domain. The identified business components with their required and provided
services are shown in fig. 7.

The second type of services gained from the business components identified and
visualized in fig. 6 are information services. While information objects are created and
updated by the responsible business component, other components need to request the
values of required information objects through services. By analyzing the edges that
connect process steps of one component with information objects of another component
the services are identified. In fig. 6 we have e.g., T03/ex (produce potential contract)
connected by an edge with A (Assembly). This means that the process step of producing
a potential contract needs information about the assembly information object. In this
case the Product Manager component needs to provide the service ProvideAssembly,
while the Contract Manager component requires that service (see fig. 7).

4 Related Work

The identification of business components and their services is a primary research prob-
lem that needs to be addressed. Today, there is still little research contributing to the
development of systematic approaches which support designers in finding an optimized
set of business components. In accordance with the classification introduced by [23],
mainly three different types of business component identification techniques can be dis-
tinguished: Domain Engineering based methods, CRUD (Create, Read, Update, Delete)
matrix based methods and Cohesion-Coupling based Clustering Analysis methods.

A key issue in the design phase of the domain engineering process is “the genera-
tion of components that represent conceptual, functional and technological aspects of
the domain, and their organization within a domain architecture” [24]. Given that fact,
Domain Engineering based methods for component identification usually focus on the
reusability of the domain architecture and the adaptability of constituent components,
based on defined criteria. E.g., the Feature-Oriented Reuse Method (FORM) [25] cap-
tures commonality selectable for different applications as an AND/OR graph, where
AND nodes indicate mandatory features and OR nodes indicate alternative features.
This graph is used to define parameterized reference architectures and reusable compo-
nents instantiable during application development. Another approach aims at gathering
components that intensively exchange messages in a unique artifact, and defining an
architecture element referred to as components grouping [24]. It uses defined criteria
for the grouping of components based on four different aspects: domain context, pro-
cess component, components interfaces, and the component itself. Domain Engineering
based methods, however, rarely use formal approaches to obtain reusable components
and are highly dependent on the experiences of the designers.

CRUD matrix based methods focus on the semantics of business elements, which is
contained in domain models, to merge closely related elements into business compo-
nents. They use the relationships between behavioral business elements (e.g., process
steps) and static business elements (e.g., information objects) to define how closely the
elements are related to each other. Four relationship types – Create (C), Read (R), Up-
date (U) and Delete (D) with the priority C>D>U>R – are used to specify the semantic
relationship between the behavioral and the static business elements. The relationships

274 A. Albani, S. Overhage, and D. Birkmeier

are visualized in a matrix. CRUD matrix based methods aim at transforming the ma-
trix by given rules in order to identify blocks in which behavioral and static business
elements with C and D relationships are merged to form single components. Examples
of CRUD matrix based methods are [26,27]. The disadvantage of CRUD matrix based
approaches is that additional information available in the domain models is not used for
identifying business components. E.g., the relationships between static elements and
the relationships between behavioral elements are not considered at all.

With Cohesion-Coupling based Clustering Analysis methods, researchers try to clus-
ter business models according to high cohesion and low coupling principles, and encap-
sulate each cluster in a component. The main idea of those methods is to first transform
the domain models into the form of weighted graphs, in which business elements are
nodes, the dependencies between single business elements are edges and semantic de-
pendency strengths are represented as weights. In a second step, the graph is clustered
using graph clustering or matrix analysis techniques that satisfy the metrics of high co-
hesion and low coupling. E.g., [28,29] are implementing such clustering analysis meth-
ods in order to identify components. Both approaches assume that UML models are
available describing the business domain. The disadvantage of such approaches is that
they are often based on technical concepts defined, e.g., in UML instead of focusing on
the semantics of the corresponding business domain.

The BCI method directly contributes to the research area of identifying business
components. According to the classification of business components identification
methods by [23], the BCI method combines Cohesion-Coupling based Clustering Anal-
ysis and CRUD matrix based methods. The advantage of BCI is that the method uses
all relevant dependencies of business domain models, including relationships between
behavioral business elements, between static business elements, and those between be-
havioral and static business elements. It therefore extends CRUD matrix based methods
with two additional types of dependencies. Additionally, BCI maps those business ele-
ments and their mentioned dependencies, independently of the notation used to model
the business domain and its technical concepts, into a weighted graph. This graph is
then used to apply the Cohesion-Coupling based Clustering Analysis methods imple-
mented in BCI for identifying business components. With BCI, we thus satisfy Wang’s
recommendation of combining current component identification methods in order to
achieve better results [23].

5 Conclusions and Future Directions

In this paper, we described the BCI method and have shown how to integrate it into
the UML Components development process. The BCI method creates a partitioning of
a problem space into business components which are optimized to satisfy the design-
ers’ partitioning preferences. In doing so, we advance the current state of the art and
contribute to establish a more systematic approach to partition business systems into
components, a key task in component-based systems development.

The BCI method was created in a perennial research project and has been continually
improved to reach the scope of operation presented in this paper. It already has been val-
idated in complex case studies that confirm its appropriateness for the development of

Towards a Systematic Method for Identifying Business Components 275

component-based business systems in practice [30,31,32]. While the algorithms used in
the current method and the derived partitioning results have proven to be mature, several
approaches to further the scope of operation are currently under development. Among
others, it is the plan to empirically evaluate the BCI method versus the other compo-
nent identification methods described in this paper in order to show that the approach
presented is superior to alternative approaches. Additionally, the initiative to integrate
the BCI method into a tool that covers the domain modeling process is ongoing. With
the partitioning as a final result, the tool may lead over to a component-based system
design as well as to a service-based development approach. More technically motivated
research initiatives include an automatic derivation of component orchestrations as well
as the generation of parts of the components’ internal structure.

In future, we plan to extend the BCI method to support reuse-driven development
approaches, in which existing components will be considered. To reuse existing com-
ponents during the partitioning process, we require conceptual models of process steps
and information objects managed by those components. These models are either derived
from technical specifications or already available when building upon more holistic
specification approaches like, e.g., the Unified Specification of Components approach
[33]. Existing components will then be represented as clusters of process steps and
information objects that are marked to remain unchanged during the partitioning.

Our research initiatives centered around the BCI method are part of a longer-term
goal to provide a mature methodical support of the partitioning process, just as it will
become available for the complementary composition process. Only with an appropriate
support of both processes, component-based development will lead to a component-
based software engineering process.

References

1. Szyperski, C., Gruntz, D., Murer, S.: Component Software. Beyond Object-Oriented Pro-
gramming, 2nd edn. Addison-Wesley, Harlow (2002)

2. Sametinger, J.: Software Engineering with Reusable Components. Springer, Heidelberg
(1997)

3. Herzum, P., Sims, O.: Business Component Factory: A Comprehensive Overview of
Component-Based Development for the Enterprise. John Wiley & Sons, New York (2000)

4. Brown, A.W.: Large-Scale, Component-Based Development. Prentice Hall, Upper Saddle
River (2000)

5. Zaremski, A.M., Wing, J.M.: Signature Matching: A Tool for Using Software Libraries.
ACM Transactions on Software Engineering and Methodology 4(2), 146–170 (1995)

6. Seacord, R.C., Hissam, S.A., Wallnau, K.C.: Agora: A Search Engine for Software Com-
ponents. Technical report CMU/SEI-98-TR-011, Software Engineering Institute, Carnegie
Mellon University (1998)

7. Yellin, D., Strom, R.: Protocol Specifications and Component Adaptors. ACM Transactions
on Programming Languages and Systems 19(2), 292–333 (1997)

8. Wallnau, K.C.: A Technology for Predictable Assembly from Certifiable Components. Tech-
nical Report CMU/SEI-2003-TR-009, Software Engineering Institue (2003)

9. Reussner, R.H., Schmidt, H.W.: Using Parameterised Contracts to Predict Properties of
Component-Based Software Architectures. In: Crnkovic, I., Larsson, S., Stafford, J. (eds.)
Workshop on Component-Based Software Engineering, Lund (2002)

276 A. Albani, S. Overhage, and D. Birkmeier

10. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules. Communi-
cations of the ACM 15(12), 1053–1058 (1972)

11. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Englewood Cliffs
(1997)

12. Cheesman, J., Daniels, J.: UML Components. A Simple Process for Specifying Component-
Based Software. Addison-Wesley, Upper Saddle River (2001)

13. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML. The Cataly-
sis Approach. Addison-Wesley, Upper Saddle River (1999)

14. Albani, A., Dietz, J.L.: The benefit of enterprise ontology in identifying business compo-
nents. In: IFIP World Computing Conference, Santiago de Chile, Chile (2006)

15. Albani, A., Dietz, J.L., Zaha, J.M.: Identifying business components on the basis of an en-
terprise ontology. In: Konstantas, D., Bourrieres, J.P., Leonard, M., Boudjlida, N. (eds.) In-
teroperability of Enterprise Software and Applications, Geneva, Switzerland, pp. 335–347.
Springer, Heidelberg (2005)

16. Albani, A., Müssigmann, N., Zaha, J.M.: A Reference Model for Strategic Supply Net-
work Development. In: Reference Modeling for Business Systems Analysis, Idea Group Inc.
(2006)

17. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In:
STOC 1974: Proceedings of the sixth annual ACM symposium on Theory of computing, pp.
47–63. ACM, New York (1974)

18. Jungnickel, D.: Graphs, Networks and Algorithms, 3rd edn. Springer, Berlin (2007)
19. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell

system technical journal 49, 291–307 (1970)
20. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions.

In: DAC 1982: Proceedings of the 19th conference on Design automation, Piscataway, NJ,
USA, pp. 175–181. IEEE Press, Los Alamitos (1982)

21. Dutt, S.: New faster kernighan-lin-type graph-partitioning algorithms. In: ICCAD 1993: Pro-
ceedings of the 1993 IEEE/ACM international conference on Computer-aided design, pp.
370–377. IEEE Computer Society Press, Los Alamitos (1993)

22. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proceedings
of the 1995 ACM/IEEE conference on Supercomputing. ACM, New York (1995)

23. Wang, Z., Xu, X., Zhan, D.: A survey of business component identification methods and
related techniques. International Journal of Information Technology 2, 229–238 (2005)

24. Blois, A.P.T., Werner, C.M., Becker, K.: Towards a components grouping technique within
a domain engineering process. In: Proceedings of the 31st EUROMICRO Conference on
Software Engineering and Advanced Applications (EUROMICRO-SEAA 2005) (2005)

25. Kang, K.C., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: Form: A feature-oriented reuse
method with domain-specific reference architectures. Annals of Software Engineering 5,
143–168 (1998)

26. Lee, S., Yand, Y.: Como: A uml-based component development methodology. In: Proceed-
ings of the 6th Asia Pacific Software Engineering Conference, pp. 54–63 (1998)

27. Somjit, A., Dentcho, B.: Development of industrial information systems on the web using
business components. Computer in Industry 50, 231–250 (2003)

28. Kim, S.D., Chang, S.H.: A systematic method to identify software components. In: 11th
Asia-Pacific Software Engineering Conference (APSEC), pp. 538–545 (2004)

29. Jain, H., Chalimeda, N.: Business component identification - a formal approach. In: Proceed-
ings of the Fifth International Enterprise Distributed Object Computing Conference (EDOC
2001). IEEE Computer Society, Los Alamitos (2001)

30. Albani, A., Bazijanec, B., Turowski, K., Winnewisser, C.: Component framework for strate-
gic supply network development. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) AD-
BIS 2004. LNCS, vol. 3255, pp. 67–82. Springer, Heidelberg (2004)

Towards a Systematic Method for Identifying Business Components 277

31. Selk, B., Kloeckner, S., Bazijanec, B., Albani, A.: Experience report: Appropriateness of
the bci-method for identifying business components in large-scale information systems. In:
Turowski, K., Zaha, J.M. (eds.) Component-Oriented Enterprise Applications, Proceedings
of the Conference on Component-Oriented Enterprise Applications (COEA 2005), Bonn,
Köllen. Lecture Notes in Informatics, vol. 70, pp. 87–92 (2005)

32. Eberhardt, A., Gausmann, O., Albani, A.: Case study automating direct banking customer
service processes with service oriented architecture. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 763–779. Springer, Heidelberg (2006)

33. Overhage, S.: UnSCom: A Standardized Framework for the Specification of Software Com-
ponents. In: Weske, M., Liggesmeyer, P. (eds.) NODe 2004. LNCS, vol. 3263, pp. 169–184.
Springer, Heidelberg (2004)

Life-Cycle Aware Modelling of Software Components

Heiko Koziolek1, Steffen Becker3, Jens Happe2, and Ralf Reussner2

1 ABB Corporate Research
Wallstadter Str. 59, 68526 Ladenburg, Germany

2 Chair for Software Design and Quality
Am Fasanengarten 5, University of Karlsruhe (TH), 76131 Karlsruhe, Germany

3 FZI Forschungszentrum Informatik
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

{koziolek,sbecker,happe,reussner}@ipd.uka.de

Abstract. Current software component models insufficiently reflect the differ-
ent stages of component life-cycle, which involves design, implementation, de-
ployment, and runtime. Therefore, reasoning techniques for component-based
models (e.g., protocol checking, QoS predictions, etc.) are often limited to a par-
ticular life-cycle stage. We propose modelling software components in different
design stages, after implemenatation, and during deployment. Abstract models
for newly designed components can be combined with refined models for already
implemented components. As a proof-of-concept, we have implemented the new
modelling techniques as part of our Palladio Component Model (PCM).

1 Introduction

Methods for model-based reasoning about component-based software architectures
shall enable software architects to assess functional properties (e.g., correctness, in-
teroperability, etc.) and extra-functional (e.g., performance, reliability, etc.) properties
already during design [20]. By composing individual component specifications and run-
ning different analysis and simulation tools, the properties of the whole system shall be
evaluated based on the properties of its individual parts. These methods shall avoid
the implementation of designs which exhibit insufficient functional or extra-functional
properties.

During component-based system design, software architects specify new compo-
nents and incorporate existing components in their architectures [4]. To support this
mixed (i.e., top-down and bottom-up) development process, modelling and analysis
methods must account for different stages in the component life-cycle. A step-wise
refinement of component specifications is desirable as components progress from the
design to implementation stage.

Existing models for component-based systems support different stages in the com-
ponent life-cycle only insufficiently [9]. Industrial component models, such as EJB [6],
COM [5], or CCM [14], only refer to component implementations, but not to compo-
nent designs. Furthermore, their support for functional and extra-functional analysis is
limited.

We propose modelling software components during different design stages and al-
low combining coarse specifications of new components with refined specifications of

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 278–285, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Life-Cycle Aware Modelling of Software Components 279

already implemented components to improve functional and extra-functional analysis.
When the development of a component-based system progresses, coarse models of in-
dividual components can be refined with additional information thereby increasing the
accuracy of analysis methods. Our approach improves functional and extra-functional
reasoning for component-based software architectures, as it better reflects the different
life-cycle stages of a software component than existing approaches.

The contributions of this paper is a component type hierarchy that enables mod-
elling software components at different design stages. We meta-modelled both concepts
(which should be included into other component models) and added them to our Palla-
dio Component Model (PCM) [2]. To illustrate the benefits of our approach, we model
the components of a business reporting component during different stages of their life-
cycle in this paper.

This paper is organised as follows. Section 2 discusses related work, before Section
3 sketches the component-based development process with separated developer roles.
Section 4 introduces our concepts for modelling software component during different
development stages. Section 5 shows how the new concepts were implemented in the
PCM. Finally, Section 6 concludes the paper.

2 Related Work

We compare the component type hierarchy proposed in this paper with common def-
initions of software components (i.e., [20,4,9]), to different realisations of component
definitions in current software component models, and to ADLs [11].

Common Component Definitions: Szyperski’s well-known definition of software
components [20] does not explicitly distinguish between component type and imple-
mentation. It mainly states how a component should be specified with provided and
required interfaces, but does not refer to the whole life-cycle of a software component.

Cheesman et al. [4] distinguish four different stages in the component life-cycle:
component specification, component implementation, installed component, and com-
ponent object. Our component type-hierarchy supports modelling components and rea-
soning on their properties in the first two of these stages (i.e., with complete component
types, basic components). The PCM also contains a context model (not described in
this paper) to describe installed components, and component objects. In addition to
Cheesman’s viewpoint, we distinguish between different stages of component specifi-
cation.

Lau et al. [9] distinguish between component design, deployment, and runtime as
the stages of component life-cycle. Lau’s view does not include reasoning for mixed
architectures of software components modelled at the design or implementation stage.

Software Component Models: The following briefly analyses UML, industrial com-
ponent models, and component models from research [9]. The UML [13] supports mod-
elling software components with component diagrams. With additional UML profiles
(e.g., UML SPT [12]), designers may also specify QoS attributes to reason about extra-
functional properties. However, the UML does not explicitly support modelling differ-
ent life-cycle stages of a software component.

280 H. Koziolek et al.

Component models used in industry, such as EJB [6], COM [5], and CCM [14],
target the implementation of component-based systems, and do not explicitly support
early reasoning about component-based designs. Fractal [15] is a component model tar-
geting the runtime stage of software components. There is no type hierarchy for Fractal
components, as it is assumed that an implementation of each component is available.
SOFA [16] does not distinguish between different design stages. ROBOCOP [3] targets
performance prediction for embedded, component-based software architectures. There
are no different design stages for software components in ROBOCOP.

Architecture Description Languages: Medividovic and Taylor have provided a clas-
sification and comparison framework for ADLs [11]. While all ADLs differentiate be-
tween component types and component instances, only a few of them provide facilities
for refining component specifications according to their life-cycle. For example, Ae-
sop [7] allows component subtypes and enforces preservation of component behaviour.
C2 [10] supports different subtyping relationships for interfaces, behaviours and imple-
mentations. However, these approaches are tied to object-oriented inheritance relation-
ships and do not explicitly distinguish between discrete component life-cycle stages.

3 Component-Based Development Process

The component-based development process involves several developer roles with spe-
cific responsibilities. The following roles are particularly relevant in our setting [8]:

– Component Developers specify and implement software components either from
scratch or using existing components. They develop components for a market as
well as per request. They make as few as possible assumptions about a specific
deployment environment to ensure broad reuse.

– Software Architects lead the development process for a component-based appli-
cation. They design the software architecture and delegate tasks to other involved
roles. For the design, they decompose the planned application’s specification into
single component specifications.

– QoS Experts collect QoS-relevant information from the different developer roles
and assess the extra-functional properties of the system.

In practice, the process has to consider the desired reuse of components as well as
new requirements. Software architects can use existing components from repositories
or specify new ones for specific requirements, which shall be implemented by compo-
nent developers. During the specification of a software architecture, some of the used
components are already specified and implemented while others are only sketched. As
a consequence, the component-based development process does not follow a strict sep-
aration into classical top-down (i.e., going from requirements to implementation) and
bottom-up (i.e., assembling existing component to create an application) categories.
Instead, it is a mixture of both approaches.

Any software component model should account for the mixed top-down and bottom-
up development process. It is beneficial as it allows software architects to reason about
the properties of their architecture during early development stages when some compo-
nents are not yet implemented, but at the same time allows to rely on refined models

Life-Cycle Aware Modelling of Software Components 281

of already implemented (e.g., third-party) components. However, at this stage it is less
costly to change design decisions.

4 Component Design

To support model-based reasoning about component-based designs in a mixed top-
down and bottom-up development process, it is necessary to model components in
different development stages. It must be possible to successively refine components
from early development stages. There are at least three different stages of component
specification as depicted in Fig. 1 and described in the following from top to bottom.

IProvidedInterface

IProvidedInterface IRequiredInterface

CompositeComponent

P
ro

vi
d

es
T

yp
e Recommendatory

Required Interfaces
(may be used,

but others may be used as well)

Restricting
Required Interfaces

(only the specified interfaces
may be used)

C
o

m
p

le
te

T
yp

e
Im

p
le

m
en

-
ta

ti
o

n
T

yp
e

<<conforms>>

<<impl-conforms>>

n

m

n

m

C
o

m
p

o
n

en
t

T
yp

e

Recommendatory
Required Interfaces

(may be used,
but others may be used as well)

Restricting
Required Interfaces

(only the specified interfaces
may be used)

Compulsory
Required Interfaces

(must be used in a certain way,
e.g. according to protocol)

IProvidedInterface

IRequired
Interface

Fig. 1. Component specification in different development stages

4.1 Bundling Provided Services into Components

At the first stage, software architects specify components based on their desired func-
tionality using provided interfaces. The architects might be unsure, which other com-
ponents are required to provide this functionality, but nevertheless they want to include
the desired functionality in their model for early reasoning.

We call such component specifications, which include provided interfaces, but only
optionally include required interfaces provides component types. These components are
merely stubs for reasoning and can for example contain estimated QoS-annotations
(e.g., execution times, failure probabilities) for early QoS predictions. Fig.2 shows the
example of a component specified for business reporting functionality and includes
estimated execution times as QoS-annotations.

Business
Reporting

IDBIBusinessReport

report()
monitor()<<QoSAnnotation>>

execTime = 35 ms

<<QoSAnnotation>>
execTime = 50 ms

Fig. 2. Example of a Provides Component Type

282 H. Koziolek et al.

4.2 Full Specification of Required Services

At the second stage, the software architect refines components with interfaces needed
to provide a certain functionality. In this stage, the implementation of the component
is still unknown and there are multiple possibilities to realise a component conform-
ing to the specified interfaces. For example, component developers can use different
algorithms and data structures behind the same interfaces. The specified required inter-
faces in this stage can (but need not) be used by component developers implementing
the component. However, they must not use additional required interfaces in order to
remain type-conform.

