Abstract
Neurons are cellular compartments possessing branching morphologies, with information processing functionality, and the ability to communicate with each other via synaptic junctions (e.g. neurons come within less than a nano-meter of each other in a specialized way). A collection of neurons in each part of the brain form a dense forest of such branching structures, with myriad inter-twined branches, inter-neuron synaptic connections, and a packing density that leaves only 5% - 10% volume fraction of exterior-cellular space. Small-scale variations in branching morphology of neurons and inter-neuron spacing can exert dramatically different electrical effects that are overlooked by models that treat dendrites as cylindrical compartments in one dimension with lumped parameters. In this paper, we address the problems of generating topologically accurate and spatially realistic boundary element meshes of a forest of neuronal membranes for analyzing their collective electrodynamic properties through simulation. We provide a robust multi-surface reconstruction and quality meshing solution for the forest of densely packed multiple branched structures starting from a stack of segmented 2D serial sections from electron microscopy imaging. The entire 3D domain is about 8 cubic microns, with inter-neuron spacing down to sub-nanometers, adding additional complexity to the robust reconstruction and meshing problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armstrong, M.A.: Basic Topolgoy. Springer, New York (1983)
Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of medial axes: a state of the art report. In: Möller, B.H.T., Russell, B. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization. Springer, Heidelberg (2007)
Bajaj, C., Xu, G., Holt, R., Netravali, A.: Hierarchical multiresolution reconstruction of shell surfaces. Comput. Aided Geom. Des. 19(2), 89–112 (2002)
Bajaj, C.L., Coyle, E.J., Lin, K.-N.: Arbitrary topology shape reconstruction from planar cross sections. Graph. Models Image Process. 58(6), 524–543 (1996)
Bajaj, C.L., Xu, G.: Regular algebraic curve segments (iii): applications in interactive design and data fitting. Comput. Aided Geom. Des. 18(3), 149–173 (2001)
Barequet, G., Goodrich, M.T., Levi-Steiner, A., Steiner, D.: Straight-skeleton based contour interpolation. In: SODA 2003: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 119–127. Society for Industrial and Applied Mathematics (2003)
Barequet, G., Sharir, M.: Piecewise-linear interpolation between polygonal slices. In: SCG 1994: Proceedings of the tenth annual symposium on Computational geometry, pp. 93–102. ACM, New York (1994)
Barequet, G., Vaxman, A.: Nonlinear interpolation between slices. In: SPM 2007: Proceedings of the 2007 ACM symposium on Solid and physical modeling, pp. 97–107. ACM, New York (2007)
Boissonnat, J.-D.: Shape reconstruction from planar cross sections. Comput. Vision Graph. Image Process. 44(1), 1–29 (1988)
Boissonnat, J.-D., Memari, P.: Shape reconstruction from unorganized cross-sections. In: SGP 2007: Proc. of the fifth Eurographics symposium on Geometry processing, pp. 89–98 (2007)
Bresler, Y., Fessler, J.A., Macovski, A.: A bayesian approach to reconstruction from incomplete projections of a multiple object 3d domain. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 840–858 (1989)
Chazal, F., Lieutier, A.: Stability and homotopy of a subset of the medial axis. In: Proc. 9th ACM Sympos. Solid Modeling and Applications, pp. 243–248 (2004)
Cheng, S.-W., Dey, T., Ramos, E., Ray, T.: Sampling and meshing a surface with guaranteed topology and geometry. In: SCG 2004: Proc. of the 20th Annual Symposium on Computational Geometry, pp. 280–289 (2004)
Cheng, S.-W., Dey, T.K.: Improved constructions of delaunay based contour surfaces. In: SMA 1999: Proceedings of the fifth ACM symposium on Solid modeling and applications, pp. 322–323. ACM, New York (1999)
Christiansen, H.N., Sederberg, T.W.: Conversion of complex contour line definitions into polygonal element mosaics. SIGGRAPH Comput. Graph. 12(3), 187–192 (1978)
CVC. LBIE: Level Set Boundary Interior and Exterior Mesher, http://cvcweb.ices.utexas.edu/ccv/projects/project.php?proID=10
CVC. Volume Rover, http://ccvweb.csres.utexas.edu/ccv/projects/project.php?proID=9
Dailey, M.E., Smith, S.J.: The Dynamics of Dendritic Structure in Developing Hippocampal Slices. J. Neurosci. 16(9), 2983–2994 (1996)
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997)
Edelsbrunner, H., Shah, N.: Triangulating topological spaces. Intl. Journal of Comput. Geom. and Appl. 7, 365–378 (1997)
Fiala, J., Spacek, J., Harris, K.M.: Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research Reviews 39, 29–54 (2002)
Fuchs, H., Kedem, Z.M., Uselton, S.P.: Optimal surface reconstruction from planar contours. Commun. ACM 20(10), 693–702 (1977)
Garland, M.: QSlim, http://graphics.cs.uiuc.edu/~garland/software/qslim.html
Geiger, B.: Three-dimensional modeling of human organs and its application to diagnosis and surgical planning. Technical report, INRIA (1993)
Goswami, S., Gillette, A., Bajaj, C.: Efficient delaunay mesh generation from sampled scalar functions. In: Proceedings of the 16th International Meshing Roundtable, pp. 495–511. Springer, Heidelberg (2007)
Harris, K., Perry, E., Bourne, J., Feinberg, M., Ostroff, L., Hurlburt, J.: Uniform serial sectioning for transmission electron microscopy. J Neurosci. 26(47), 12101–12103 (2006)
Herman, G.T., Zheng, J., Bucholtz, C.A.: Shape-based interpolation. IEEE Comput. Graph. Appl. 12(3), 69–79 (1992)
Klein, R., Schilling, A., Strasser, W.: Reconstruction and simplification of surfaces from contours. Graph. Models 62(6), 429–443 (2000)
Lee, D.T.: Medial axis transformation of a planar shape. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4(4), 363–369 (1982)
Lieutier, A.: Any open bounded subset of has the same homotopy type as its medial axis. Computer-Aided Design 36, 1029–1046 (2004)
Liu, L., Bajaj, C., Deasy, J.O., Low, D.A., Ju, T.: Surface reconstruction from non-parallel curve networks. Computer Graphics