Business
Reporting

IBusinessReport

report()
monitor()<<QoSAnnotation>>

execTime = 30 ms +
execTime(IDB.select)

<<QoSAnnotation>>
execTime = 40 ms +
2 * execTime (IDB.select) IDB

select()
update()

Fig. 3. Example of a Complete Component Type

We call such component specifications, which include provided interfaces and re-
quired interfaces, complete component types, as all their interfaces are known. Software
architects can pass these component specifications to component developers as require-
ments specifications. A complete component conforms to a provided component (and
thus can substitute it), if and only if it provides at least the services specified in the
provided type. With complete component type, functional and extra-functional analysis
can be refined, as for example estimated QoS-annotations can now also refer to required
services, as depicted in Fig. 3.

4.3 Modelling Component Implementations

At the third stage, a component specification has been implemented, and a model of the
implementation (with refined information) should be included in the architectural de-
sign model to improve the accuracy of analyses. Developers can either assemble other
components to implement a component (i.e., a so-called composite component) or di-
rectly implement them (i.e., a so-called basic component).

The models of these component implementations can be refined with service effect
specifications (SEFF) (cf. Fig. 4), which are a high-level abstractions of the behaviour of
component services and model how provided services of a component call the required
interfaces. SEFFs are useful for many kinds of functional and extra-functional analysis
(e.g., protocol checking [17], reliability prediction [18], performance prediction [2],
testability [19]).

A basic or composite component impl-conforms to a complete type (and thus can
substitute it) if and only if it provides at least the services specified in the provided
interfaces of the complete type and it requires at most the services specified in its the
required interfaces of the complete type. This principle is known as contra variance [20].
The conforms as well as the impl-conforms are n:m relations. Each basic or composite

Life-Cycle Aware Modelling of Software Components 283

report()
monitor()

Report1

Report2 Cache

BusinessReporting

IBusinessReport IDB

select()
update()

<<ServiceEffectSpecification>>

Internal
Computation

Ext.Call
select()

Internal
Computation

Ext.Call
select()

<<ResourceDemand>>
2400 CPU cycles

<<ResourceDemand>>
420 CPU cycles

Fig. 4. Example of a Composite Component

component can conform to multiple complete types and each complete type can be
implemented multiple times.

5 Implementation

Fig. 5 shows the realisation of the formerly described component type hierarchy in the
PCM meta-model. Abstract meta-classes are colored in light grey. We have introduced
an explicit abstract class for the concept of providing and requiring an interface, as it is
common for all types of components.

PCM Interfaces mostly follow the syntax and semantics of CORBA IDL [14],
therefore we omit the full meta-model for interfaces for clarity. PCM Interfaces
are first-class entities and may exist independently from components. The specification
of a RequiredRole to an Interfaces has different semantics according to the
underlying component type (i.e., recommended, restricted, or compulsory as described
above).

Meta-classes for QoS annotations (e.g., for provides and complete component type)
have been omitted for brevity. Component developers specify QoS properties of

*

*

*

*

InterfaceProvidingRequiringEntity

ProvidesComponentType

CompleteComponentType

ImplementationComponentTypeBasicComponent CompositeComponent

InterfaceProvidingEntity InterfaceRequiringEntity

ProvidedRole RequiredRoleInterface

ServiceEffect
Specification

**

<<impl-conforms>>

<<conforms>>

*

* *

Fig. 5. PCM Component Type Hierarchy (Meta-Model)

284 H. Koziolek et al.

BasicComponents using ServiceEffectSpecifications. Their meta-
model is extensively described in [2]. Tools can compute the QoS properties of
CompositeComponents by combining theServiceEffectSpecifications
of the included BasicComponents.

6 Conclusions

We have proposed a refined modelling of component types during different develop-
ment stages to improve early analysis of functional and extra-functional properties. The
different component type levels allow reasoning on the properties of software archi-
tectures with already implemented and only designed components. This reflects the
typically mixed (top-down and bottom-up) development process of component-based
systems.

During component deployment, the PCM supports modelling contextual information
for each component instance, such as the binding to other components, the allocation
to hardware resources, and the usage of the components. This context model has been
detailed in [1]. For the future, we plan to extend the PCM’s context model to hold more
refined contextual information for QoS predictions with higher accuracy. Furthermore,
modelling specifics of the runtime stage of components would allow even more kinds
of predictions.

References

1. Becker, S., Happe, J., Koziolek, H.: Putting Components into Context - Supporting QoS-
Predictions with an explicit Context Model. In: Reussner, R., Szyperski, C., Weck, W. (eds.)
Proceedings of the Eleventh International Workshop on Component-Oriented Programming
(WCOP 2006) (June 2006)

2. Becker, S., Koziolek, H., Reussner, R.: Model-based Performance Prediction with the Palla-
dio Component Model. In: Proceedings of the 6th International Workshop on Software and
Performance (WOSP 2007), February 5–8, 2007, ACM Sigsoft (2007)

3. Bondarev, E., de With, P.H.N., Chaudron, M.: Predicting Real-Time Properties of
Component-Based Applications. In: Proc. of RTCSA (2004)

4. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying Component-
based Software. Addison-Wesley, Reading (2000)

5. Microsoft Corp. The COM homepage (last retrieved 2006-10-30),
http://www.microsoft.com/

6. Sun Microsystems Corp., The Enterprise Java Beans, homepage (Last retrieved 2008-01-06)
(2007)

7. Garlan, D., Allen, R., Ockerbloom, J.: Exploiting style in architectural design environments.
SIGSOFT Softw. Eng. Notes 19(5), 175–188 (1994)

8. Koziolek, H., Happe, J.: A Quality of Service Driven Development Process Model for
Component-based Software Systems. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt,
H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp.
336–343. Springer, Heidelberg (2006)

9. Lau, K.-K., Wang, Z.: Software component models. IEEE Transactions on Software Engi-
neering 33(10), 709–724 (2007)

http://www.microsoft.com/

Life-Cycle Aware Modelling of Software Components 285

10. Medvidovic, N., Oreizy, P., Robbins, J.E., Taylor, R.N.: Using object-oriented typing to sup-
port architectural design in the c2 style. In: SIGSOFT 1996: Proceedings of the 4th ACM
SIGSOFT symposium on Foundations of software engineering, pp. 24–32. ACM, New York
(1996)

11. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Transactions on Software Engineering 26(1), 70–93
(2000)

12. Object Management Group (OMG). UML Profile for Schedulability, Performance and Time
(January 2005)

13. Object Management Group (OMG). Unified Modeling Language Specification: Version 2,
Revised Final Adopted Specification (ptc/05-07-04) (2005)

14. Object Management Group (OMG). CORBA Component Model, v4.0 (formal/2006-04-01)
(2006)

15. Object Web. The Fractal Project Homepage (Last retrieved 2008-01-06) (2006)
16. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components. IEEE Transactions

on Software Engineering 28(11), 1056–1076 (2002)
17. Reussner, R.H.: Automatic Component Protocol Adaptation with the CoCoNut Tool Suite.

Future Generation Computer Systems 19, 627–639 (2003)
18. Reussner, R.H., Schmidt, H.W., Poernomo, I.: Reliability Prediction for Component-Based

Software Architectures. Journal of Systems and Software – Special Issue of Software Archi-
tecture – Engineering Quality Attributes 66(3), 241–252 (2003)

19. Stafford, J.A., McGregor, J.D.: Top-down analysis for bottom-up development. In: Proc. 9th
International Workshop on Component-Oriented Programming (WCOP 2004) (2004)

20. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Pro-
gramming, 2nd edn. ACM Press and Addison-Wesley, New York (2002)

A Component Selection Framework for COTS

Libraries

Bart George, Régis Fleurquin, and Salah Sadou

VALORIA Laboratory, University of South Brittany, 56017 Vannes, France
{george,fleurqui,sadou}@univ-ubs.fr
http://www-valoria.univ-ubs.fr/

Abstract. Component-based software engineering proposes building
complex applications from COTS (Commercial Off-The-Shelf) organized
into component markets. Therefore, the main development effort is re-
quired in selection of the components that fit the specific needs of an ap-
plication. In this article, we propose a mechanism allowing the automatic
selection of a component among a set of candidate COTS, according to
functional and non-functional properties. This mechanism has been val-
idated on an example using the ComponentSource component market.

1 Introduction

Component-Based Software Engineering allows developers to build a system
from reusable pre-existing commercial off-the-shelf (COTS) components. The
two immediate potential benefits for such an approach are reduced development
costs and shorter time-to-market [1]. For this reason, more and more software
applications are built using COTS rather than being developed from scratch, as
this is something that fewer and fewer companies can afford [2]. However, due to
the intrisic nature of COTS as “black-box” units put into markets by third party
publishers, software development life-cycle must be rethought in depth [3,4]. In
fact, COTS-based software development leads to constant trade-offs between
requirement specification, architecture specification and COTS selection [5]. In
this context, it becomes impossible to specify requirements without asking if the
marketplace provides COTS that can satisfy them. And one cannot specify an
architecture without asking if there are COTS to integrate it.

In such a context, COTS selection becomes particularly important [6]. So
important that a bad requirements definition associated to a poor selection of
COTS products can lead to major failures [7]. There are also extra costs due to
the investigation of hundreds of candidates disseminated into several different
markets and libraries, not to mention the diversity of components’ description
formats. Finally, this phase can become so time-consuming that it may annihilate
the initial promise of cost and time reductions [6]. Therefore, the only solution to
maintain these gains is to have a selection process [1] that would be well-defined,
repeatable, and as automated as possible.

In this paper, we propose a mechanism that allows application designers to
select, among a vast library of candidates, the one that best satisfies a specific

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 286–301, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Component Selection Framework for COTS Libraries 287

need, modeled by a virtual component called a “target component”. Section 2
will detail existing approaches, as well as their limits. In section 3 we will present
our own approach. Then, before concluding, in section 4 we will present a valida-
tion of this approach using ComponentSource [8] as a component marketplace.

2 COTS Selection Techniques

The issue is the following one: given a vast number of COTS components from
all origins, disseminated in several different markets, how can the one that will
best satisfy an application’s specific need be chosen ?

2.1 Presentation of Current Selection Processes

Works in the field of component selection are trying to answer this fundamen-
tal question. C. Güngör En and H. Baraçli [6] listed many of these works. This
study shows that most selection processes provide at least the three following
phases: evaluation criteria definition, prioritization of these criteria, and COTS
candidates’ evaluation according to these criteria. Usually, in order to achieve
these phases, selection processes use multi-criteria decision making techniques
(MCDM). The most used MCDM techniques are Weighted Scoring Method or
WSM [9] and Analytic Hierarchy Process or AHP [10]. WSM consists in using
the following formula: scorec=Σn

j=1(weightj ∗ scorecj), where weight weightj
represents the importance of j-th criterion compared to the n-1 other evalua-
tion criteria, and local score scorecj evaluates the satisfaction level of the j-th
criterion by candidate c. Thus, total score scorec represents the global evalu-
ation value for candidate c. Therefore, the best candidate is the one that has
the highest total score. AHP is a technique that organizes the definition and
prioritization of evaluation criteria. It consists in decomposing a goal in a hier-
archical tree of criteria and sub-criteria whose leaves are available candidates.
Inside each criteria-node, the importance of each sub-criterion is estimated com-
pared to others. For example, the criterion “performance” can be divided in two
sub-criteria “response time” and “resource consumption”, the first sub-criterion
having a weight twice higher than the second one. Then, one can use a for-
mula such as WSM to evaluate each candidate c by aggregating local scores
scorecj1, ..., scorecjn inside each node j, and propagating all these sums to the
root of the tree to get c’s total score.

Now, let us take a look at the contributions made by main works in the
field of component selection. OTSO [11] is considered as one of the first selec-
tion processes dedicated to COTS components. In addition to the three phases
described above, it adds other ones such as pre-selection of COTS to identify
potentially relevant candidates and limit their number (therefore it acknowl-
edges the difficulty to manually evaluate too many candidates). PORE [7] is a
selection process that pleads in favor of a progressive selection. Candidates are
filtered and their number decreases while the description of the needs becomes
more accurate. DEER [12] is aimed at selecting single components, or assemblies

288 B. George, R. Fleurquin, and S. Sadou

of components, which satisfy requirements while minimizing costs. Other pro-
cesses propose new steps in order to facilitate selection. For example, PECA [13]
adds an extra phase : evaluation planning. It consists in choosing the people
responsible for the evaluation of candidates and the techniques they will use.
Other approaches focus on the definition of evaluation criteria [14]. For example,
STACE [15] proposes taking into account “socio-technical” criteria. Such criteria
can be, for instance: product quality, product technology, business aspects (for
example, supplier reputation on the marketplace), etc... BAREMO [16] adapts
AHP to COTS by defining a set of specific criteria and sub-criteria dedicated
to these kind of components. COTSRE [17] proposes to create reusable “criteria
catalogs”. And CAP [18] proposes specific non-functional criteria inspired by
ISO-9126 quality standard [19].

2.2 Limits of These Approaches

The main inconvenience of these processes is their lack of automation. Even if
candidates’ total scores are calculated with an automated formula such as WSM,
local scores scorecj are estimated manually by evaluators for each candidate c.
Coming back to the example of sub-criteria “response time” and “resource con-
sumption”, it is clear that if we want a precise evaluation, it would be much
better to measure them automatically with the help of metrics instead of letting
a user enter arbitrary local scores. Furthermore, even if we limited ourselves to
only one market, or a particular section of a market, we would face more than one
hundred candidates anyway. For instance, the single ComponentSource’s “inter-
net communication” section [8] contains more than 120 candidates. Therefore,
it is important to automate local score measurements as much as possible. It
is not only a matter of precision, but also an efficient way to deal with a huge
amount of information. A high number of candidates becomes quickly fastidious
in the case of a manual evaluation [20].

All local score calculations are not automatable the same way, though. Pre-
selection phase usually uses a small number of general criteria, such as key-
words. In this case, local score calculations are simple, but they can apply to
a large number of candidates. Component search and retrieval techniques [21],
whose goal is to formulate a specific query and then retrieve all the components
matching this query, provide adapted algorithms for this kind of local scores,
for instance, keyword search or facet-based classification [22]. However, during
detailed evaluation phase, there can be many complex criteria, each one concern-
ing a specific property (signature matching, metric value comparison...). In this
case, local score calculations are much more complex because they require the
aggregation of many values of different nature, but they apply to a smaller num-
ber of candidates. Fine-grained comparisons such as signature subtyping [23] fit
this kind of comparison. And non-functional properties, in order to be evaluated,
can be described with techniques such as quality of service contracts [24,25,26]
or COTS-based quality models [27].

The mechanism we propose allows for the automation of these local score
calculations by taking into account the need for flexibility on the criteria detail

A Component Selection Framework for COTS Libraries 289

level. The originality of our approach consists in automating COTS selection by
using existing works from other domains. All these techniques cohabitate into a
unique concept: target component.

3 Component Selection

Our selection approach takes place in a component-based software development
context, as defined in [3]. In this context, a component-based application is built
incrementally. When a component is added into the application, it brings its own
constraints. Then, its required interfaces become part of the new requirements
that must be satisfied by the next component to be integrated. Therefore, the
application’s current requirements are dictated, among other things, by compo-
nents currently integrated in it.

We chose to model the application’s requirements by virtual “target” com-
ponents. A target component represents the “ideal” answer for a specific need,
and has to be replaced by the closest “concrete” candidate component. Eval-
uation criteria are components’ functional and non-functional properties. Such
a representation allows the designer to have criteria that are closer to the ap-
plication’s true needs. It also allows for the use of many techniques dedicated
to automatic component search and comparison. However, such a mechanism
implies two problems: i) the choice of a description format for candidate compo-
nents as well as target ones; ii) the definition of a comparison function for such
component descriptions to measure their “similarity”. In this section, we will
successively present the solutions we propose to address these two problems.

3.1 Component Description Format

Nowadays, there is no consensus on component description format. Each mar-
ket has its own way to document its components, often developed from several
different models. For instance, ComponentSource stores ActiveX, JavaBeans or
.NET components. However, all candidates must be compared to a target com-
ponent according to a same description format. Furthermore, this format must
be abstract enough to encompass concepts that are common to most existing
models. This is why we defined our own format dedicated to COTS components.
It is described with a UML model (figure 1), whose elements will be presented
in the following pages.

Architectural artifacts. Three kinds of artifacts have been selected: com-
ponents, interfaces, and operations. Components contain two sets of interfaces
(provided and required), and interfaces are constituted by a set of operations.
This representation is inspired by the standard definition used by many models
such as UML 2.0 [28]. As COTS components are represented as “black-boxes”,
we will not take into account “composite” components.

For each (target) operation, we associate several signatures. It is useful to
anticipate many to improve performance during the search for a specific ser-
vice. A signature S = ParamTypes → ResultT ype details parameters’ types,

290 B. George, R. Fleurquin, and S. Sadou

Fig. 1. Description format for COTS components

denoted ParamTypes = (τ1, ..., τn), and the result’s type denoted ResultT ype.
Let us take the example of an operation dedicated to folder creation. It could
have a signature string → void, like the MakeDirectory operation provided
by PowerTCP FTP component, which can be found on the ComponentSource
website. However, another signature for a folder creation operation could be
string → boolean, like for the CreateDirectory operation provided by the FT-
PWizard component, which can be found at the same place.

Information associated to artifacts. Two sets of information are common
to all artifacts: a set of its possible names, and a documentation. The first set
is here because a same artifact can be proposed under several different names.
For example, a download operation can be named Download or GetF ile. This is
the case, respectively, for ComponentSpace’s FTP component and Xceed ’s, both
being available on ComponentSource’s website. The second set of information
represents the artefact’s documentation. Each one of the information elements
included in this documentation is called “typed keywords”. A keyword is typed
because it positions its value in a specific interpretation domain called facet.
For example, a component developed in EJB whose publisher is NBOS Inc. can
be documented with two typed keywords: i) one that will have “Publisher” as
facet, and “NBOS Inc.” as value; ii) one that will have “Technology” as facet,
and “EJB” as value.

It is possible to associate other information to artifacts, in particular behav-
ioral information such as pre- and post-conditions. However, the primary goal of
our approach is to bring a concrete answer to an industrial concern. To do so,
consider the context of COTS component markets such as ComponentSource.

A Component Selection Framework for COTS Libraries 291

Unfortunately, in such markets, the documentation of components’ behavior is
very poor. This is why we currently do not address these aspects.

3.2 Non-functional Properties Associated to Artifacts

Each artifact can have a “quality field”, i.e. a set of non-functional properties
(NFP in figure 1). The idea that every architectural artifact can have non-
functional properties is inspired by quality of service description languages such
as QML [24] and QoSCL [26]. A non-functional property represents the result
(resultP) obtained by measuring the “level” of a quality attribute on an arti-
fact. This measure is made by a metric. Such a structure is inspired by quality
models dedicated to COTS components [27,29]. Such models extend ISO-9126
quality standard [19] by associating quality attributes and metrics to its char-
acteristics and sub-characteristics. We chose metrics to represent and compare
non-functional properites, because contrary to other methods focusing on one
specific property or family of properties [26], metrics seem to be the simplest
evaluation tool for quality in the largest sense.

There are several standards for metrics, such as IEEE 1061-1998 [30], for which
a same quality characteristic or sub-characteristic can be measured by severalmet-
rics, and conversely. However, there is a problem when a same quality attribute is
measured by metrics of a different kind from one quality model to another. Let us
take the example of two different quality models: Bertoa’s and Vallecillo’s model
[29] and CQM [27]. Sometimes, both models associate the same quality attributes
to ISO-9126’s sub-characteristics,but measure them with different metrics. For in-
stance, the Controllability attribute, associated to sub-characteristic Security, is
measured by a percent value in Bertoa’s and Vallecillo’s model, whereas it is mea-
sured by a boolean inCQM. But even though metrics measuring the same attribute
may have the same type, it does not mean they are semantically comparable. And
there are no systematic methods allowing one to compare values obtained for a
same quality attribute with different kinds of metrics. Consequently, we will con-
sider for our description format that one quality attribute can be measured by only
one metric, even though a same metric can measure several quality attributes. We
can use attributes and metrics from one existing quality model. It can either be an
academic one, or one provided by a component market such as ComponentSource.
In any case, it must be the same for all components.

A metric can be numeric or ordinal. This distinction is inspired by the CLAR-
IFI project [31]. The domain of a numeric metric is a subset of real numbers
(integers, percent values...). As the quality models we surveyed do not propose
metrics with negative values, we take as a hypothesis that the domain of a nu-
meric metric is always positive. About the domain of an ordinal metric, it is a
finite and totally ordered set. A numeric metric has a supplementary attribute
called “direction”. This direction allows for the interpretation of a metric’s result.
Available directions are increasing and decreasing. This distinction is inspired
by quality of service contract languages [24,26]. An increasing (resp. decreasing)
direction means that the higher (resp. the lower) the metric’s value, the better
the corresponding quality. For example, an operation’s execution time has a

292 B. George, R. Fleurquin, and S. Sadou

decreasing direction. An ordinal metric has one supplement attribute called
“hierarchy”. It gathers and ranks all the metric’s possible values by associating
a key to each one of them. This key, or rank, defines the total order relation on
the metric’s domain. When a value is “better” than another, the first one’s rank
is strictly superior than the second one’s rank in the associated hierarchy. For
example, if an ordinal metric M has {very bad, bad, average, good, excellent} as
a domain, corresponding hierarchy is: Hierarchy(M)=[(0, very bad), (1, bad),
(2, average), (3, good), (4, excellent)].

3.3 Satisfaction Index between Components

Using the same description format given above for candidate and target com-
ponents, we can address the problem of component comparison. In selection
processes and multi-criteria decision making techniques, after total score calcu-
lations are performed, the candidate with the highest total score is selected as
the best one. This is why we chose to define a satisfaction index based on the
same principle. This index allows one to determine how much a candidate com-
ponent fits the target one. That means, how many functional and non-functional
properties this candidate has in common with the target component. First, we
will present the principle and the general formula for this satisfaction index,
before giving the details for some elements of the description format.

General definition. A careful analysis of description format allows us to distin-
guish a hierarchical description. In this format, a component is described by a tree
whose root is a component artifact and child nodes are potentially: Interface,
Documentation, PossibleNames and QualityF ield. Among them, an Interface
node can have the following child nodes: Operation, Documentation,
PossibleNames and QualityF ield. Therefore, the satisfaction index must com-
pare recursively two nodes from different trees by comparing their respective
child nodes pair by pair, then “aggregate” the result of sub-nodes’ comparisons
to measure similarity score. This calculus is the same whatever the nature of the
compared nodes is (as long as they are both of the same nature). Therefore, we
will give a generic description of this calculus independently of their nature.

To each node, we associate a type and a weighting function. For example, a
node can have Interface, Operation or Documentation as a type. Only two
nodes of a same type can be compared, otherwise the satisfaction index between
them will return 0. On the opposite, the maximum value for a satisfaction index
is fixed to 1, which means the candidate element completely fits the target one.
Weighting function Weight(E) allows the designer to associate to each node E
a numeric value called “weight”, which gives its importance compared to other
nodes. General satisfaction index calculus for a target node E0 and a comparable
candidate node E1 is described in figure 2. For each node e0, child of E0, we
measure satisfaction indices with each child node of E1 that is comparable to e0
(respectively, index1, index2 and index3). The best result is the highest satisfac-
tion index among them. This measurement is repeated for all E0’s other child
nodes. Finally, all these best indices, with their corresponding weight, are added

A Component Selection Framework for COTS Libraries 293

Fig. 2. Satisfaction index between two elements

to obtain a total satisfaction index between E1 and E0. In order to compare leaf
nodes, we use a specific function to each kind of them.

Formally, the satisfaction index between a candidate element E1 and a target
one E0, denoted Index, is defined as follows:

Index(E1, E0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� 0 if Type(E1) �= Type(E0).
� Comp(E1, E0) if E0 is a leaf node.
� Σ({Weight(e0) ∗ MAX({Index(e1, e0) | e1 ∈ E1}) | e0 ∈ E0})
if E0is an inner node.

(1)

Selection is performed by calculating satisfaction indices between each available
candidate component and the target one, then choosing the candidate whose
satisfaction index is the highest one.

Chosen weighting and comparison functions. Now that the general satis-
faction index formula has been defined, we have to detail comparison functions
we have chosen for each type of leaf node (NFPs, sets of possible names, typed
keywords and operation signatures), as well as the weighting function we have
chosen for every type of node.

Comparison function between NFPs: Let A0 be a target artifact, P0 be an NFP
belonging to A0’s quality field, A1 be a candidate artifact having the same type
as A0, and P1 be an NFP belonging to A1’s quality field. P1 is comparable to
P0 only if they measure the same quality attribute. In this case, the metric they
both use will be denoted M . If M is numeric, comparison function will measure
the similarity of P1’s result value with P0’s, with respect to M ’s direction. If M
is ordinal, the comparison function will measure the similarity of P1’s result’s
rank with P0’s result’s rank, with respect to M ’s hierarchy.

Formally, the comparison function between P1 and P0 is defined as follows:

Comp(P1, P0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� 0 if P1 and P0 do not measure the same quality attribute.
� Compinc(P1, P0) if M is numeric with an increasing direction.
� Compdec(P1, P0) if M is numeric with a decreasing direction.
� Compord(P1, P0) if M is ordinal, and if rank(resultP0) > 0.

� 1 if M is ordinal, and if rank(resultP0) = 0.
(2)

294 B. George, R. Fleurquin, and S. Sadou

With:

Compinc(P1, P0) = MIN(
resultP1

resultP0

, 1) (3)

Compdec(P1, P0) = MIN(
resultP0

resultP1

, 1) (4)

Compord(P1, P0) = MIN(
rank(resultP1)
rank(resultP0)

, 1) (5)

Let us suppose that P0 and P1 both measure the “quality level” of a particular
attribute with an ordinal metric whose domain is {very bad, bad, average, good,
excellent}. If P0’s result value is good, its rank is 3. If P1’s result value equals
bad, its rank equals 1 and the comparison function between P1 and P0 gives 1/3.

Comparison function between sets of possible names: For simplicity reasons, we
consider that for one candidate set of possible names N1 and one target set possible
names N0, Comp(N1, N0) equals 1 if one ofN1’s names is contained in N0 (i.e. there
is at least one common element between N1’s values and N0’s), regardless of differ-
ences between uppercases and lowercases. In any other case, Comp(N1, N0)=0.

Comparison function between typed keywords: For a candidate typed keyword
K1 associated to a facet F1 and a target typed keyword K0 associated to a facet
F0, Comp(K1, K0)=1 if F1’s value equals F0’s (unless F0’s value is “”, in this
case facets are not compared) and if K1’s value equals K0’s. In any other case,
Comp(K1, K0)=0.

Comparison function between operation signatures: To automate comparison
between operation signatures, we chose to use signature subtyping, in partic-
ular contravariance and covariance rules [23]. Therefore, we consider that a
candidate signature S1=ParamTypes1 → ResultT ype1 is subtype of a tar-
get signature S0=ParamTypes0 → ResultT ype0 if ParamTypes0 is subtype
of ParamTypes1 and if ResultT ype1 is subtype of ResultT ype0. Consequently,
Comp(S1, S0)=1 if and only if S1 is subtype of S0. Otherwise, Comp(S1, S0)=0.

Let us consider, for example, target signature S0: float → int. If S1 = float →
float, it will be a subtype of S0 and the comparison function will give 1. However,
if S1: boolean → int, the comparison function will give 0.

There are other existing techniques to compare operation signatures, in partic-
ular signature matching as defined by A. Zaremski and J. Wing [32] or S. Sadou
et al. [33,34]. However, all matching rules are not fully automatable, because
they require a collaborative approach.

Weighting function: For every type of node, we will use “weighting by distribu-
tion”. It consists, for the application designer, in giving a percent weight and
sharing the totality of each node’s weight between its direct child nodes, from the
root (the component whose weight is 1) to the leaves. For example, an interface
will share its weight between its set of possible names, its documentation, its
operations and its quality field, so that the sum of all these nodes’ weights will
equal 100% of the interface’s weight. The only exception is the set of possible

A Component Selection Framework for COTS Libraries 295

signatures for an operation. As we look for only one correct signature among all
the ones we propose, all of them will count for one. Let us suppose we described a
target operation with three possible signatures and a quality field. If the quality
field takes 40% of the interface’s weight, then each signature will have a weight
equal to 60% of the interface’s weight.

4 Selection in ComponentSource

In this section, we present an experiment conducted on a concrete component
market. This experiment shows practical feasability and interest of an automatic,
multi-level, selection approach. We consider the following context: a designer
needs for her/his application a component dedicated to FTP (File Transfer Pro-
tocol) among all the candidates available in the ComponentSource component
market’s “internet communication” section1. For each candidate we produced a
description in our format. In particular, the quality model we used corresponds
to the non-functional information available on ComponentSource web pages for
each of its components. Then, we tested the selection mechanism on these trans-
lated descriptions, and produced the results presented in this section. Translation
from original components’ descriptions to our description format has been done
using model transformation techniques. Because of article size, this work will
not be presented in this paper, but it will be the subject of a future publication.

4.1 Non-negotiable Requirements

Let us consider the development of a component-based application. Some con-
straints are specific to the development context. They are often imposed and
non-negotiable. For example, if the chosen development tool is Visual Studio,
then the candidate components must have Visual Studio as a compatible con-
tainer2. Therefore, we must filter candidates to keep only the ones that fit these
technological constraints. We can model this filter with our framework. To do
so, we can use this constraint on compatible containers as a property whose
values are either “True” or “False”. Then, we can specify a target component
with an NFP corresponding to the compatibility with the Visual Studio con-
tainer. Therefore, with only one constraint whose value is “True” or “False”, the
possible satisfaction index values are 1 or 0. Only the candidates whose satisfac-
tion index equals 1 will be pre-selected. Thus, only 35 “compatible” candidates
from ComponentSource remain. In the following pages, measurements will be
performed only on these compatible candidates.

4.2 Initial Requirements

The application being in development, its current “concrete” architecture has re-
quirements. That means, the designer needs to find a FTP component that
1 For more information: http://www.componentsource.com/index.html
2 There may be other non-negotiable requirements and filters, but for reasons of sim-

plicity and clarity, we will use only this one as an example.

296 B. George, R. Fleurquin, and S. Sadou

Fig. 3. Example of target component

provides operations whose signatures are required by “concrete” components al-
ready included in the architecture. Moreover, the application has security require-
ments, which imposes that the FTP component enables SSL protocol. It corre-
sponds to quality attribute SecuritySSL, measured by an ordinal metric with a
boolean domain (see figure 1). The target component that models all these re-
quirements is shown in figure 3. From a functional point of view, it provides one
interface containing 10 operations. Each one of them is dedicated to a specific FTP
task (folder creation, login, download...), and has a signature imposed by the ap-
plication’s concrete architecture. However, it can have many possible names. From
a non-functional point of view, the target component’s quality field contains a
unique NFP concerning the need of SSL protocol. This NFP represents quality
attribute SecuritySSL with value True. We estimate that the provided interface
takes 70% of the component’s weight, while the quality field takes the remaining
30%. Therefore, provided interface and quality field weights equal respectively 0.7
and 0.3 (see figure 3). We also consider that all 10 operations are of equal impor-
tance, so each one’s weight equals 0.1 in the context of the provided interface. Of
course, this is only an example of possible weighting: other weights can be esti-
mated according to the context of the application.

4.3 Results for Initial Requirements

Satisfaction indices have been measured for each of the 35 candidates on our
tool Substitute3. This tool takes as parameters XML files describing the chosen
3 Because of article size, we cannot give details of Substitute tool. However, inter-

ested readers can download it at the following address: http://www-valoria.univ-
ubs.fr/SE/Substitute/

A Component Selection Framework for COTS Libraries 297

Table 1. First satisfaction index measurements

Candidate name Operations NFP SSL Total

IP*Works! SSL v6 .NET 0.73 1.0 0.81
IP*Works! SSL v6 ActiveX/VB 0.73 1.0 0.81
IP*Works! SSL v6 .NET Compact Framework 0.73 1.0 0.81
IP*Works! SSL v6 ASP/.NET 0.73 1.0 0.81
PowerTCP SSL for ActiveX 0.65 1.0 0.75
IP*Works! v6 .NET 0.73 0.0 0.51
IP*Works! v6 ActiveX/VB 0.73 0.0 0.51
IP*Works! v6 .NET Compact Framework 0.73 0.0 0.51
IP*Works! v6 ASP/.NET 0.73 0.0 0.51
PowerTCP FTP for ActiveX 0.65 0.0 0.45
Aspose Network .NET 0.65 0.0 0.45
IP*Works! SSL v6 C++ 0.14 1.0 0.39
SocketTools Secure Visual Edition 0.12 1.0 0.38
SocketTools Secure .NET Edition 0.12 1.0 0.38
Xceed FTP Library 0.52 0.0 0.36

quality model and the set of all the component descriptions that will be used
(the target component, and candidate ones). For target components, only needed
properties are specified and weighted. Properties that are not specified take
implicitly a null weight in our calculus. Once all XML component descriptions
are loaded, Substitute returns satisfaction indices between each candidate of the
library and the target component. Not only global indices, but also local ones
for child nodes (interfaces, operations, NFPs...).

Table 1 shows the measurements for the 15 best candidates. First, there are
5 secure (SSL) and 4 non-secure (without SSL) versions of a FTP component
provided by the IP*Works! component suite. These different versions are identi-
fied according to their language (C++), their framework (.NET, ActiveX) or the
context they were developed for. For example, the .NET Compact Framework
is made specifically for mobile phones, while the ASP/.NET version is better
suited for Web applications. Then, there are the secure and non-secure ActiveX
versions of a FTP component provided by PowerTCP component suite. There
are also other FTP components provided by component suites Aspose Network,
SocketTools and Xceed. At first, we ignored the candidates’ development context.
However, the first four candidates all have the same satisfaction index. The rea-
son is that they all represent the same secure FTP component, but for different
development contexts (ActiveX, .NEt...). Thus, they provide the same opera-
tions with the same signature. Then, we must consider a precise context, such
as the development of a client/server application based on ActiveX. In order to
choose between the remaining candidates, a more in-depth analysis of them is
necessary.

298 B. George, R. Fleurquin, and S. Sadou

Table 2. New satisfaction index measurements

Candidate name Operations NFP SSL NFP TD Total

IP*Works! SSL v6 ActiveX/VB 0.73 1.0 1.0 0.81
PowerTCP SSL for ActiveX 0.65 1.0 1.0 0.75
IP*Works! v6 ActiveX/VB 0.73 0.0 1.0 0.61
PowerTCP for ActiveX 0.65 0.0 1.0 0.55
Xceed FTP Library 0.52 0.0 0.88 0.45

4.4 Requirement Evolution

By focusing on a precise development context, thus removing the versions of a
same component made for a different context, further exploration becomes con-
ceivable on a remaining candidate. Thus, we can notice they have some properties
which were not considered first, but may be very interesting. A good example of
such unexpected properties is the tests performed on these components before
they were brought to the market. As the application has security requirements,
it would be better if the candidates were tested before being integrated. In-
deed, ComponentSource provides for each component some information about
the tests performed on it: installation test, uninstall test, antivirus scan, sample
code review, etc... Therefore, it would be interesting to check the “test degree”
of each candidate, i.e. the number of tests, among the eight ones recognized by
ComponentSource, which were performed on it.

This new requirement leads to a modification of the target component. Its
quality field now contains a new NFP representing test degree and asking for
the maximal value, 8. Provided interface and quality field weight do not change.
However, inside the quality field, the weight of NFP representing SSL enabling
must decrease a bit. It will equal 0.665 (two thirds of the quality field’s weight),
while the new NFP representing test degree will take the remaining 0.335.

4.5 Results for New Requirements

Satisfaction indices for the remaining candidates (i.e. those that are developed
for ActiveX) have been calculated with Substitute. Table 2 shows the new mea-
surements of satisfaction indices for the five best candidates. The new column,
NFP TD, shows the results for NFP representing test degree. All the tests recog-
nized by ComponentSource were performed on the IP*Works! and PowerTCP
components in their secure and non-secure versions (index for NFP TD equals 1).
The last candidate did not pass some of these tests, which decrease its satisfac-
tion index. Finally, it seems obvious that, for the specified requirements, secure
ActiveX/VB version of IP*Works! FTP component is the best candidate.

Usually, when we try to select the “best” candidate for an application’s current
requirements, we are limited by our initial knowledge. With a way to navigate
through the library, it is possible to discover properties offered by the components
which we did not originally think about. This is typically one of the trade-offs

A Component Selection Framework for COTS Libraries 299

predicted by L. Brownsword et al. [5] between requirement specification and
COTS selection. Our easy-to-use way to specify requirements and select good
candidates makes this navigation possible.

5 Conclusion and Future Work

We proposed an approach that allows us to automate the component evaluation
phase, including: i) a description format for COTS components’ functional and
non-functional properties; ii) a satisfaction index that measures the similarity
level between a candidate component and a target one. This approach has been
validated on ComponentSource component market with the help of a tool that
measures local and global satisfaction indices for a whole library of candidate
components. This study showed that an automated comparison improves the
performance of selection process. It also showed the importance of weighting.

Such an automated mechanism is adapted to an incremental construction of
a component-based software, because “back-tracking” is possible. Each target
component’s specification depends on the components already integrated into
the application. So if the situation is blocking (i.e. there is no candidate that
can satisfy current target component), we can go back to previous ones and
choose other candidates for them. It will lead to modified requirements, which
may be better satisfied by candidates.

This paper follows and improves a previous work [35,36], whose goal was to
find how a component could substitute another one. At that time, we considered
no particular context. Since then, we adapted and improved our framework by
considering an industrial problem, such as selection in COTS markets. Therefore,
the work we present in this paper is better suited to a concrete component-based
development context. Considering this context, our description format is inspired
by what we do (and do not) find in documentation provided by COTS publishers.
For this reason, we have not yet dealt with some component properties, partic-
ularly behavioral ones. Because of the importance of these aspects, we plan to
take them into account in future versions of our framework. However, in order
to achieve this goal, these properties should be documented more explicitly in
component markets.

References

1. Voas, J.: COTS software - the economical choice? IEEE Software 15 (3), 16–19
(1998)

2. Ye, F., Kelly, T.: COTS product selection for safety-critical systems. In: Proc. of
3rd Int. Conf. on COTS-Based Soft. Systems (ICCBSS), pp. 53–62 (2004)

3. Crnkovic, I., Larsson, S., Chaudron, M.: Component-based development process
and component lifecycle. In: 27th International Conference on Information Tech-
nology Interfaces (ITI), Cavtat, Croatia. IEEE, Los Alamitos (2005)

4. Tran, V., Liu, D.B.: A procurement-centric model for engineering CBSE. In: Proc.
of the 5th IEEE Int. Symp. on Assessment of Soft. Tools (SAST) (June 1997)

300 B. George, R. Fleurquin, and S. Sadou

5. Brownsword, L., Obendorf, P., Sledge, C.: Developing new processes for COTS-
based systems. IEEE Software 34 (4), 48–55 (2000)

6. En, C.G., Baraçli, H.: A brief literature review of enterprise software evaluation and
selection methodologices: A comparison in the context of decision-making methods.
In: Proc. of the 5th Int. Symp. on Intelligent Manufacturing Systems (May 2006)

7. Maiden, N., Ncube, C.: Acquiring cots software selection requirements. IEEE
Transactions on Software Engineering 24 (3), 46–56 (1998)

8. ComponentSource: Website (2005), http://www.componentsource.com
9. Mosley, V.: How to assess tools efficiently and quantitatively. IEEE Software 8 (5),

29–32 (1992)

10. Saaty, T.: How to make a decision: The analytic hierarchy process. European Jour-
nal of Operational Research 48, 9–26 (1990)

11. Kontio, J.: A case study in applying a systematic method for COTS selection. In:
Proceedings of International Conference on Software Engineering (ICSE) (1996)

12. Cortellessa, V., Crnkovic, I., Marinelli, F., Potena, P.: Driving the selection of
COTS components on the basis of system requirements. In: Proceedings of ACM
Symposium on Automated Software Engineering (ASE) (November 2007)

13. Comella-Dorda, S., Dean, J., Morris, E., Oberndorf, T.: A process for COTS soft-
ware product evaluation. In: Proc. of 1st Int. Conf. on COTS-Based Soft. Systems
(ICCBSS), Orlando, Florida, USA, pp. 46–56 (2002)

14. Carvallo, J.P., Franch, X., Quer, C.: Determining criteria for selecting software
components: Lessons learned. IEEE Software 24 (3), 84–94 (2007)

15. Kunda, D., Brooks, L.: Applying social-technical approach for COTS selection. In:
UK Academy for Information Systems Conf. (UKAIS 1999) (April 1999)

16. Lozano-Tello, A., Gómez-Pérez, A.: Baremo: How to choose the appropriate soft-
ware component using the analytic hierarchy process. In: Proc. of Int. Conf. on
Soft. Eng. and Knowledge Eng (SEKE), Ischia, Italy (July 2002)

17. Martinez, M., Toval, A.: COTSRE: A components selection method based on re-
quirements engineering. In: Proceedings of the 7th Int. Conf. on COTS-Based Soft.
Systems (ICCBSS), February 2008, pp. 220–223 (2008)

18. Ochs, M., Pfahl, D., Chrobok-Diening, G., Nothelfer-Kolb, B.: A COTS acqui-
sition process: Definition and application experience. In: Proceedings of the 11th
European Software Control and Metrics Conference (ESCOM), pp. 335–343 (2000)

19. ISO International Standards Organisation Geneva, Switzerland: ISO/IEC 9126-
1:2001 Software Engineering - Product Quality - Part I: Quality model (2001)

20. Ncube, C., Dean, J.: The limitations of current decision-making techniques in the
procurement of COTS software component. In: Proc. of the 1st Int. Conf. on COTS-
Based Software Systems (ICCBSS), Orlando, Florida, USA, pp. 176–187 (2002)

21. Mili, H., Mili, F., Mili, A.: Reusing software: Issues and research directions. IEEE
Transactions On Software Engineering 21(6), 528–562 (1995)

22. Pŕıeto-Diaz, R.: Implementing faceted classification for software reuse. Communi-
cations of the ACM 34(5), 88–97 (1991)

23. Cardelli, L.: A semantics of multiple inheritance. Information and Computa-
tion 76(2), 138–164 (1988)

24. Frolund, S., Koistinen, J.: QML: A language for quality of service specification.
Technical report, Hewlett-Packard Laboratories, Palo Alto, California, USA (1998)

25. Beugnard, A., Sadou, S., Jul, E., Fiege, L., Filman, R.: Concrete communication ab-
stractions for distributed systems. In: Object-Oriented Technology, ECOOP 2003
Workshop Reader, Darmstadt, Germany, November 2003, pp. 17–29 (2003)

http://www.componentsource.com

A Component Selection Framework for COTS Libraries 301

26. Defour, O., Jézéquel, J.M., Plouzeau, N.: Extra-functional contract support in
components. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.)
CBSE 2004. LNCS, vol. 3054, pp. 217–232. Springer, Heidelberg (2004)

27. Alvaro, A., de Almeida, E.S., Meira, S.: A software component quality model: A
preliminary evaluation. In: Proc. of the 32nd EUROMICRO Conf. on Soft. Eng.
and Advanced Applications (SEAA) (August 2006)

28. OMG: UML 2.0 superstructure final adopted specification, document ptc/03-08-02
(August 2003), http://www.omg.org/docs/ptc/03-08-02.pdf

29. Bertoa, M., Vallecillo, A.: Quality attributes for COTS components. I+D Com-
putación 1(2), 128–144 (2002)

30. IEEE: IEEE Std. 1061-1998: IEEE Standard for a Software Quality Metrics
Methodology. IEEE computer society press edn (1998)

31. Boegh, J.: Certifying software component attributes. IEEE Software 40(5), 74–81
(2006)

32. Zaremski, A., Wing, J.: Signature matching: a tool for using software libraries.
ACM Trans. On Soft. Eng. and Methodology (TOSEM) 4(2), 146–170 (1995)

33. Sadou, S., Mili, H.: Unanticipated evolution for distributed applications. In: 1st
Int. Workshop on Unanticipated Software Evolution (USE) (June 2002)

34. Sadou, S., Koscielny, G., Mili, H.: Abstracting services in a heterogeneous environ-
ment. In: IFIP/ACM International Conference on Distributed Systems Platforms,
Middleware 2001, Heidelberg, Allemagne (November 2001)

35. George, B., Fleurquin, R., Sadou, S.: A component-oriented substitution model.
In: Proceedings of 9th Int. Conf. on Software Reuse (ICSR 9) (June 2006)

36. George, B., Fleurquin, R., Sadou, S.: A methodological approach for selecting com-
ponents in development and evolution process. Electronic Notes on Theoretical
Computer Science (ENTCS) 6(2), 111–140 (2007)

 http://www.omg.org/docs/ptc/03-08-02.pdf

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 302–309, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Opportunistic Reuse: Lessons from Scrapheap Software
Development

Gerald Kotonya, Simon Lock, and John Mariani

Computing Dept., InfoLab 21, South Drive
Lancaster University, Lancaster LA1 4WA,

United Kingdom
{gerald,lock,jam}@comp.lancs.ac.uk

Abstract. Many organizations use opportunistic reuse as a low-cost mechanism
to improve the efficiency of development. Scrapheap reuse is a particular form
of opportunistic development that we explore in this paper with the aid of an
experimental study.

1 Introduction

Opportunistic reuse is the most common of all software reuse strategies. It does not
rely on specific technology; moreover it can be done without a formal content man-
agement system. A study conducted by Sen in 1997 showed that software developers
seldom choose the predetermined reuse path; instead, they select reuse tasks
opportunistically [1]. Like systematic reuse, successful opportunistic reuse relies on
the availability of reusable software artefacts (requirements, designs, code, test cases
etc.) [2]. However, unlike systematic reuse, for which reusable artefacts are well-
defined and clearly located, opportunistic reuse requires that the developer not only be
aware of the opportunities for reuse, but also search for and retrieve reusable artefacts.

Even if developers are able to identify opportunities for reusing assets, they may
still reuse the artefacts inappropriately as there are often no guidelines or safeguards.
To explore these issues further, we devised a study called “Scrapheap Software
Challenge” to investigate how different teams of developers apply opportunistic reuse
in different application contexts. In particular, our aim is to try to reveal the factors
that influence the quality, speed and productivity of this form of development.

In our study, teams of experts drawn from different application domains were
asked to build a number of pre-specified software systems by scavenging and “bor-
rowing” functionality from discarded and functioning software systems. The systems
produced were composed mostly of reused scrap software, with limited new code
being crafted to plug significant gaps in the architecture or to simply act as glue
between other components. The study aimed to explore the following three key ques-
tions: When should we use a scrapheap development approach? What factors deter-
mine the success of scrapheap development? What kinds of systems are produced by
scrapheap development?

 Opportunistic Reuse: Lessons from Scrapheap Software Development 303

2 Background

Studies have shown that reuse has improved software quality and productivity over
the past 40 years. However, the widespread uptake of reuse in software development
has not materialised [4, 5]. Several reasons have been advanced to explain the slow
uptake, including difficulty in estimating the impact of reuse, inadequate tool support
to facilitate reuse, limited understanding of how developers reuse software artefacts,
and how the nature of application and support for reuse influences the outcome [5].
However, although various strategies have been proposed to improve software reuse
within organisations [6, 7], many of the strategies proposed focus on long-term rather
than short-term benefits of software reuse, which would preclude opportunistic reuse.

We believe that a pragmatic approach to reuse has a beneficial role in software
development, and that short-term successes derived from opportunistic reuse can be
used to seed systematic reuse programmes in organizations. An industry study by
Henry and Faller [8] showed how pragmatic opportunistic reuse can result in far-
reaching success. They report the results of two large industry projects, in which reuse
across projects and the organization improved time-to-market, productivity and
software quality.

Scrapheap reuse is a unique form of system development in which whole applica-
tions or large parts thereof are composed from “scraps” of software functionality
retrieved from discarded systems or cancelled projects. These scrap components are
often unwanted and have been discarded – thrown onto the scrapheap; they are free
(or at least cheap) to those who wish to make use of them; they still retain some im-
plicit value, due to the original investment in their development and potential residual
utility; they may be broken and no longer function as originally intended in their cur-
rent operational context; they may be incomplete, with key parts missing; they may be
outdated and unable to fulfil the non-functional requirements of their current opera-
tional context (e.g. compatibility, performance, usability, aesthetics etc.); they may
have been created with no intention that they be reused.

A key question is why we would wish to make use of such components in the de-
velopment of new systems. The main reason for this is that scrap components, al-
though discarded, often represent a considerable investment in terms of time and
development effort. If we can reuse these components, then we have the potential to
unlock the original investment and, in doing so, provide a rapid, low-cost means to
develop new products. It is no coincidence that development projects that make use of
scrap are typically those with tight deadlines and limited resources available to them.

2.1 Sources of Scrap – “The Scrapheap”

A distinguishing characteristic of scrap components is that they are not actively main-
tained or part of currently viable systems. Such components may either be still in the
development phase (partially complete, possibly untested, potentially from cancelled
projects) or in the retirement phase (from legacy or redundant systems, outdated and
superseded components, potentially with broken or "worn" parts). Scrapheap reuse
does not however encompass currently working and potentially evolving components
from operational systems – this is the realm of traditional reuse which is not the focus
of this paper.

304 G. Kotonya, S. Lock, and J. Mariani

There are a wide variety of reasons why a software project can be cancelled, or in-
dividual components discarded before deployment. These can include the shifting of
requirements that invalidate developed system components; budget and/or time over-
run leading to cancellation of project before completion; unforeseen technical prob-
lems which could not be solved with the available resources. Similarly, there are a
wide variety of reasons why a system or components of a system will be retired from
use. These can include the upgrade of a system or parts of the system with newer
versions; the rejection of the entire system by the end users or organisational policy
makers; incompatibility with new platforms, applications and processes.

3 The Study: The “Scrapheap Software Challenge”

To make this study interesting and compelling for the participants, we designed it to
take the form of a competition. The Scrapheap Software Challenge tasked competi-
tors with the objective of building a system from scrap software components within a
constrained timeframe, to achieve a particular high-level functional goal. The devel-
opment teams were drawn from academic staff and students in different research
groups in our computing department. It was essential that team members knew each
other well before the competition began due to the very short deadline for the chal-
lenges.

In our study, there were three teams of four developers who competed in three
separate challenges held on 3 different days (with a week in between each challenge
to allow teams to recover). On each day, the objective of the challenge was revealed
at 8 am and the teams had until 5:30 pm to build a system from scrap components that
would achieve that objective. At 5:30 pm, all teams were brought back together and a
demonstration of the systems and judging took place.

Scores were awarded by a panel of judges based on criteria that included: func-
tional and non-functional properties, usability, scalability, novelty, creativity and
aesthetics of their products. The team with the highest overall score won the chal-
lenge, and the team with the most wins at the end of the challenge were declared
champions. At the end of each challenge the judges individually awarded the teams
points for a range of criteria that were laid out in the challenge descriptions. The team
with the most points overall won that particular challenge.

Each of the three teams represented one of the major research areas of our depart-
ment, and each of the three challenges was also drawn from those areas. The members
of the teams were all experienced researchers and developers, ranging from senior
lecturers through research assistants to post-graduate students.

This Scrapheap Software Challenge case study was selected for a number of good
reasons. The limited duration of the study made it practical to stage as well as cost
effective in terms of time and resources. The small and fixed location made it easy to
document and observe the activities of the teams and the small scale of the develop-
ment teams and final products made them very convenient for analysis.

What is of importance is that, in spite of the very limited timeframe, the teams in-
volved were still able to produce relatively complete final systems. As a direct conse-
quence of the time limitation, teams were forced to scavenge and reuse as much as
possible, with no possibility for large scale redevelopment. This all resulted in what

 Opportunistic Reuse: Lessons from Scrapheap Software Development 305

we have termed a "pressure cooker" development environment - the competitive na-
ture of the challenges and the very tight deadlines fuelled a rich and intense develop-
ment microcosm which could be easily observed and studied in detail.

3.1 The Challenges

The three challenges that were set for the teams to complete were as follows:

Challenge 1 (Mobile Computing): Audio Graffiti - The teams had to construct a
mobile system to facilitate 'audio graffiti'. The system would provide the user with the
ability to associate audio (speech or music) with particular locations or regions in
geographical space. Users were expected to be able to 'browse' the community air-
waves by wandering through physical space. Each team also had to solve the problem
of location tracking in both indoor and outdoor locations. The solutions produced
were as follows:

(1) An electronic 'spray can' built from a Programmable Intelligent Computer (PIC)
for recording audio, combined with a set of audio graffiti tags placed in the envi-
ronment. Tags sense the proximity of a spray can via infrared and then notify it of
the current location. The user can listen to any audio graffiti associated with the
tag, and/or add their own audio for others to listen to at a later date.

(2) A vision based, scene recognition system that used a portable webcam to deter-
mine the user’s current location. This was achieved using a colour spectrum pro-
filing tool in order to distinguish between different scenes. Users could listen to or
record audio graffiti associated with a particular location, with a central server be-
ing used to store the location and audio data.

(3) A mobile computing solution which made use of distance from WI-FI hotspots
(determined by signal strength patterns) for location sensing. Audio data was
stored on a number of different media servers, the server used being dependent on
its proximity to the graffitied location.

Challenge 2 (Ubiquitous computing): Absent Presence - In this challenge the teams
had to create a system that could sense a visitor’s presence and take this forward in
some way for future presentation. The aim was not to establish contact with past peo-
ple, but just to give visitors to the space (e.g. museum, web page, monument) a sense
that others have been there. The system had to in some way capture an aspect of the
previous visitors' behaviour (sound, mouse movement, link history, physical move-
ment). The solutions produced were as follows:

(1) An augmented coffee table which graphically ‘remembered’ the objects placed on
top of it or moved across it. This made use of a camera to record the objects cur-
rently on the table, a layered history of previous images of the table, an image ad-
dition tool to produce a composite image and a top-down projector to overlay the
historical image onto the table.

(2) A weight sensor augmented area of flooring which recorded and preserved peo-
ple’s footprints as they walked across it. The presentation took the form of a grid
with the colour of each cell representing the number of footfalls within that area.
Presentation was again achieved through the use of a projector.

306 G. Kotonya, S. Lock, and J. Mariani

(3) An augmented sofa that was able to detect the presence of users using a cushion
sensor. The system maintained a record of the pattern of people sitting on the sofa
over a period of time and represented them on a nearby screen using ‘fairy’
sprites.

Challenge 3 (Human Computer Interaction): Informated Artefact - The teams had
to create a piece of dynamic corporate art for the entrance foyer of the computing
department. The artefact should change in some way in reaction to activity in the
building. It needed to be both interesting to look at as a work of art, but also embody
something of the work done in the building. At least some of the information pre-
sented should be obscure, so that it needs someone to explain it, or one can only fig-
ure it out by watching carefully for a while. The solutions produced were as follows:

(1) A robotic wizard’s hat that physically moved and illuminated to represent activity
in the building. Sources of data that fed the actuated hat were noise and motion
sensors that could be distributed around key spaces in the building.

(2) A life-sized mannequin that displayed the collective emotional state of all resi-
dents in a building. Data on the emotional state of the residents was collected by
aggregating the status indicators of users’ instant messenger applications. The
presentation of emotions was achieved by projecting expressions onto the blank
white face of the mannequin.

(3) A 'Jacob’s ladder' style sculpture that made use of sparks projected onto a conical
structure to represent the activity in the building. The colour of the sparks repre-
sented the types of activity that was going on and the number of sparks indicated
the volume of activity. Sources of data included the number of documenting being
printed, the load on the departmental web proxy and the keystroke rates of users’
keyboards.

It was important for all teams to have an equal opportunity to win and the chal-
lenges were written in such a way that teams would not be disadvantaged by their
particular discipline, experience or background. The varied solutions produced by the
teams reflected not only their different backgrounds, but also the differing mix of
software and hardware components used. These components included: Programmable
Intelligent Computers, webcams, generic image processing tools (e.g. Imagemagick),
computing vision systems, cannibalised hardware, image capture software, LCD pro-
jectors, everyday household artefacts (e.g. tables), actuators and sensor boards from
previous projects, image profiling tools, instant messenger prototypes, key logging
software. The teams used a range of different programming languages for gluing the
components together, including C, Flash, Java, PHP, shell scripts and DOS batch
commands.

4 Observations

Based on our observation made during this study, we are able derive a number of
findings and conclusions which can be generalised to a wide range of software devel-
opment situations.

Component selection was heavily dependent upon developers’ knowledge and past
experience. The teams tended to have knowledge of components from their own

 Opportunistic Reuse: Lessons from Scrapheap Software Development 307

particular fields (areas of research and past development projects). They rarely ven-
tured outside these fields and instead, as we would expect, made use of familiar com-
ponents. This resulted in a unique bottom-up "technology driven" development style
being used, in addition to the more traditional top-down goal or requirements led
approaches.

The limited time available to complete the challenges resulted in the development
of very few new components. The teams did however spend a significant amount of
time developing the glue to bind components together and persuade them to interop-
erate. This is because, unlike traditional component-based systems, the components
involved in scrapheap development were often never intended to be reused. Due to
the time constraints and difficulties in achieving interoperability between compo-
nents, practicality took priority over good design and resulted in functional, but not
particularly well-designed systems. Software components were also converted into
rudimentary web services and hardware components wrappered by software and made
similarly available. Multiple machines were then used to host these different compo-
nents, resulting in large and coarse-gained distributed systems.

Early on in the development process, there was a phase of rapid evolution to the
chosen design. This was a direct consequence of an initial influx of knowledge about
the selected components. During this stage there were many revisions made in order
to bring the conceptual solution into line with the reality of available components.
The most successful teams in the challenges were those who committed to a particular
solution early on - sometimes after only a brief initial discussion. The designs that
these groups came up with evolved, sometimes radically, over the duration of the
challenge. In the high pressure conditions of the challenge, a pragmatic approach had
to be taken.

The systems produced through the scrapheap development process were often
unstable and unreliable. Although this may be partly attributed to the very short de-
velopment times permitted, it may also be a consequence of the fact that they are
composed of components which were never intended to work together in the configu-
rations developed. The environment and use of many of the components were not
what they were initially created for. As a result of this, they would behave unpre-
dictably and erroneously.

Despite this, the systems produced achieved the high-level objectives that we set
for them. In addition, due to the fact that the components which made up a system
were developed independently of each other (often for completely different systems)
they tended to be very loosely coupled and very highly cohesive. These desirable
properties of system components, although produced unintentionally, nevertheless
resulted in systems that were very amenable to change and evolution. Components
could be unplugged and replaced without affecting other components. The commonly
observed "ripple effect" of change was thus minimal as change rarely propagated
between components.

5 Conclusions

Scrapheap reuse is not suited to all forms of development. In order to successful em-
ploy the approaches discussed in this paper, it is essential to be able to determine

308 G. Kotonya, S. Lock, and J. Mariani

when it is applicable and when it is not. Scrapheap development is most effective
when used to develop systems with loose and flexible specifications. Inflexible low-
level requirements will significantly limit implementation options. The challenges
that worked best had abstract high-level goals that allowed for negotiation and adapta-
tion of the lower-level requirements.

Scrapheap reuse is ideal for the development of prototypes and proof of concept
systems. These are applications intended for demonstration purposes or for personal
or use internally by an organisation. In all of these aforementioned situations, less
than the highest level of quality is acceptable. Such development efforts often have
very short timescales with very limited budget available and the final system is likely
to have a very short life expectancy. The user base of such systems tends to be very
small, with the audience being the members of a design team, a single client, or even
just oneself [9].

The level of experience of the development team is also of key importance when
considering scrapheap development. The development team must have previous ex-
perience of similar projects and preferably first-hand knowledge of relevant develop-
ment. It is useful to reflect however that our study indicates developers need not have
experience in the application domain itself, so long as the experience that they do
have is transferable.

During the study it was found that teams who committed to a solution early on
were particularly successful. That is not to say they did not change their designs over
the course of development. By adopting a design early on, it is possible to rapidly
assess its feasibility.

The combined knowledge of the development team is a crucial element in the suc-
cess of scrapheap development. It is essential that they have extensive knowledge of
what scrap is available, where it can be obtained and how it can be rendered of use to
the current project. Of equal importance to knowledge relating to the functionality
offered by a component, it is essential to be aware of what features and properties are
broken or inappropriate.

It is worth noting that due to the nature of the development process and intended
purpose of the final products, it is often unrealistic to strive for perfection. Teams who
took a pragmatic approach and aimed to produce products that were ‘good enough’
were found to be successful in the study. This may require a shift in attitude of devel-
opers who may aim to produce the best achievable solution.

The quality of the final system is not always particularly high. In many ways this is
only to be expected - if you build a system from scrap, you can’t expect the end prod-
uct to be a thing of beauty. The components found on the scrapheap are often not
easily integrated with out components, resulting in the need for a significant amount
of glue to get them to interoperate. For these reasons, it is no surprise that the systems
produced by scrapheap development are often inelegant and inefficient.

One positive benefit of scrapheap systems is that the nature of the development
process can help to prevent unrealistic solutions from being attempted. This is due to
the fact that we already know what components are possible and practical to imple-
ment (as they are already in existence). Surveying the components that are in the
scrapheap can thus offer an invaluable reality check for the designers of a system.

There are various features of industrial software development that differ markedly
from the situation depicted in our Scrapheap Software Challenge study. For example,

 Opportunistic Reuse: Lessons from Scrapheap Software Development 309

project duration, size of development teams, the need to fulfil more specific require-
ments, a high level of reliability of the final system, skills and ability of the develop-
ers and so on. However, there are also many of similarities between our case study
and real-world development that make our findings a useful contribution to the
research and practice of opportunistic software reuse and scrapheap development.
Factors such as severe time pressures, limited available components, incomplete
knowledge of component availability and features, uncertainty as to the suitability of
initial designs, potential mismatch between system goals and available components
are common to both our study and industrial development.

As we have tried to make clear in this paper, scrapheap development is not appro-
priate for all types of system. However, if the guidance offered in this paper is fol-
lowed, this form of reuse can be gainfully and directly employed in the production of
rapid prototypes, personal applications and proof of concept systems. This makes
great things possible for even small groups of developers with very limited resources.

References

1. Sen: The Role of Opportunism in the Software Design Reuse Process. IEEE Transactions
on Software Engineering 23(7), 418–436 (1997)

2. Sommerville: Software Engineering. Addison-Wesley, Reading (2006)
3. Rockley, A.: Managing Enterprise Content: A Unified Content Strategy, New Riders (2002)
4. Frakes, W.B., Kang, K.: Software Reuse Research: Status and Future. IEEE Transactions on

Software Engineering 31(7), 529–536 (2005)
5. Morisio, M., Ezran, M., Tully, C.: Success and failure factors in software reuse. IEEE

Transactions on Software Engineering 28(4), 340–357 (2002)
6. Rothenberger, M.A., Dooley, K.J., Kulkarni, U.R., Nada, N.: Strategies for Software Reuse:

A Principal Component Analysis of Reuse Practices. IEEE Transactions on Software Engi-
neering 29(9), 825–837 (2003)

7. Ezran, M., Morisio, M., Tully, C.: Practical Software Reuse (Practitioner Series). Springer,
Heidelberg (2002)

8. Henry, E., Faller, B.: Large-scale industrial reuse to reduce cost and cycle time. IEEE Soft-
ware 12(5), 47–53 (1995)

9. Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, Mashing, Gluing: A Study of Oppor-
tunistic Design and Development. Technical Report, Stanford University Computer Science
Department (October 2006)

A Component Model for Control-Intensive

Distributed Embedded Systems�

Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš,
Jan Carlson, and Ivica Crnković

Mälardalen University, Väster̊as, Sweden
{severine.sentilles,aneta.vulgarakis,tomas.bures,

jan.carlson,ivica.crnkovic}@mdh.se

Abstract. In this paper we focus on design of a class of distributed em-
bedded systems that primarily perform real-time controlling tasks. We
propose a two-layer component model for design and development of such
embedded systems with the aim of using component-based development
for decreasing the complexity in design and providing a ground for ana-
lyzing them and predict their properties, such as resource consumption
and timing behavior. The two-layer model is used to efficiently cope with
different design paradigms on different abstraction levels. The model is
illustrated by an example from the vehicular domain.

1 Introduction

A special class of embedded systems are control-intensive distributed systems
which can be found in many products, such as vehicles, automation systems, or
distributed wireless networks. In this category of systems as in most embedded
systems, resources limitations in terms of memory, bandwidth and energy com-
bined with the existence of dependability and real-time concerns are obviously
issues to take into consideration.

Another problem when developing such systems is to deal with the rapidly
increasing complexity. For example in the automotive industry, the complexity
of the electronic architecture is growing exponentially, directed by the demands
on the driver’s safety, assistance and comfort [3]. In this class of systems, distri-
bution is also an important aspect. The architecture of the electronic systems is
distributed all over the corresponding product (car, production cell, etc.), follow-
ing its physical architecture, to bring the embedded system closer to the sensed
or controlled elements.

In this paper, we propose a new component model called ProCom with the
following main objectives: (i) to have an ability of handling the different needs
which exist at different granularity levels (provide suitable semantics at different
levels of the system design); (ii) to provide coverage of the whole development
process; (iii) to provide support to facilitate analysis, verification, validation and
� This work was partially supported by the Swedish Foundation for Strategic Research

via the strategic research centre Progress.

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 310–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Component Model for Control-Intensive Distributed Embedded Systems 311

testing; and (iv) to support the deployment of components and the generation
of an optimized and schedulable image of the systems. The focus of this paper is
on the component model itself, described as means for designing and modelling
system functionality and as a framework that enables integration of different
types of models for resource and timing analysis.

The component model is a part of the Progress approach [7] that distin-
guishes three key activities in the development: design, analysis and deployment.
The design activity provides the architectural description of the system compli-
ant with the semantic rules of the component model presented in this paper and
enables the integration analysis and deployment capabilities. Analysis is car-
ried out to ensure that the developed embedded system meets its dependability
requirements and constraints in terms of resource limitations. The proposed
component model provides means to handle and reuse the different information
generated during the analysis activity. The deployment activity is specific for
control-intensive embedded systems; due to timing requirements and resource
constraints, the execution models can be very different from the design models.
Typically, execution units are processes and threads of tasks.

The main focus of this paper is oriented towards system design. The two
supplementary activities (analysis and deployment) are outside the scope of the
paper. A component model that enables a reusable design, takes into consider-
ation the requirements’ characteristics for control-intensive embedded systems,
and is used as an integration frame for analysis and deployment, is elaborated
in the subsequent sections.

The ideas underlying ProCom emanate partly from the previous work on the
SaveComp Component Model (SaveCCM) [1] within the SAVE project, such
as the emphasis on reusability, a possibility to analyse components for timing
behavior and safety properties. Several other concepts and component mod-
els have inspired the ProCom Design. Some of them are the Rubus compo-
nent model [2], Prediction-Enabled Component Technology (PECT) [10], AU-
TOSAR [3], Koala [9], the Robocop project [8], and BIP [4].

2 The ProCom Two Layer Component Model

In designing our component model, we have aimed at addressing the key con-
cerns which exist in the development of control-intensive distributed embedded
systems. We have analyzed these concerns in our previous work [6], with the
conclusion that in order to cover the whole development process of the systems,
i.e. both the design of a complete system and of the low-level control-based
functionalities, two distinct levels of granularity are necessary.

Taking into consideration the difference between those levels, we propose a two-
layer component model, called ProCom. It distinguishes a component model used
for modelling independent distributed components with complex functionality
(called ProSys) and a component model used for modelling small parts of control
functionality (called ProSave). ProCom further establishes how a ProSys com-
ponent may be modelled out of ProSave components. The following subsections

312 S. Sentilles et al.

Fig. 1. Three subsystems communicating via a message channel

describe both of the layers and their relation. The complete specification of Pro-
Com is available in [5].

2.1 ProSys — The Upper Layer

In ProSys, a system is modeled as a collection of concurrent, communicating
subsystems, possibly developed independently. Some of those subsystems, called
composite subsystems, can in turn be built out of other subsystems, thus making
ProSys a hierarchical component model. This hierarchy ends with the so-called
primitive subsystems, which are either subsystems coming from the ProSave
layer or non-decomposable units of implementation (such as COTS or legacy
subsystems) with wrappers to enable compositions with other subsystems. From
a CBSE perspective, subsystems are the “components” of the ProSys layer, i.e.,
design or implementation units that can be developed independently, stored in
a repository and reused in multiple applications.

The communication between subsystems is based on the asynchronous mes-
sage passing paradigm which allows transparent communication (both locally or
distributed over a bus). A subsystem is specified by typed input and output mes-
sage ports, expressing what type of messages the subsystem receives and sends.
The specification also includes attributes and models related to functionality,
reliability, timing and resource usage, to be used in analysis and verification
throughout the development process. The list of models and attributes used is
not fixed and can be extended.

Message ports are connected via message channels — explicit design entities
representing a piece of information that is of interest to several subsystems — as
exemplified in Fig. 1. The message channels make it possible to express that a
particular piece of shared data will be required in the system, before any producer
or receiver of this data has been defined. Also, information about shared data such
as precision, format, etc. can be associated with the message channel instead of
with the message port where it is produced or consumed. That way, it can remain
in the design even if, for example, the producer is replaced by another subsystem.

2.2 ProSave — The Lower Layer

The ProSave layer serves for the design of single subsystems typically interacting
with the system environment by reading sensor data and controlling actuators
accordingly. On this level, components provide an abstraction of tasks and con-
trol loops found in control systems.

A Component Model for Control-Intensive Distributed Embedded Systems 313

S1

S2

Fig. 2. A ProSave component with two services; S1 has two output groups and S2 has
a single output group. Triangles and boxes denote trigger- and data ports, respectively.

A subsystem is constructed by hierarchically structured and interconnected
ProSave components. These components are encapsulated and reusable design-
time units of functionality, with clearly defined interfaces to the environment.
As they are designed mainly to model simple control loops and are usually not
distributed, this component model is based on the pipes-and-filters architectural
style with an explicit separation between data and control flow. The former is
captured by data ports where data of a given type can be written or read, and
the latter by trigger ports that control the activation of components.

A ProSave component is of a collection of services, each providing a particular
functionality. A service consists of an input port group containing the activation
trigger and the data required to perform the service, and a set of output port
groups where the data produced by the service will be available. Fig. 2 illustrates
these concepts. The data of an output group are produced at the same time, at
which the trigger port of that group is also activated. Having multiple output
groups allows the service to produce time critical parts of the output early.

ProSave components are passive, i.e. they do not contain their own execution
threads and cannot initiate activities on their own. So each service remains in a
passive state until its input trigger port has been activated. Once activated, the
data input ports are read in one atomic operation and the service switches into
an active state where it performs internal computations and produces data on
its output ports. Before the service returns to the inactive state again, each of
its output groups should be written exactly once.

Input data ports can receive data while the service is active, but it would only
be available the next time the service is activated. This simplifies analysis by
ensuring that once a service has been activated it is functionally (although not
temporally) independent from other components executing concurrently.

A component also includes a collection of structured attributes which define
simple or complex types of component properties such as behavioural models,
resource models, certain dependability measures, and documentation. These at-
tributes can be explicitly associated with a specific port, group or service (e.g.
the worst case execution time of a service, or the value range of a data port),
or related to the component as a whole, for example a specification of the total
memory footprint. New attribute types can also be added to the model.

314 S. Sentilles et al.

typedef struct {

int *speed;

float *dist;

} in_S1;

typedef struct {

int *control;

} out_S1;

void init();

void entry_S1(in_S1 *in, out_S1 *out);

Fig. 3. A primitive component and the corresponding header file

A

B

C D

Selection

Data

or

Control

or

Fig. 4. A typical usage of selection and or connectors. When component A is finished,
either B or C is executed, depending on the value at the selection data port. In either
case, component D is executed afterwards, with the data produced by B or C as input.

The functionality of a component can either be realized by code (primitive
component), or by interconnected sub-components (composite component). For
primitive components, in addition to a function called at system startup to ini-
tialise the internal state, each service is implemented as a single non-suspending
C function. Fig. 3 shows an example of the header file of a primitive component.

Composite components internally consist of sub-components, connections and
connectors. A connection is a directed edge which connects two ports (output
data port to input data port of compatible types and output trigger port to input
trigger port) whereas connectors are constructs that provide detailed control over
the data- and control-flow. The existence of different types of connectors and the
simple structure of components makes it possible to explicitly specify and then
analyse the control flow, timing properties and system performance.

The set of connectors in ProSave, selected to support typical collaboration
patterns, is extensible and will grow over time as additional data- and control-
flow constructs prove to be needed. The initial set includes connectors for forking
and joining data or trigger connections, or selecting dynamically a path of the
control flow depending on a condition. Fig. 4 shows a typical usage of the selec-
tion connector together with or connectors.

ProSave follows the push-model for data transfers and the triggered service
always uses the latest value written to each input data port. Since communica-
tion may eventually be realised over a physical connection, the transfer of data
and triggering is not an atomic operation. For triggering and data appearing
together at an output group, however, the semantics specify that all data should
be delivered to their destinations before the triggering is transferred, to avoid
components being triggered before the data arrives.

A Component Model for Control-Intensive Distributed Embedded Systems 315

2.3 Integration of Layers — Combining ProSave and ProSys

ProCom provides a mechanism for integrating the low-level design of a subsystem
described by ProSave into the high-level design described by ProSys. A ProSys
primitive subsystem can be further specified using ProSave (as exemplified in
Fig. 6). Concretely, in addition to ProSave components, connections and ProSave
connectors, additional connector types are introduced to (a) map the architec-
tural style (message passing used in ProSys to pipes-and-filters used in ProSave,
and vice versa), and (b) specify periodic activation of ProSave components.

Periodic activation is provided by the clock connector, with a single output
trigger port which is repeatedly activated at a given rate. To achieve the mapping
from message passing to trigger and data, and vice versa, the message ports of
the enclosing primitive subsystem are treated as connectors with one trigger port
and one data port when appearing on the ProSave level. An input message port
corresponds to a connector with output ports. Whenever a message is received
by the message port, it writes the message data to the output data port and
activates the output trigger. Oppositely, output message ports correspond to
a connector with an input trigger and input data ports. When triggered, the
current value of the data port is sent as a message.

These composition mechanisms do not only allow a consistent design of the
entire system by integrated pre-existing subsystems but also provide mechanisms
for analysis of particular attributes such as timing properties or performance of
the entire system using specifications or analysis results of the subsystems.

3 Example

To illustrate the ProCom component model we use as an example an electronic
stability control (ESC) system from the vehicular domain. In addition to anti-
lock braking (ABS) and traction control (TCS), which aim at preventing the
wheels from locking or spinning when braking or accelerating, respectively, the
ESC also handles sliding caused by under- or oversteering.

The ESC can be modeled as a ProSys subsystem, as shown in Fig. 5. In-
side, we find subsystems for the sensors and actuators that are local to the
ESC. There are also subsystems corresponding to specific parts of the ESC
functionality (SCS, TCS and ABS). In the envisioned scenario, the TCS and
ABS subsystems are reused from previous versions of the car, while SCS corre-
sponds to the added functionality for handling under- and oversteering. Finally,
the “Combiner” subsystem is responsible for combining the output of the three.
The internal structure of a SCS primitive subsystem is modeled in ProSave (see
Fig. 6). The SCS contains a single periodic activity performed at a frequency of
50 Hz, expressed by a clock connector. The clock first activates the two compo-
nents responsible for computing the actual and desired direction, respectively.
When both components have finished their respective tasks, the “Slide detec-
tion” component compares the results (i.e., the actual and desired directions)
and decides whether or not stability control is required. The fourth component
computes the actual response, i.e., the adjustment of brakeage and acceleration.

316 S. Sentilles et al.

Fig. 5. The ESC is a composite subsystem, internally modelled in ProSys

Fig. 6. The SCS subsystem, modelled in ProSave

4 Conclusions

We have presented ProCom, a component model for control-intensive distributed
embedded systems. The model takes into account the most important character-
istics of these systems and consistently uses the concept of reusable components
throughout the development process, from early design to deployment. A char-
acteristic feature of the domain we consider is that the model of a system must
be able to provide both a high-level view of loosely coupled subsystems and a
low-level view of control loops controlling a particular piece of hardware. To
address this, ProCom is structured in two layers (ProSys and ProSave). At the
upper layer, ProSys, components correspond to complex active subsystems com-
municating via asynchronous message passing. The lower layer, ProSave, serves

A Component Model for Control-Intensive Distributed Embedded Systems 317

for modelling of primitive ProSys components. It is based on primitive compo-
nents implemented by C functions, and explicitly captures the data transfer and
control flow between components using a rich set of connectors.

The future work on ProCom includes elaborating on advanced features of the
component model (e.g. static configuration, mode shifting, error-handling, etc.),
building an integrated development environment and evaluating the proposed
approach in real industrial case-studies.

References

1. Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., H̊akansson, J., Möller,
A., Pettersson, P., Tivoli, M.: SAVE approach to component-based development
of vehicular systems. Journal of Systems and Software 80(5), 655–667 (2007)

2. Arcticus Systems. Rubus Software Components,
http://www.arcticus-systems.com

3. AUTOSAR Development Partnership. Technical Overview V2.2.1 (February 2008),
http://www.autosar.org

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Proc. of the 4th IEEE International Conference on Software Engineering
and Formal Methods, pp. 3–12. IEEE, Los Alamitos (2006)

5. Bureš, T., Carlson, J., Crnković, I., Sentilles, S., Vulgarakis, A.: ProCom – the
Progress Component Model Reference Manual, version 1.0. Technical Report
MDH-MRTC-230/2008-1-SE, Mälardalen University (June 2008)

6. Bureš, T., Carlson, J., Sentilles, S., Vulgarakis, A.: A component model family for
vehicular embedded systems. In: The Third International Conference on Software
Engineering Advances. IEEE, Los Alamitos (2008)

7. Hansson, H., Nolin, M., Nolte, T.: Beating the automotive code complexity chal-
lenge. In: National Workshop on High-Confidence Automotive Cyber-Physical Sys-
tems, Troy, Michigan, USA (April 2008)

8. Robocop project page,
http://www.extra.research.philips.com/euprojects/robocop

9. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala compo-
nent model for consumer electronics software. Computer 33(3), 78–85 (2000)

10. Wallnau, K.C.: Volume III: A Technology for Predictable Assembly from Certifiable
Components (PACC). Technical Report CMU/SEI-2003-TR-009, Carnegie Mellon
(2003)

http://www.arcticus-systems.com
http://www.autosar.org
http://www.extra.research.philips.com/euprojects/robocop

The CoSi Component Model: Reviving the

Black-Box Nature of Components�

Přemek Brada

Department of Computer Science and Engineering
University of West Bohemia

Pilsen, Czech Republic
brada@kiv.zcu.cz

Abstract. Many component models and frameworks have been created
since the advent of component-based software engineering. While they
all claim to follow fundamental component principles, the black-box na-
ture in particular, a deeper look reveals surprising problems mainly in
the component models built into the mainstream frameworks. In this pa-
per we elaborate on these fundamental principles, analyse a selection of
industrial and research component models in light of them, and propose
a component model named CoSi. Its aim is to address the problems un-
covered by the analysis while keeping the good aspects of current state
state of the art models. It supports OSGi-style lightweight components
with a rich set of features, and puts a strong emphasis on facilitating
component comprehension and application consistency.

1 Introduction

Since the advent of component-based software engineering (CBSE), many frame-
works have followed the component paradigm to support application develop-
ment. Enterprise JavaBeans [1,2], CORBA Component Model [3], Spring [4],
and OSGi [5,6] have been successful in practical applications and serve as good
examples of the industrial applicability of component principles.

The universally accepted foundational works [7,8] list several constituting
characteristics of components, of which the key one is the need to treat compo-
nents as opaque black boxes with explicit interface declaration. These character-
istics are enforced and the structure of the component’s surface1 is defined by a
component model (more precisely, its meta-model part), which defines the (func-
tional) features it provides for client components or declares as dependencies, as
well as its behavioural specifications and extra-functional properties. The other

� This research was supported by the grant “Methods and models for consistency
verification of advanced component-based applications” number 201/08/0266 from
the Grant Agency of the Czech Republic.

1 We use this term instead of the commonly used “interface” to avoid mistaking it for
an interface type as in Java or IDL; a SOFA [9] synonym is frame.

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 318–333, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The CoSi Component Model 319

key roles [10] of component models are to describe the allowed ways of inter-
component bindings, i.e. architectural constraints, and aspects like component
lifecycle management or capabilities of an underlying runtime framework.

The success of CBSE lies in pursuing the black-box idea thoroughly, much
further than the preceding software engineering concepts (modules, objects). For
example, the design of component-based applications involves activities like high-
level architectural modeling with reused components, integration of (sometimes
ill-documented) 3rd-party components, analysis of effects caused by component
dependencies or updates, etc. In all these we need to reason about the complete
component in the black-box fashion, without being distracted by implementation
details, to overcome the conceptual complexity of the application.

1.1 The Goal of the Paper

In this paper we want to discuss in more detail the fundamental problems found
in current component models and frameworks, and propose a component model
called CoSi. Its aim is to address the problems while keeping the good aspects
of current state state of the art models.

The discussion of these models is covered by section 2 which first elaborates on
the foundational characteristics (“what constitutes a good component model”)
and then analyses several industrial and research component frameworks from
these perspectives. It is motivated by the finding that adherence to component
principles are generally acknowledged, at least superficially, by the component
framework designers. Nevertheless, deeper look reveals surprising problems in
the component models built into the mainstream frameworks. The approach
taken in the study is a purist’s one, showing what problems are caused by the
component model deficiencies.

The CoSi component model is described in sections 3 and 4. Building on the
results of the analysis and on an architectural rationale, the section describes
the meta-model used, the capabilities of the underlying runtime framework, and
several technical details. The strong and weak aspects of the proposed model
are discussed in section 5, by means of comparing them with related work and
component frameworks.

2 Current Component Models: Strengths and Weaknesses

There exist dozens of component models with different purposes, features and
levels of popularity. In this section we first discuss the fundamental and practical
properties a component model should posess, and present an digest of a broader
analysis of several ones with respect to these properties; for a more detailed
evaluation see [11].

The models we look at here are a sampling of the more popular ones, each
representing a distinct approach – OSGi Release 4 [12], CORBA Component
Model version 4 [3], and the iPOJO [13] research model.

320 P. Brada

2.1 Motivation and Evaluated Properties

The properties we were interested in are based on the characteristics generally
perceived as constituting the “what and why” of software components. They
have been treated in detail many times, e.g. in [7,10,8]. Though full agreement
does not exist in the research community, the general understanding [14] is that
a component is:

– a black-box functional unit with explicit (contractually specified) provided
features and dependencies;

– a unit of independent deployment and substitution (ideally, these tasks re-
quire no human intervention); and

– subject of 3rd party composition, in contexts unforeseen at design time.

The first characteristics is possibly the most important one from both theoret-
ical and practical standpoints. It takes the notions of modularity and information
hiding [15] a step further conceptually as well as on the granularity scale. It also
serves as a prerequisite for the latter two characteristics, and facilitates analysis
and modeling of existing components (since surface representation can be recon-
structed from the specification) needed during component-based development.

Two more characteristics can be added that we believe are important for
CBSE success. A reasonably rich set of feature types is necessary, mainly to
achieve sufficient expressive power relevant to the target domain of the com-
ponent model – interfaces are the accepted base but more should be available,
e.g. attributes, events. This enables clean component-based design and facili-
tates reuse. Recent experiences of the industrial CBSE have additionally shown
the importance of the ease of development with components.2 Practical aspects
therefore need to be considered alongside the fundamental ones when evaluating
a component model.

We therefore evaluate the component models from the following perspectives:

1. Are the components truly black-box? Does the component model prevent
situations where features can be used by the clients (cross the component
surface boundary) yet not described in component specification?

2. Can we easily obtain complete representation of component’s surface, e.g. for
modeling purposes? Is appropriate information accessible in machine read-
able form (declarative meta-data, introspection), without instantiating the
component?

3. Does the model help development efficiency? Is the feature set of the compo-
nent model sufficiently rich and at a suitable level of abstraction, does pro-
gramming a component require the creation of only a few artifacts backed
by good tool support?

In the following subsections we briefly describe each given model (plus asso-
ciated runtime framework) and provide substantiation for its evaluation.
2 Discontent with the overly complex development using EJB components was behind

the success of lightweight solutions in POJO style, like the Spring framework [4] or
OSGi.

The CoSi Component Model 321

2.2 Open Services Gateway Initiative (OSGi)

The Open Services Gateway Initiative (OSGi) platform [5,12] is an open Java-
based framework for efficient component-based service deployment and manage-
ment. The base component model of OSGi is relatively simple in terms of feature
types and component implementation, but some of the standardized services in
effect enhance it with additional features.

Black box In theory, bundles have a good chance to be considered clean black
boxes – all features can be specified in manifest headers, and system services can
provide additional meta-data. In practice, several OSGi core aspects violate the
black box principle. In particular, provided services can be registered with the
framework and required services looked up and bound, without being declared
in the manifest.

Representation Again, the bundle manifest theoretically provides a good start-
ing point for discovering features, and introspection together with possible ad-
ditional meta-data from system services could be used to recover the details.
However, all feature-related manifest headers are defined as optional and since
OSGi Revision 4 the key headers Export-Service and Import-Service have
been deprecated3. This can in the extreme case turn discovering component
features into complete guesswork.

Development The component model provides only two kinds of application-
relevant abstractions (packages and services), which is not very helpful for mod-
eling. However, their granularity fits well with current application architectures
and the conceptual simplicity is appealing also from the practical standpoint.
OSGi is a code-based model with low structural overhead and good tool support.

2.3 CORBA Component Model

The CORBA Component Model [3] is the core of an industrial-strength com-
ponent framework. It defines one feature-rich type of components and uses an
Interface Definition Language (CIDL) plus a type repository for component spec-
ification.

Black box CORBA components are clean black boxes – only the information
contained in CIDL specification is available to potential clients. Since imple-
mentation skeleton is generated from the specification, mutual correspondence
is ensured.

Representation The declarations contained in the CIDL are stored in a type
repository and therefore the representation of a given type can be obtained
easily. The only disadvantage is that stand-alone component analysis is difficult
if repository with its declaration is not accessible.

Development CORBA component model provides one of the richest sets of
features, and has the advantage of multiple implementation language support.
On the other hand, developing CORBA components is rather tedious by today’s
standards due to its IDL-first approach.
3 In fact, they are not much used in practice – a sample of 112 bundles we analyzed

contained only 5 bundles with service specification headers.

322 P. Brada

2.4 iPOJO

The iPOJO framework [13,16] aims at building an extensible service-oriented
model on top of the OSGi infrastructure. Component features are defined by so
called handlers which “wrap” the implemention POJO component class.

Black box Since handlers are the only legal way to interact with iPOJO com-
ponent, the component model follows the black-box principle. However, we find
the component meta-model conceptually unclean – the single concept of handlers
is used to implement several rather different aspects, from functional features to
component management.

Representation The component declaration (usually in XML format) contains
all features it supports, and is clearly related to the respective Java implementa-
tion types. Component surface type reconstruction is thus straightforward. The
possibility to implement new feature handlers however means there is no com-
mon meta-model which can make it extremely hard to study and understand an
iPOJO component in isolation.

Development The core component model is rather poor on component fea-
tures, only service interfaces (provided and required) can be specified. The frame-
work has however been designed with extensibility in mind. New handlers can
be easily implemented and linked to the framework, enabling components to
declare and support new types of features.

2.5 Summary

To summarize the analysis from [11] and the above text, we can say that the
component models differ (sometimes significantly) in the level to which they
achieve the fundamental properties of CBSE. Table 1 presents the results in a
concise form including some component models not discussed above; simplified
classification values were used to express the level for individual perspectives.

In one sentence and exaggerating slightly, we could say that any given com-
ponent model is either not too black-box, or not too practical; sometimes both.

Table 1. Component model comparison overview

Characteristic OSGi EJB CCM iPOJO SOFA
Black-box poor poor good good good

Representation moderate moderate moderate good moderate

Development good good moderate moderate moderate

3 The CoSi Component Model and Framework

The findings about the fundamental properties of component models are not too
encouraging, especially for the industrial ones. Since the development simplicity
is something we consider a value for real-world success of components, we have
designed an experimental component model that aims to take the best of both
worlds – strictly adhering to the fundamental concepts yet providing sufficient
practicality. The model is called CoSi, an acronym from Components Simplified.

The CoSi Component Model 323

3.1 Rationale

The ideas that were driving the design of the CoSi component model are as
follows, roughly in decreasing order of importance:

– Strong pure black-box. That is, nothing is acccessible from outside a com-
ponent except what is explicitly declared as such.

– Complete yet minimal feature specification. The component specification
has to contain all basic information about features (existence, name, type),
introspection can be used to augment the necessary details.

– Maximum simplicity in the underlying infrastructure4. The emphasis is on
the component model properties, not on the framework capabilities. In prac-
tice this means no distribution, remoting, security, or dynamic updates, sim-
ple runtime framework, preference of text over XML formats. OSGi was a
strong inspiration in this respect.

– Support weakly typed languages. The component model is designed so that
it enables research in suitability of scripting languages for component im-
plementation especially in the context of component substitutability. The
Groovy scripting language was chosen for component implementation, for
its close ties to Java.

– Reasonable feature set. We want to include practically useful features like
events and streams, and use named features; CORBA Component Model
was inspirative in this respect.

In some architectural and practical design decisions the model follows the ideas
of the OSGi core, which we think in principle strikes a good balance between (po-
tential) rigour and simplicity, despite the shortcomings described above. In fact,
CoSi could be seen as an attempt to build an OSGi-like component model which
is formally strong from the black-box and surface representation perspectives.

This strength is achieved in particular by the emphasis on complete specifi-
cation and a rich feature set. The CoSi component model design aims to make
it easier and practical to use high-level abstractions for inter-component com-
munication (thanks to the rich feature set) and to model/visualize existing com-
ponents (being able to reconstruct details of all surface elements starting from
component specification).

3.2 The Component Model of CoSi

The CoSi meta-model allows flat (not hierarchical) components with four feature
types, a lifecycle management interface and component surface specification in
the form of meta-data contained in a descriptor file; see Figure 1.

The component has a provider, name and version which together provide its
unique identification. Four types of features can be provided and/or required by
a component. Each feature has a name (where applicable), type and optional
attributes like version identification. Several features of the same type can be
specified, distinguished by their names.
4 That’s where the “simplified” part of the model’s name comes from.

324 P. Brada

Fig. 1. The CoSi component meta-model

– Service is an implementation of functionality, specified by a Java interface.
Provided services are registered with the runtime container which then me-
diates the bindings to the requiring components. The binding is realized by
service reference objects.

– Type referes to a language class or interface. Provided types are exported by
the component’s packages, and are accessible by the requiring components
via the exporter’s classloader.

– Events enable messaging among components, mediated by a system message
service. Events are named and typed, which enables event consumers to
set filters on the kinds of events they subscribe to. Both asynchronous and
synchronous event delivery is supported.

– Attributes define typed values which can be set or read by the component. At-
tributes can be read-only and read-write, and are implemented as (key:String,
value:Object) pairs accessible via a system-wide attribute registry.

The component model has no abstraction of the application architecture (like
OSGi, unlike e.g. SOFA [17]), due to its flat nature. Bindings between the com-
ponents, that is between pairs or tuples of provided and required features, are
therefore expressed intrinsically by the matching provided-required feature pairs
and managed by the CoSi container (see next).

3.3 Component Runtime – The CoSi Container

The deployment, component lifecycle management, static and dynamic feature
binding (type resolution, service management), and user interactions are the task
of the container . The core of the container is quite small. It keeps the various
lists, most importantly component and service registries, and exports several
standard packages and interfaces for use by the installed components.

An integral part of the container is however a set of standard system services,
which realize core framework functionality. In the current CoSi version there
are two such services: the system service which implements container startup
and shutdown sequence, component lifecycle management and meta-data query-
ing, and message service which implements the message queue and the delivery

The CoSi Component Model 325

Fig. 2. The CoSi container and runtime interfaces

mechanisms for Event features. These services are implemented by system com-
ponents, with internal structure and run-time representation of standard CoSi
components. However, they are compiled into the framework implementation
library and access some of its core functionalities directly.

The CoSi distribution provides also some additional standard services : sim-
ple input/output, logging and shell. All of these are implemented as standard
components (using Groovy and not bundled in the framework library) which get
loaded at framework startup according to its configuration.

The framework run-time uses a classloader architecture to isolate the individ-
ual component type spaces (similarly to OSGi, cf. [12, Section 3.4]) and allow
the interaction between Java and Groovy implementation classes. There is one
instance of so called module classloader per component, which loads resources
located on the bundle’s own classpath. It is capable to load both Java classes
(from .class files) and Groovy scripts which it translates on-the-fly to class
code through the Groovy parser.

In addition, this classloader loads classes of required features, by contact-
ing the classloader of the exporting component through a delegation manager.
Finally, it references a system classloader which loads the types that must be
shared – system classes (java.*, com.sun.*, groovy.* etc. packages) and CoSi
framework classes.

The component can access key container services and registries via an ob-
ject typed to the BundleContext interface. This is injected to the component
upon its activation. The context object provides functionalities that allow the
component to register and obtain services, read and write attributes, obtain its
own metadata, and access standard input and output streams provided by the
container.

326 P. Brada

3.4 Component Lifecycle and Management

Each installed component (the package) has a unique identifier assigned by the
container and is represented by a Bundle interface object. This has methods to
query component state and meta-data and manage state transitions. Further, a
compulsory control class or activator of the component provides operations for
its initialization and lifecycle management.

The component lifecycle is essentially the same as in OSGi, cf. [12, Section
4.3]. It includes the following key states: INSTALLED (component package has
been successfully read, verified for formal correctness and completeness, and
assigned an identifier), RESOLVED (static feature type dependencies have been
resolved, component has not yet been started or has been stopped), STARTED
(a resolved component is running, after calling the activator object’s start()
method).

Components can be installed, updated, and uninstalled. The update mecha-
nism is simpler than in e.g. SOFA or OSGi: the component is stopped if necessary,
uninstalled, the new package installed and resolved. The component’s identifier
is preserved during the process.

3.5 Implementation Classes and Distribution Format

The author of a CoSi component needs to create at least the control class of the
component (known as Activator in OSGi world) which implements the lifecycle
callback methods. Then, an interface plus an implementation class are usually
written for each provided service or event sink, and for all provided types. Last
but not least, the manifest file containing specification of the component’s surface
features and other meta-data has to be created.

The compulsory MANIFEST.MF file, written in the standard manifest text
format, contains manifest headers which declare component’s properties. The
Cosi-Version meta-header enables versioning of the whole component meta-
model. The OSGi rules [12, Section 3.2] for header format and parameters are
used.

The distribution format of the CoSi component is a JAR file with structure
resembling OSGi bundle archive. The bin/, lib/ and imports/ directories are
required, holding respectively the component implementation classes (in Groovy
or .class format), bundled libraries (if any), and class types of component’s
required features as a “snapshot” of those types used when the component was
developed. Additional directories and files can be included as needed, e.g. for
documentation and component’s resources like icon or localization bundles.

At present, the CoSi framework does not use any kind of elaborated compo-
nent repository. The container uses a filesystem directory at a configurable loca-
tion from which components are automatically installed upon container startup,
and it imports the distribution packages of installed components into its internal
cache. Beyond that there are no structures or services through which the com-
ponent distribution packages could be obtained; that is left to future extensions.

The CoSi Component Model 327

3.6 Application Consistency

The CoSi framework enforces the consistency of component application through
several integrity measures. First, the container raises an exception if an attempt
is made to register a provided or bind a required feature that is not declared in
the component’s meta-data. This enforces the components’ black-box nature by
preventing bindings to undeclared component internals.

Next, a component cannot be installed, or updated, if its dependencies cannot
be satisfied by the components currently installed. For example, if the component
to be installed declares an attribute dependency, the container checks whether
an exporter of the attribute with the same type already exists in the framework.
While these controls cannot guarantee that the depended-on feature will be
available at the time the component needs it, they protect the application against
run-time errors caused by clearly unsatisfiable dependencies.

Quite importantly, the container ensures consistency of component bindings
during the lifecycle state transitions: a STARTED (resp. INSTALLED) com-
ponent cannot be stopped (resp. uninstalled) if it provides a feature bound to
(resp. required by) an existing client component(s). Again, this ensures applica-
tion consistency is maintained throughout architectural changes.

4 Example

To illustrate the concepts described above, let us now show an example of a
simple CoSi application. It consists of a weather station component connected
to sensors (e.g. thermometers); the connection is obtained via a sensor registry
service, which the individual sensors need to contact in order to become available.
Figure 3 provides a model of the application.

The measuring station consists in this simple implementation of only two files
– the control class and the manifest. The manifest file looks as follows; notice
how it reflects the component’s connections, corresponding to the architecture
shown in Figure 3.

Fig. 3. Example application architecture

328 P. Brada

Bundle-Name: MeasuringStation
Bundle-Version: 1.0.0
Control-Class: cz.zcu.kiv.measuringstation.impl.Activator
Require-Interfaces: cz.zcu.kiv.simpleshell.SimpleShell,
cz.zcu.kiv.sensorregistry.SensorRegistry

Require-Types: cz.zcu.kiv.simpleshell.Command,
cz.zcu.kiv.sensorregistry.Sensor

Provide-Attributes: sensor.numValues; type=java.lang.Integer

The following fragment shows parts of the control class. It shows how a service
reference is obtained from application context and then used, as well as the
export of a provided attribute. Its value is later obtained by the Sensor objects
using the context’s getAttributeValue() method.

import cz.zcu.kiv.sensorregistry.SensorRegistry;
// ... further imports omitted for brevity

public class Activator implements BundleControl, Command {

private SensorRegistry sRegistryService;
private List<Sensor> sensors;

/* Component initialization code */
public void start(BundleContext context) throws Exception {

sRegistryService = (SensorRegistry) context.getService(
"cz.zcu.kiv.sensorregistry.SensorRegistry");

// service call to obtain sensor references
sensors = sRegistryService.getAllAvalilableSensors();
// export the provided attribute
Integer numValues = ... ; // obtain from a config source
context.setAttributeValue("sensor.numValues", numValues);

}

// ... further methods omitted for brevity
}

The service registry creates and exports the corresponding service reference
through the BundleContext.registerService() method. The component im-
plementation consists of the manifest (which declares this provided service) and
four classes: Sensor and SensorRegistry in a cz.zcu.kiv.sensorregistry
package are the public types used in communication with other components (cf.
the measuring station required interfaces), the Activator and SensorRegistry-
Impl in package cz.zcu.kiv.sensorregistry.impl are “hidden” internals not
accessible by other components.

As a last example, we show a part of a user session with the CoSi container
and this application. We have augmented the main component’s implementation
with an attempt to set another attribute, to present the black-box checks en-
forced by the container (compare with the output of attributes 6 command).
After stopping the wind speed sensor component, the measures which the station
outputs contain only the values from the temperature sensor.

The CoSi Component Model 329

D:\work\research\CoSi\>.\start
Starting CoSi framework...

Bundle measuringstation.jar cannot set attribute
sensor.windDirection because this attribute isn’t
in Provide-Attribute header of manifest.mf.

>attributes 6
Provided attributes of bundle measuringstation.jar (id 6)
--
sensor.numValues (java.lang.Integer)

>stop 4 <-- id of wind sensor
>measure
Sensor type: Temperature
19,9 degree Celsius
13,1 degree Celsius
>

5 Discussion and Related Work

Among the foundational publications on fundamental component properties,
which the CoSi model strives to achieve, are the works by Szyperski [18] and by
the SEI CMU team [8]. In these schools of thought on fundamental component
concepts, there is a clear statement of the need for opaqueness and consequent
explicit description of component interface.

The analysis presented in section 2 attempts to capture component proper-
ties not dealt with in similar surveys. Bachmann [8] and Lau [14] mention the
fundamental constituent characteristics of components, but the consequences of
black-box nature are not pursued far enough. Works dealing with individual
technologies are quite frequent. For instance, our previous work [19] discusses
the EJB component model, Hall et al [20] list several issues with the OSGi
framework (including the problems resulting from undeclared services).

5.1 Strengths and Unique Features

The proposed CoSi model has several unique characteristics which we believe
form a novel contribution to the field of component models. The key advantage
of CoSi over its industrial counterparts is the emphasis on enforcing fundamen-
tal component characteristics, the black-box nature in particular. First, feature
declaration is a necessary condition for its use by implementation code – no
provided feature can be registered or exported unless it is specified in manifest,
similarly with required features. The container enforces this by runtime controls.

Secondly, the container keeps track of component bindings similarly as OSGi
does but prevents lifecycle state transitions of providing components which would
break these bindings. This conservative approach is in some respect close to the
architectural consistency constraints enforced by e.g. SOFA [17]. CoSi however

330 P. Brada

retains the flexibility of creating the architecture ad-hoc using late binding [12,4]
rather than fixing it a-priori in component architectural specification.

Our model emphasizes the use of bundling complete meta-data with the com-
ponent. Because all features of a CoSi component must be declared in the man-
ifest, including their class type names, there exists a well-defined single starting
point for obtaining a complete representation of component’s surface. The com-
plete type representation of features is obtained by introspecting the relevant
component’s classes – this can be done on a standalone component package, in-
teraction with CoSi container is not necessary. In the case of required features
(their types are not available until the component is deployed and resolved),
introspection is in CoSi uniquely facilitated by bundling the relevant types with
the component in the imports/ directory.

In comparison, OSGi tends to treat information in manifest headers as op-
tional which makes it hard to discover component features. This weakness has
been addressed by the bundle repository [21] and declarative services (originat-
ing from [22]) specifications. The problem of this “aggregate” platform is the
resulting incoherent set of abstractions and formats scattered through several
physical locations. Neither of these also helps in reconstructing type information
of the required features. The CORBA and SOFA approach [17] solves both prob-
lems by using meta-data repository. This however need not be accessible at the
time of analysis, forming an obstacle to stand-alone analysis of the components.

Among the minor points is the use of named features which allows several
features with the same type to be provided by a component. The EJB model
[1] is a standard example of an opposite approach, which has the unpleasant
consequence that a bean cannot distinguish through which role a client accesses
its functionality.

Last but not least, an aspect important mainly with respect to future ex-
perimentation is the choice of a weakly typed scripting language for component
implementation. This is a unique feature of CoSi not found in any of the current
component models. It enables the developers of CoSi applications to balance
run-time efficiency and development ease – it is very simple to create and mod-
ify Groovy-based components (no need to recompile), and the ones that require
optimizations can be relatively simply transformed into compiled Java bytecode
which then loads and runs quickly at run-time.

5.2 Restrictions and Shortcomings

The goal of simplicity in CoSi architectural design limits its abilities, and there-
fore usage contexts, in several dimensions. From theoretical standpoint, the
component has a quite simple lifecycle and control interface which cannot be
extended or modified in any way. Also, no extra-functional and semantic prop-
erties are used at the component and/or feature level (unlike [17] we believe
the control interface does not belong to the extra-functional properties). Other
research component models like SOFA or Palladio [23] provide much richer ca-
pabilities in these areas, plus hierarchical component models which CoSi avoids
(at least in the present version).

The CoSi Component Model 331

From practical standpoint, CoSi lacks support for aspects not directly related
to the component model itself – distribution, security, component repository ac-
cess, and so on. Without these engineering aspects its applicability in real world
contexts is limited; however, the framework was not designed with industrial
application in mind. Concerning development ease, in the current version of the
CoSi platform the component implementation (typically the control class) must
manually handle registration of provided features and binding of required ones. It
would be much easier for practical development to employ dependency injection
mechanism for this purpose.

Another aspect which can be seen as cumbersome for daily development is
the choice of individual types, not packages, as one of the surface features in the
current platform version. While we acknowledge that it requires the developer to
exercise some effort in creating component specification, we note that it is very
easy to generate the relevant manifest headers automatically. A corresponding
enhancement is planned for the next version of the CoSi component model.

6 Conclusion and Future Work

In this paper we have presented a component model called CoSi, which blends
rigorous adherence to fundamental component concepts with practical usefulness
and simple design inspired by the core OSGi framework. The text of the paper
has covered the principles of our approach, results of an initial analysis of other
component models, and a comprehensive description of the CoSi component
model and runtime platform.

The presented component model aims at improving the possibilities to reli-
ably reason about component surface structures, especially during design and
deployment activities, as well as enhancing the overall safety of the applications.
The first goal is attained through explicit declaration of all features in manifest
as the first well-known point, plus by ensuring no other features can actually
be exported/required (via container checks). To achieve the second goal, the
CoSi container prevents component state changes which would adversely affect
its clients or its internal functionality.

A working implementation of the CoSi framework has been built [24] and
successfully used for experiments. The container and system services are written
in Java, the standard components like shell use Groovy implementation. Pre-
liminary experiences with the implementation have shown no major problems in
creating, deploying, resolving and running components in a component model
which stresses explicit declaration of all surface features.

We believe CoSi contributes to the current state of the art in component based
software engineering, by demonstrating that it is possible to create a component
model that is at the same time lightweight, feature rich, formally well founded,
and facilitating component comprehension.

The component model itself is open for future changes, and work is currently
on the way to enhance it with extra-functional properties. Experiences from
our research make us consider finer decomposition of the component lifecycle,

332 P. Brada

notably the update process, to allow intercepting state transitions. The platform
will also be used in the research of component substitutability and advanced
component meta-model concepts.

Acknowledgments. The author would like to thank Bretislav Wajtr and Voj-
tech Liska for fruitful discussions and the work on CoSi implementation.

References

1. Sun Microsystems: Enterprise JavaBeans Specification, Version 2.1. (November
2003)

2. Sun Microsystems: Enterprise JavaBeans, Version 3.0. EJB Core Contracts and
Requirements. JSR220 Final Release (May 2006)

3. Object Management Group: CORBA Component Model Specification, Version 4.0
OMG Specification formal/06-04-01 (April 2006)

4. Johnson, R., Hoeller, J., Arendsen, A., Risberg, T., Sampaleanu, C.: Professional
Java Development with the Spring Framework. Wiley, Chichester (2005)

5. The OSGi Alliance: OSGi Service Platform, Release 3 (March 2003),
http://www.osgi.org/

6. The OSGi Alliance: OSGi Service Platform, Release 4 (August 2005),
http://www.osgi.org/

7. Szyperski, C.: Component Software. ACM Press, Addison-Wesley (1998)
8. Bachmann, F., et al.: Volume II: Technical concepts of component-based software

engineering. Technical Report CMU/SEI-2000-TR-008, Software Engineering In-
stitute. Carnegie Mellon University (2000)

9. Plášil, F., Bálek, D., Janeček, R.: SOFA/DCUP: architecture for component trad-
ing and dynamic updating. In: Proceedings of ICCDS 1998, Annapolis, Maryland,
USA. IEEE CS Press, Los Alamitos (1998)

10. Heineman, G.T., Councill, W.T. (eds.): Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, Reading (2001)

11. Brada, P.: The strengths and weaknesses of current component models from black-
box perspective. Technical Report DCSE/TR-2008-08, Department of Computer
Science and Engineering, University of West Bohemia (July 2008)

12. The OSGi Alliance: OSGi Service Platform Core Specification, Release 4.1 (April
2007), http://www.osgi.org/

13. Escoffier, Hall, Lalanda: iPOJO: An extensible service-oriented component frame-
work. In: Proceedings of IEEE International Conference on Services Computing
(SCC 2007), pp. 474–481. IEEE Computer Society, Los Alamitos (2007)

14. Lau, K.K., Wang, Z.: A taxonomy of software component models. In: EUROMI-
CRO 2005: Proceedings of the 31st EUROMICRO Conference on Software En-
gineering and Advanced Applications, Washington, DC, USA, pp. 88–95. IEEE
Computer Society Press, Los Alamitos (2005)

15. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM (December 1972)

16. Escoffier, C., Hall, R.S.: Dynamically adaptable applications with iPOJO service
components. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829.
Springer, Heidelberg (2007)

17. Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing advanced features in
a hierarchical component model. In: Proceedings of SERA 2006, Seattle, USA,
August 2006, pp. 40–48. IEEE CS, Los Alamitos (2006)

http://www.osgi.org/
http://www.osgi.org/
http://www.osgi.org/

The CoSi Component Model 333

18. Szyperski, C.: Component technology - what, where, and how? In: Proceedings of
the 25th International Conference on Software Engineering (ICSE 2003), Portland,
Oregon, May 2003, pp. 684–693 (2003)

19. Brada, P.: The ENT meta-model of component interface, version 2. Technical Re-
port DCSE/TR-2004-14, Department of Computer Science and Engineering, Uni-
versity of West Bohemia (September 2004),
http://www.kiv.zcu.cz/publications/

20. Hall, R.S., Cervantes, H.: An OSGi implementation and experience report. In:
Proceedings of the Consumer Communications and Networking Conference (CCNC
2004), pp. 394–399 (January 2004)

21. OSGi Alliance, Hall, R.: Bundle repository. Technical Report RFC 112, OSGi Al-
liance (2005), http://www.osgi.org/download/rfc-0112 BundleRepository.pdf

22. Cervantes, H., Hall, R.S.: Automating service dependency management in a
service-oriented component model. In: Proceedings of the 6th ICSE Workshop on
Component-Based Software Engineering (2003)

23. Reussner, R., et al.: The Palladio component model. Technical report, Universitaet
Karlsruhe (May 2007)

24. Brada, P.: The CoSi component model. Technical Report DCSE/TR-2008-07, De-
partment of Computer Science and Engineering, University of West Bohemia (July
2008)

http://www.kiv.zcu.cz/publications/
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 334–350, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Ada-CCM: Component-Based Technology for
Distributed Real-Time Systems*

Patricia López Martínez, José M. Drake, Pablo Pacheco, and Julio L. Medina

Departamento de Electrónica y Computadores, Universidad de Cantabria,
39005-Santander, Spain

{lopezpa,drakej,pachecop,medinajl}@unican.es

Abstract. This paper proposes a technology for the development of distributed
real-time component-based applications, which takes advantage of the features
that Ada offers for the development of applications with predictable temporal
behaviour, and which can be executed in embedded platforms with limited re-
sources. The technology uses the Deployment and Configuration of Compo-
nent-based Distributed Applications Specification of the OMG for describing
the components, the execution platforms and the applications. The framework
defined in the Lightweight CCM standard of the OMG is taken as the basis
of the internal architecture of the components and the applications. It has been
extended with a number of features to make the temporal behaviour of the appli-
cations predictable. Among these extensions, the usage of CORBA has been re-
placed by special distributed components, called connectors, which implement
the interaction between components by means of predictable and customizable
communication services. Besides, special mechanisms have been introduced in
the environment to make the threading characteristics of the components config-
urable. The technology fixes the responsibilities and the knowledge required by
each actor involved in the component-based development process, and for each
of them it defines the input and output artifacts that they have to manage.

Keywords: Ada 2005, Component-based, embedded systems, real-time, OMG.

1 Introduction

The design of real-time software for embedded systems has a strategic interest in the
industry nowadays. In many application areas, like robotics, industrial control, auto-
motive, etc., systems are built by assembling subsystems (controllers, vision systems,
carburation systems, etc.). A subsystem may be equipped with its own embedded
processor, or deployed in a number of them, each of which is in charge of controlling
its own hardware, and the communication among them is achieved by means of a

* This work has been funded by the European Union’s FP6 under contracts FP6/2005/IST/

5-034026 (FRESCOR), FP7/224330 (ADAMS) and ArtistDesign, EU FP7 NoE 214373 and
by the Spanish Government under grant TIC2005-08665-C03 (THREAD) and EVOLVE.
This work reflects only the author’s views; the EU is not liable for any use that may be made
of the information contained herein.

 Ada-CCM: Component-Based Technology for Distributed Real-Time Systems 335

dedicated network (Ethernet, CAN bus, firewire, etc.). This architecture provides
considerable modularity and reconfigurability, and it minimizes and standardizes the
wiring.

The increasing capacity and memory provided by the processors, and the subse-
quent rise in the amount of functionality that they must support, together with the
distributed nature of the execution platforms, and the real-time requirements of the
final applications involved, make the software for this kind of systems very com-
plex. Applying component-based design strategies to this domain offers several
advantages:

• It provides a simple architecture based on interfaces instead of protocols be-
tween subsystems.

• The reconfiguration of a system can be achieved by modifying the deployment
plan, without requiring any hand-made code modification. It also simplifies the
evolution and versioning of systems since it is only required to replace or add
new components with well-defined functionalities.

Conventional component technologies are not easily adaptable to embedded sys-
tems, since they require a large amount of services from the operating systems, file
systems, middleware or networks, which are not compatible with the limitation of
resources suffered by them. Various proposals dealing with the adaptation of CBSE to
real-time systems have appeared in the last years. Some companies have developed
their own solutions, adapted to their corresponding domains. Examples of that kind of
technologies are Koala [1], developed by Philips, or Rubus [2], used by Volvo. These
technologies have been successfully applied in the companies that created them,
though none of them have stimulated an inter-enterprise software components market.
However, they have served as the basis of other academic approaches. The Robocop
component model [3] is based on Koala and adds some features to support analysis of
real-time properties. Similarly, Rubus has been used as the starting point of the
SaveCCT technology [4], which is focused on control systems for the automotive
domain; and under appropriate assumptions for concurrency, simple RMA analysis
can be applied and the resulting timing properties introduced as quality attributes of
the assemblies. From the Ada language perspective, even though it is significantly
used in the design and implementation of embedded real-time systems, we have not
found references of its usage in support of component-based environments.

This paper proposes a component-based technology, denominated Ada-CCM,
which is specifically conceived for embedded, distributed and real-time systems. The
key aspects of the technology are:

• It follows the components specification style and the programming model pro-
posed in the Lightweight CCM (LwCCM) [5] specification of the OMG. There-
fore, a container/component pattern is used, though with an essential difference:
CORBA is not the communication mechanism used. The connection between a
facet and a receptacle is always local, and the communication between remote
components is achieved by means of special distributed components called con-
nectors. Besides, special mechanisms have been included in the containers to
make the temporal behaviour of the application execution predictable.

336 P. López Martínez et al.

Component Interface

Planner

Application design

Component design

Specifier Developer

Component Implementation
(with rt-metadata)

Packager
ComponentPackage

Business code

Execution platform

Deployment Plan
(with rt-Workload)

D&C
(.pcd.xml)

D&C
(.cid.xml)

D&C
(.ccd.xml)

Ada files
(.ads .adb)

D&C
(.cdp.xml)

(.exe)
D&C

(.tdm.xml)

Platform model
(with rt-metadata)

Repository
(Installed components)

Executor

Executable code
Schedulability

report

Component Interface

Planner

Application design

Component design

Specifier Developer

Component Implementation
(with rt-metadata)

Packager
ComponentPackage

Business code

Execution platform

Deployment Plan
(with rt-Workload)

D&C
(.pcd.xml)

D&C
(.cid.xml)

D&C
(.ccd.xml)

Ada files
(.ads .adb)

D&C
(.cdp.xml)

(.exe)
D&C

(.tdm.xml)

Platform model
(with rt-metadata)

Repository
(Installed components)

Executor

Executable code
Schedulability

report

Fig. 1. Actors and main artifacts in components and applications design

• Both the business component implementations and the containers code are writ-
ten in Ada 2005 [6]. Making use of the Ada’s native support for concurrency,
scheduling policies and synchronization mechanisms, it is possible to generate
code with predictable temporal behaviour. Ada is intended for embedded sys-
tems, and there are small foot-print run-time libraries for Ada that can be
executed on bare embedded computers. The new version of the language is es-
sential to this work, since it introduces support for multiple inheritance based
on interfaces, which are key aspects in the development of component-based
technologies.

• The external interface and the internal implementations of components, execu-
tion platforms and deployment plans are described following the Deployment
and Configuration of Component-based Distributed Applications Specification
of the OMG (D&C) [7]. It has been extended to include metadata about the
temporal behaviour of components, platforms and applications. This informa-
tion is used to analyse the schedulability of the application as part of the devel-
opment process.

The responsibilities and the artifacts that serve as inputs and outputs for the differ-
ent actors that take part in the development process of an application are precisely
defined in the proposed technology; they are briefly sketched in Figure 1. A detailed
explanation of the development process and the involved actors and artifacts is given
along the paper. Due to the real-time nature of the developed applications, this
process adds a number of aspects to the standard one. The developer must formulate,
together with the business code, the description of the temporal behaviour of the
component. Real-time models describing the capacity provided by the elements of the
execution platforms are also required. After defining the structure of an application by
means of the deployment plan, the planner can build its temporal behaviour model.
Based on the real-time requirements established in the specification of the application,
he defines the workloads, which are the basis for the schedulability analysis. The re-
sults of the analysis are the set of scheduling parameters with which the component
instances are configured, as well as the specification of the platform resources that
shall be reserved in order to schedule their execution timely.

 Ada-CCM: Component-Based Technology for Distributed Real-Time Systems 337

The paper is organized as follows, Section 2 describes the process of generation of
a deliverable component in the technology. In Section 3, the reference model of the
technology is explained, together with the structure of Ada packages to which a com-
ponent is mapped. Section 4 details the process of development of an application built
as an assembly of components. Section 5 describes the development suite. Section 6
details the features of the execution platform and an application example. Section 7
presents the way in which real-time models are added to the description of compo-
nents and platforms, and introduces the modelling and analysis suite used in the tech-
nology. Finally, Section 8 summarizes our conclusions and future work.

2 Component Development Process

Figure 2 shows the process that is followed to generate a deliverable component,
which will be able to be automatically assembled and executed in future applications.

When the specifier, who is an expert in the application domain, finds out that a
certain functionality is demanded, he creates the specification of a new component
that satisfies it. The component specification is formulated according to the D&C
specification, by means of a Component Interface Description (.ccd file). As it is ex-
plained in Section 7, the D&C specification has been extended to incorporate special
real-time composability requirements, and the metadata related to the temporal behav-
iour of the component. Besides, with the purpose of controlling the number of threads
managed by a component, and making their scheduling parameters configurable (i.e.
the priority), an important aspect has been introduced in the technology. Each thread
needed by the business implementation of a component to implement its functionality,
is required by means of an special activation port declared on its specification (the
way in which the container manages these activation ports is explained in Section 3).

As an example, using the LwCCM graphical notation, Figure 3 shows the specifi-
cation of the SoundGenerator component. This component is part of an application
we have developed to test the technology. It offers a facet, playerPort, which imple-
ments the I_Player interface and is used by the client components to generate differ-
ent sounds. It is an active component, since it requires a thread to play the sound
without forcing the client to be blocked until the sound is completed. The thread is
demanded by means of the declaration of the soundThread activation port. The com-
ponent declares a configurable property, soundThreadPeriod, which represents the
period with which the thread provided by the container will invoke the update() pro-
cedure corresponding to the soundThread port (see Section 3).

The developer writes the business code of the component as a set of Ada packages
(.ads and .adb files). The code has to implement the Component Business Interface.
This interface is generated using the ComponentTemplateGenerator tool, which takes
the specification of the component, and the IDL descriptions of the related functional
interfaces as inputs. It defines the set of methods that the business code must imple-
ment in order to be managed by the container in an automatic way. It has no depend-
encies with the technology, so the component developer is free to design the business
code without having to be aware of any internal detail of the technology. The devel-
oper has complete knowledge about the internal behaviour of the component, so he

338 P. López Martínez et al.

Fig. 2. Actors and artifacts involved in component development with AdaCCM

SoundGenerator

soundThreadperiod

playerPort
soundThread

PeriodicActivation

<<interface>>
I_Player

play()
fail()

<<interface>>
PeriodicActivation

Update()

I_Player

Facet

Activation port

SoundGenerator

soundThreadperiod

playerPort
soundThread

PeriodicActivation

<<interface>>
I_Player

play()
fail()

<<interface>>
PeriodicActivation

Update()

I_Player

Facet

Activation port

Fig. 3. SoundGenerator component declaration

has to create, together with the code, the real-time model that describes the temporal
behaviour of the component. Besides, the developer has to specify the requirements
that the component imposes on the platform to be able to execute. All this information
is described by means of a D&C’s Component Implementation Description (.cid file).

The packager carries out the last phase of the process, which consists in building
the package that constitutes the deliverable component. Taking the specification of
the component as input, a new code generation tool, called Component Container-
Generator, generates the set of Ada source files (.ads and .adb files) that implement
the container of the component. The container groups all the resources that are used to
adapt the business code implementation to the execution environment (its structure is
explained in the next section). These files are compiled together with the business
code using the standard GNAT Ada compiler and a library is generated (.a file). This
library is the only artifact that is required to execute the component on the target
platform. Finally, the packager gathers all the information available about the compo-
nent, and creates and publishes the package that describe the component. This pack-
age includes both the binary code of the component and the metadata (both functional
and non-functional) that allow a future user to decide about the suitability of the com-
ponent in an application, and also describe the way in which the component can be
instantiated and executed. This package constitutes the deliverable component and the
corresponding metadata is defined according to the Package Configuration Descrip-
tion element of the D&C (.pcd file).

 Ada-CCM: Component-Based Technology for Distributed Real-Time Systems 339

3 Component Architecture

A full component implementation must address two complementary aspects:

• It has to implement the business functionality that it offers through its facets,
making use of its own business logic and the services of other components ac-
cessed through its receptacles. This aspect concerns the application domain in
which the component functionality is required.

• It must include the mechanisms that are required to instantiate, connect and
execute the component in the corresponding platform and framework. This as-
pect is addressed by implementing the appropriate interfaces that allow manag-
ing the component in a standard way. This aspect is related to the component
technology used, in our case LwCCM.

The architecture of a component proposed in this technology follows an structural
pattern that achieves independency of the Ada packages that implement each aspect.

Fig. 4. Reference model of the technology

The packages that implement the technology related aspects are completely gener-
ated by automatic tools, taking the specification of the component as the only input.
The component developer only has to design and implement the business code of the
component, without having to have any knowledge about the underlying technology.
The architecture of a component is generated according to the reference model of the
technology, which is shown in Figure 4. It is based in the container-component
framework proposed in LwCCM, but it has been extended with some new features
required to make the behaviour of the application execution predictable:

• In order to make the threading and scheduling characteristics of an application
configurable, and therefore, to control its schedulability, the business code of a
component has not internal threads. The internal activity of a component is de-
fined through the set of activation ports declared in its specification. These ports
are recognized by the container, which creates and activates the corresponding
controlled threads to execute the activity of the component once it is instanti-
ated, connected and configured. These activation ports can implement one of the
predefined interfaces: PeriodicActivation or OneShotActivation. The OneSho-
tActivation interface declares a run()procedure, which will be executed once

340 P. López Martínez et al.

Fig. 5. Connector component

by the created thread, while the PeriodicActivation interface declares an
update() procedure, which will be invoked periodically. A component can
declare several activation ports, each of them representing an independent entity
of concurrency. Activation ports are declared in the component specification,
and all the elements required for their execution are created automatically by the
container generation tool. Their configuration parameters, which include the
thread priorities as well as the activation periods (in case of PeriodicActivation
ports), are assigned to each component instance in the deployment plan.

• The connection established by each receptacle in a component is always local
and it is implemented by an Ada pointer to the corresponding interface. If the
connection between components is local, the pointer access directly to the facet
of the server component. If the connection is remote, it is implemented by an
specialized component called connector. As it is shown in Figure 5, a connector
is a distributed component, composed by two parts: the proxy side which is in-
stantiated in the client node, and the servant side, which is instantiated in the
server node. The proxy offers a local facet to the client component and it in-
cludes the synchronization mechanisms for the invoking thread. The servant
side has a receptacle which connects with the server facet and it includes and
manages the threads that carry out the remote invocations. The communication
mechanisms between the two parts (marshalling and unmarshalling of the invo-
cation and return parameters, and transmission and dispatching of messages) are
internal to the connector and depend on the communication service chosen for
its implementation. The code of the connector is completely generated by auto-
matic tools according to the interface of the connected ports, the location of the
components, and the communication service used for the connection. We have
developed connectors which use directly the RT-EP protocol [8], which is a
real-time protocol implemented over Ethernet. This kind of connectors are suit-
able for connections with real-time requirements. An alternate implementation
with no prioritized messages has been made using GLADE [9], an implementa-
tion of the Ada Distributed Systems Annex (DSA).

• Interception mechanisms [10] and a special internal service are introduced in the
container to control non functional features of the component service execu-
tions. In our technology they are specifically used to control the scheduling pa-
rameters with which each invocation received in a component operation is
executed. Based on the configuration parameters assigned to each instance in
the deployment plan, each interceptor knows the scheduling parameter which

 Ada-CCM: Component-Based Technology for Distributed Real-Time Systems 341

CCMObject
provide_facet()
connect()

<<Interface>>
ClientContainerInterceptorRegistration

<<Interface>>

ServerContainerInterceptorRegistration
<<Interface>>

I_Player
play()

<<Interface>>

ServerInterceptor
receive_request()

<<Interface>>

PeriodicActivationBlock

SoundGenerator_Context

SoundGenerator_Home
create() : CCMObjectI_Player_Wrapper

PeriodicActivationTask
1

block

1

CCM_SoundGenerator_Exec
set_session_context()
get_playerPort:() : CCM_I_Player
get_soundThread() : PeriodicActivation

<<Interface>>

SoundGenerator_Wrapper

1

+theContext

1

1

+theHome

1
+playerPortFacet

+soundThread

1

+theExecutor

1

Fig. 6. Component wrapper structure

corresponds to the current invocation, and uses the SchedulingAttributeService
to modify it in the invoking thread. With this strategy, different schemes
for scheduling parameters assignment can be implemented. Besides common
assignment policies, like Client Propagated or Server Declared [11], our tech-
nology allows to apply an assignment based on the transactional model of the
application. With this policy, a service can be executed with different schedul-
ing parameters inside the same end-to-end flow depending on the particular step
inside the flow in which the invocation takes place. This scheme enables better
schedulability results [12].

For each component specification, four Ada packages are generated. The first
package represents the adapter of the component and includes all the resources to
adapt the business code of the component to the platform, following the interaction
rules imposed by the technology. The wrapper class of the component is defined in
this package. This class implements the equivalent interface of the component, which
LwCCM establishes as the only interface that can be used by clients or by the de-
ployment tools to access to the component. With that purpose, the class implements
the CCMObject interface, which, among others, offers operations to access to the
component facets, or to connect the corresponding server components to the recepta-
cles. Besides, the capacity to incorporate interceptors is achieved by implementing the
Client/ServerContainerInterceptorRegistration interfaces, a modified version of the
homonymous interfaces defined in QoSCCM [10]. As it is shown in Figure 6 for the
SoundGenerator component, this class is a container which aggregates or references
all the elements that form the component:

• The component context, which includes all the resources required by the com-
ponent to access to the components that are connected to its receptacles.

• The home, which represents the factory used to create the component instances.
• The executor of the component, which represents the link to the real business

code implementation and whose structure is explained below.
• An instance of a facet wrapper class is aggregated for each facet of the compo-

nent. They capture the invocations received in the component and transfer them
to the corresponding facet implementations, which are defined in the executor.
The facet wrappers are the place in which the interceptors for managing non-
functional features are included.

342 P. López Martínez et al.

Fig. 7. Component executor structure

• Each activation port defined in the specification of the component represents a
thread that is required by the component to implement its functionality. To im-
plement those threads two kinds of Ada task types have been defined. The
OneShotActivationTask executes the corresponding run() procedure of the port
once, while the PeriodicActivationTask executes the update() procedure of the
corresponding port periodically. Both types of task receive as a discriminant
during its instantiation, a reference to the data structure that qualify their execu-
tion, which includes scheduling parameters, period, and the procedure to call.
For each activation port defined in the component, a thread of the correspond-
ing type is declared. They will be activated and terminated by the environment
by means of the standard procedures that LwCCM specifies in the CCMObject
interface to control the lifecycle of the component.

The rest of generated Ada packages represent the executor of the component.
LwCCM defines a set of abstract classes and interfaces which have to be imple-
mented, either automatically or by the user, to develop the executor of the component.
This set of root classes and interfaces are grouped in the generated package
{ComponentName}_Exec. The {ComponentName}_Exec_Impl package includes the
concrete class for the component implementation which inherits directly from the
interfaces defined in the previous package, and therefore, includes dependencies on
the technology. As it is shown in Figure 7, this class contains as an aggregated object,
the business code implementation of the component, which must implement the
{ComponentName}_Business_Interface interface. As it has been said before, this in-
terface includes all the methods that the business implementation must implement in
order to be managed by the environment in an automatic way. By using this interface
together with the aggregation pattern, the environment internals are hidden to the
code developer, who is completely free to implement the business code of the
component. The only requirement to meet is that the implementation must offer the
{ComponentName}_Business_Interface interface, however, relevant aspects that
should be included in a correct implementation are:

• For each facet offered by the component, a facet implementation object should
be aggregated. In the case of simple components, the class itself can implement
the interfaces supported by the facets.

• For each activation port defined in the component, the corresponding imple-
mentation object should be aggregated.

 Ada-CCM: Component-Based Technology for Distributed Real-Time Systems 343

• All the implementation elements (facet implementations, activation ports, etc.)
operate according to the state of the component, which is unique for each in-
stance. Based on that, the state can be implemented as an independent aggre-
gated class, which can be accessed by the rest of the elements, avoiding cyclic
dependencies.

The current available Ada mapping for IDL [13] is based in Ada95, so for the de-
velopment of the code generation tool, new mappings for some IDL types have been
defined in order to get benefit of the new concepts introduced in Ada 2005. The main
change concerns the usage of interfaces. The old mapping for the IDL “interface”
type led to a complex structure, now, it can be directly mapped to an Ada interface.

4 Application Development Process

The development process of component-based applications, as it is shown in Figure 8,
includes the design, configuration, deployment and launching of applications built as
assemblies of components previously installed in the development environment.

The assembler describes the application as an assembly of component instances,
selecting them among those stored in the repository of the design environment, and
connecting them according to their requirements. The description is made by means of
a Component Assembly Description (.cad file), as it is defined in the D&C specifica-
tion. For real-time applications, this structural description must be complemented with
the description of their workload. The workload of an application is defined as the set
of real-time end-to-end flow transactions concurrently executed on it [14]. For each
operational mode of the application with real-time requirements to meet (real-time
situation), a workload model must be defined. Schedulability analysis tools can then be
applied to each real-time situation. The real-time extension of the D&C includes also
the definition of special metadata to describe the workload of an application.

In the next phase of the process, the planner takes the assembly description, and de-
signs a deployment planning for the application. This process consists in assigning
component instances to nodes, and deciding the mechanisms used for the communica-
tion between instances. The result of this stage is the deployment plan (.cdp file), which
completely describes the application and the way in which it is planned to be executed.

Functional
requirements

Real-Time
requirements

Installed component
packages

Platform
description &model

(.pdm.xml files)

D&C Component
Assembly description

(.cad.xml file)

Workload description
(.wdl.xml file) D&C

Deployment Plan
(.cdp.xml file)

Main procedure
(.exe files)

Real-time
Situation Model
(.mdl.xml files) Scheduling

Configuration param.

Scheduling
analysis report

MAST tools

Assembler Planner

Executor

ApplicationMASTModeler

ApplicationGenerator

ApplicationLauncher

Functional
requirements

Real-Time
requirements

Installed component
packages

Platform
description &model

(.pdm.xml files)

D&C Component
Assembly description

(.cad.xml file)

Workload description
(.wdl.xml file) D&C

Deployment Plan
(.cdp.xml file)

Main procedure
(.exe files)
Main procedure
(.exe files)

Real-time
Situation Model
(.mdl.xml files)

Real-time
Situation Model
(.mdl.xml files) Scheduling

Configuration param.

Scheduling
analysis report

MAST tools

Assembler Planner

Executor

ApplicationMASTModeler

ApplicationGenerator

ApplicationLauncher

Fig. 8. Component-based application development process in AdaCCM

344 P. López Martínez et al.

At this point, a real-time design specific task is included in the process. The
deployment plan defines the nature of the communication between component in-
stances, assigning to each connection between component ports, the communication
service to use and its corresponding configuration parameters (D&C has been ex-
tended to include this kind of information). These data will be used by the deploy-
ment tool to generate the corresponding connectors between components, but at this
moment it is used to generate the real-time models of those connectors, whose tem-
plates should be stored in the repository or must be developed together with the de-
ployment plan. Obviously, the communication services used for the connections must
hold predictable behaviour. So, the deployment plan includes all the information re-
quired to generate the real time model of the complete application by composition of
the real-time models of the components that form it, the platform resources (which
must be also stored in the repository) and the connectors used for the interaction
between components. This final model is used to calculate the optimal values for the
scheduling parameters and to analyse the schedulability of the application under each
workload.

Finally, in the last stage of the process, the executor makes use of a launching tool,
which performs the following sequence of tasks:

• Using the deployment plan as input, it generates the code of the connectors in-
volved in the application and the code of the main Ada procedures that have to
be executed on each node in order to launch the application. These procedures
instantiate, connect and configure the components and the connectors
according to the information defined in the deployment plan. They also include
the configuration of the internal service of the execution environment
(SchedulingAttributeService) which, together with the interceptors, manage in
an automated way the scheduling parameters of the threads during the applica-
tion execution. The configuration parameters of this service, whose values may
be obtained by schedulability analysis or other verification techniques, are also
specified in the deployment plan.

• The code of the generated main procedures is compiled and linked with the
libraries corresponding to the components, and the code of the connectors
involved in the application.

• The resulting executables are moved to and executed in the corresponding
nodes.

5 Design Environment and Tools for Components Development

The design of a new component or the deployment of an application are processes
which are performed in the development environment. They are to be assisted by
tools to guarantee the correctness “by construction” of the generated artifacts. A de-
sign environment based in Eclipse has been defined for the Ada-CCM technology. It
provides a set of frameworks and services which simplify resource management and
tools development. The environment is composed of two key elements: the reposi-
tory, in which the intermediate and final products are organized, and the tools which
carry out the transformations between those products.

 Ada-CCM: Component-Based Technology for Distributed Real-Time Systems 345

The information is organized in three Eclipse
projects:

• The repository project is a general project. It-
stores and organizes the information relative to-
the registered elements. It is divided in fivemain
sections: applications, components, interfaces,
platforms and technology. Insideeach section,
the information is divided indomains which
define different namespaces.Each element
inside the repository is identifiedby the chain
<section>/<domain>/<name>/<extension>.

• The adaccm project is an Ada project. It stores
the source or compiled Ada code which is
required to build a deliverable component or
execute an application. Its internal structure corresponds to the structure of Ada
packages suitable for compiling and linking with the tools provided by the Ada
development plug-in for Eclipse.

• The tools project is a Java project. It includes the code of the tools developed for
the transformation processes. The currently developed tools are:

- Tools for importing and exporting deliverable elements: ComponentImport,
ComponentExport, InterfaceImport e InterfaceExport.

- Tools for components development: ComponentTemplateGenerator and
ComponentContainerGenerator.

- Tools for application management: ConnectorGenerator, ApplicationGen-
erator y ApplicationLauncher.

- The tool which generates the final real-time model of an application:
ApplicationMastModeler.

The Eclipse environment is provided with specialized editors, so it has not been
necessary to develop specific tools for editing Ada source code, or the XML files cor-
responding to the D&C descriptors. For the latter, W3G-Schemas have been defined
to facilitate the elaboration of this kind of files.

6 Execution Platform

Applications developed with Ada-CCM can be executed in distributed platforms
which provide a run-time library with support for Ada applications. If the applications
have hard real-time requirements, all the services of the run-time library and the com-
munication mechanisms must have bounded response times. Likewise, for being able
to port the applications to minimal embedded platforms, the run-time must be light,
compatible with different targets (including microcontrollers), and it should not re-
quire a full file system or support for a hard disk. Figure 10a shows an example of the
kind of applications that can be developed with this technology. It is an application
whose purpose is to follow the trajectory of a moving object with a camera. The soft-
ware architecture of the application is shown in Figure 10b. It is composed of six

Fig. 9. Repository Structure

346 P. López Martínez et al.

b) Software architecture

SoundGenerator

I_Control
0..1

1

1
TrackFollower

SoundGenerator
IOCard

ServoController

Logger

1..n

1

1..n

LogEvent

I_Tracker

I_AnalogIO

I_Logger

I_Player

Tracker

Servo 1
Servo 2

Móvil

Servo 1
Servo 2

Moving
object

a) Camera Control Example

b) Software architecture

SoundGenerator

I_Control
0..1

1

1
TrackFollower

SoundGenerator
IOCard

ServoController

Logger

1..n

1

1..n

LogEvent

I_Tracker

I_AnalogIO

I_Logger

I_Player

Tracker

b) Software architecture

SoundGenerator

I_Control
0..1

1

1
TrackFollower

SoundGenerator
IOCard

ServoController

Logger

1..n

1

1..n

LogEvent

I_Tracker

I_AnalogIO

I_Logger

I_Player

Tracker

Servo 1
Servo 2

Móvil

Servo 1
Servo 2

Moving
object

a) Camera Control Example

Servo 1
Servo 2

Móvil

Servo 1
Servo 2

Moving
object

Servo 1
Servo 2

Móvil

Servo 1
Servo 2

Moving
object

a) Camera Control Example

Fig. 10. Application example

components which come from different application domains. The TrackFollower
component plays the role of client component, since it is source of business end-to-
end flow transactions. It has been specifically designed for this concrete application.
The rest of the components have a broad scope of applicability, so they can be reused
in different systems. The ServoController component performs the control closed
loop of the n servos controllers. In the example, it controls the two degree-of-freedom
of the camera orientation. The rest of the components (Tracker, Logger, IOCard and
Sound-Generator) are leaves components and their function is to control different
resources of the system (vision system, I/O cards, sound generators).

An application like this has been used to probe and experiment with the technol-
ogy. It has been run on a MaRTE OS (Minimal Real Time Operating System for Em-
bedded Applications) [15] target. MaRTE OS is a real-time kernel which follows the
Minimal Real-Time POSIX subset, defined in the IEEE 1003.13 standard. Besides, it
offers support for hierarchical scheduling. The target hardware platform is any 386
PC or higher, with at least 512KByte of memory and with a device for booting the
application (such as a floppy disk, flash memory, etc.), but not requiring a hard disk.
Real-time communication mechanisms currently supported by MaRTE OS include
CAN bus, and ethernet with the RT-EP protocol (Real-Time Ethernet Protocol) [8].

7 Real-Time Modelling and Analysis of Component-Based
Systems

A real-time model is a timing abstraction that holds all the qualitative and quantitative
information needed to predict/evaluate the timing behaviour of an application. It is
used by designers to annotate timing requirements in the specification phase, to rea-
son about the prospective architecture during design phases, and to guarantee its
schedulability when the system is to be validated.

Software componentization is a structural pattern, which in principle is independ-
ent of the real-time design process, but, since it introduces deep changes in the devel-
opment phases, it interferes with the traditional real-time design. An issue to consider
in the component-based design strategies is the coordination between the structural
(static) point of view, in which operations are identified as services of instances of

 Ada-CCM: Component-Based Technology for Distributed Real-Time Systems 347

components, and the reactive (dynamic) one, in which the activities (invocation of
operations) are serialized in threads.

A real-time component must include metadata that allow a designer to predict its
timing behaviour and analyse the schedulability of the applications that make use of
it. The modelling methodology must provide two elements:

• Composable and formalized entities to hold the information about the timing
and synchronization characteristics of the internal code of the component in a
self-contained way and independent of any external elements (other compo-
nents or platform resources).

• A systematic composition process that allows building the complete real-time
model of an application using the models of its constituent parts: business com-
ponents and platform resources.

An extension to the D&C specification is proposed to add real-time metadata to the
descriptions of components, platform resources and applications. These metadata have
been distributed according to the phase of the process in which they are required.

The D&C component interface description (.ccd file) includes the information about
the temporal behaviour of a component that an application designer needs to decide the
utility and the compatibility of the component inside an application. It declares:

• The set of operations with real-time behaviour offered by each facet. Any
implementation of the component will include models for these operations.
Likewise, for each receptacle of the component, the interface description must
declare the operations whose real-time model is required to develop the real-
time model of the component itself. Two components will be composable when
the server component provides the real-time models of the operations that the
client component requires through its receptacles.

• The parameters of the real-time model of the component. The real-time model
of a component is a parameterized template which can be configured to describe
the component behaviour according to the specific way in which the component
is planned to be used in an application. Concrete values must be assigned to
each parameter of each component instance declared in an application.

• Components with client role, i.e., components which can trigger business end-
toend flow transactions, must include the declaration of the kind of business
transactions that they can initiate. The schedulability analysis of an application
is performed regarding the workload of the application, and this workload is de-
fined as the set of transactions concurrently executed in the application.

The D&C description of a component implementation (.cid file) must include the
elements that describe the real-time behaviour of the internal code of the component:

• The execution time of the operations offered by the component. They are de-
scribed through their worst, best, and average case values and are related to a
reference processor, the one defined as having speed factor equals to 1.

• The synchronization resources that are used during the operations execution.
They are necessary since they can cause blocking delays during execution.

348 P. López Martínez et al.

• The scheduling entities in which the code execution is organized. These repre-
sent the execution capacity of the threads required to the environment.

• The description of the end-to-end flow transactions that are triggered in the
component. Each transaction describes the set of activities that are executed in
the system in response to external or timed events.

The D&C description of a platform (.tdm files) has been extended to include its
real-time model. The platform model defines the models of the software resources
(os, mutexes, drivers, etc.) and hardware resources (processors, networks, timers, etc.)
that qualify and quantify the available processing capacity, the overheads associated
to their management, the policies for the management of their access queues, etc.

The D&C description of the deployment plan that describes an application (.cdp
files) incorporates two aspects regarding temporal behaviour:

• Each connection between component ports includes a reference to the corre-
sponding real-time model of the connector used for the communication. The
real-time model of a connector includes the information that describes the proc-
esses of marshalling and unmarshalling for the invocation parameters and return
values, the activities involved in the transmission of messages and the processes
of message dispatching.

• A deployment plan is associated with one or more declarations of the
application workload. Each workload corresponds to a specific operation mode
of the application that have timing requirements to meet, and for each of which
schedulability analysis can be applied to verify that the requirements are met.
Special metadata have been defined to declare the workload associated to an
application.

Once an application is defined through a deployment plan, the planner can build its
real-time model by means of the ApplicationMastModeler tool. As it is shown in Fig-
ure 8, this tool takes the information provided by the deployment plan, the metadata
associated to the component descriptions and the metadata associated to the platform
descriptions, and generates the final real-time model of the application. The real-time
modelling and analysis methodology applied in Ada-CCM is MAST [14]. Specifi-
cally, an extension to MAST which incorporates the composability properties needed
to generate the real-time model of a complex system by the composition of the indi-
vidual real-time models of the software and hardware components that forms it [16].

MAST conceives the real-time model of an application as a description of its reac-
tive behaviour. An application is modelled as a set of end-to-end flow transactions
(“transactions” in MAST), which are sequences of activities that are triggered in re-
sponse to external or timed events. A transaction is described by its set of activities,
the generation pattern of the triggering events, and the timing requirements that must
be met. The activities in different transactions only interact by sharing the processing-
resources and the mutually exclusive passive resources.

The MAST environment includes several tools for real-time applications design:

• Schedulability analysis tools: They can be applied to both monoprocessor (RM
Analysis y EDF Monoprocessor Analysis) and distributed systems (Holistic
Analysis y Offset Based Analysis). They allow to certify that, in the worst case,
the activities scheduled in the application meet their real-time requirements.

 Ada-CCM: Component-Based Technology for Distributed Real-Time Systems 349

• Automatic priority assignment tools: Their usage is required, specially in
distributed systems, when the amount of priorities or scheduling parameters to
adjust makes the calculation process too complex to be developed without tool
assistance. They can be applied to monoprocessor (Rate Monotonic and Dead-
line Monotonic) and distributed (Simulated Annealing and HOPA) platforms.

• Slack calculation tools: These tools calculate the percentage by which the exe-
cution time of the operations may be increased while keeping the system sched-
ulable, or must be decreased to get the system schedulable.

8 Conclusions and Future Work

The proposed technology enables the development of hard real-time embedded
component-based applications, whose temporal behaviour can be modelled and
analysed by schedulability analysis tools. This is achieved by the combination and
enhancement of well known technologies. (i) The usage of Ada makes the technology
particularly suitable for applications that run in embedded nodes with limited re-
sources, and interconnected with real-time communication networks. (ii) Some exten-
sions introduced in the LwCCM container/component framework, together with the
Ada's native support for concurrency and synchronization, provide the capacity of
developing the code of the components with predictable temporal behaviour. (iii) The
technology follows the D&C standard for the specification of components, platforms
and applications. A real-time extension of D&C has been proposed to incorporate
metadata describing the temporal behaviour of components and platforms. These
metadata is used to analyse the schedulability of the application during the develop-
ment process. The concepts and semantics added with the real-time extensions allow
the assembler or the planner to design the real-time aspects of the application without
knowing the modelling methodology used by the analysis tools. The developer formu-
lates the real-time models of the components following a concrete modelling and
analysis methodology, which in the case of Ada-CCM is MAST.

Relevant future work concerns reducing the cost of real-time components design.
They have to be designed so that their execution holds bounded timing behaviour, this
behaviour should be modelled in detail, and all the execution times used in the model
must be consciously evaluated. This latter task is currently very costly, though recent
advances in techniques and tools promise to help reducing this cost in the future.

References

[1] Ommering, R., Linden, F., Kramer, J.: The koala component model for con-sumer elec-
tronics software. In: IEEE Computer, pp. 78–85. IEEE, Los Alamitos (2000)

[2] Lundbäck, K.-L., Lundbäck, J., Lindberg, M.: Component based development of depend-
able real-time applications Arcticus Systems,
http://www.arcticus-systems.com

[3] Bondarev, E., de With, P., Chaudron, M.: Predicting Real-Time Properties of Compo-
nent-Based Applications. In: Proc. of 10th RTCSA Conference, Goteborg (August 2004)

350 P. López Martínez et al.

[4] Åkerholm, M., et al.: The SAVE approach to component-based development of vehicular
systems. Journal of Systems and Software 80(5) (May 2007)

[5] OMG: Lightweight Corba Component Model, ptc/03-11-03 (November 2003)
[6] Taft, T., et al. (eds.): Ada 2005 Reference Manual. Int. Standard ISO/IEC 8652/1995(E)

with Technical Corrigendum 1 and Amendment 1. LNCS, pp. 43–48. Springer, Heidel-
berg (2006)

[7] OMG: Deployment and Configuration of Component-Based Distributed Applications
Specification, version 4.0, Formal/06-04-02 (April 2006)

[8] Martínez, J.M., González, M.: RT-EP: A Fixed-Priority Real Time Communication Pro-
tocol over Standard Ethernet. In: Vardanega, T., Wellings, A.J. (eds.) Ada-Europe 2005.
LNCS, vol. 3555. Springer, Heidelberg (2005)

[9] Pautet, L., Tardieu, S.: GLADE: a Framework for Building Large Object-Oriented Real-
Time Distributed Systems. In: Proc. of the 3rd IEEE Intl. Symposium on Object-Oriented
Real-Time Distributed Computing, Newport Beach, USA (March 2000)

[10] OMG: Quality of Service for CORBA Components, ptc/06-04-05 (April 2006)
[11] OMG: Real-Time CORBA Specification, v1.2 formal/05-01-04. Enero (2005)
[12] Gutiérrez García, J.J., González Harbour, M.: Prioritizing Remote Procedure Calls in Ada

Distributed Systems. In: Proc. of the 9th Intl. Real-Time Ada Workshop, ACM Ada Let-
ters, XIX, Junio 1999, vol. 2, pp. 67–72 (1999)

[13] OMG: Ada Language Mapping Specification - Version 1.2 (October 2001)
[14] González Harbour, M., Gutiérrez, J.J., Palencia, J.C., Drake, J.M.: MAST: Modeling and

Analysis Suite for Real-Time Applications. In: Proc. of the Euromicro Conference on
Real-Time Systems (June 2001), http://mast.unican.es/

[15] Aldea, M., González, M.: MaRTE OS: An Ada Kernel for Real-Time Embedded Appli-
cations. In: Strohmeier, A., Craeynest, D. (eds.) Ada-Europe 2001. LNCS, vol. 2043.
Springer, Heidelberg (2001), http://marte.unican.es/

[16] López, P., Drake, J.M., Medina, J.L.: Real-Time Modelling of Distributed Component-
Based Applications. In: Proc. of 32nd Euromicro Conference on Software Engineering
and Advanced Applications, Croatia (August 2006)

Author Index

Albani, Antonia 262
Arbab, Farhad 114

Bañares, José A. 1
Becker, Steffen 16, 278
Birkmeier, Dominik 262
Both, Andreas 163
Brada, Přemek 318
Bunse, Christian 196
Bureš, Tomáš 310

Carlson, Jan 180, 310
Černá, Ivana 146
Choi, Yunja 196
Crnković, Ivica 310

Donsez, Didier 246
Drake, José M. 334
Dulay, Naranker 212

Eliassen, Frank 230
Ermedahl, Andreas 180

Fleurquin, Régis 286
Frénot, Stéphane 80

Gama, Kiev 246
George, Bart 286
Gjørven, Eli 230
Grunske, Lars 130

Happe, Jens 278
Huang, Gang 64

Jalote, Pankaj 32

Kotonya, Gerald 302
Koziolek, Heiko 16, 278
Krogmann, Klaus 48
Kuperberg, Michael 48

Lock, Simon 302
López Mart́ınez, Patricia 334
Lumpe, Markus 130

Malek, Sam 97
Mariani, John 302
Martens, Anne 16
Medina, Julio L. 334
Medvidovic, Nenad 97
Mei, Hong 64
Meng, Sun 114
Mostarda, Leonardo 212

Overhage, Sven 262

Pacheco, Pablo 334
Parrend, Pierre 80
Punnekkat, Sasikumar 180

Rana, Omer F. 1
Reussner, Ralf 16, 48, 278
Rouvoy, Romain 230
Russello, Giovanni 212

Sadou, Salah 286
Schneider, Jean-Guy 130
Sentilles, Séverine 310
Seo, Chiyoung 97
Sharma, Vibhu Saujanya 32
Sun, Lianshan 64
Sundmark, Daniel 180

Tolosana-Calasanz, Rafael 1

Vařeková, Pavĺına 146
Vulgarakis, Aneta 310

Zimmermann, Wolf 163

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

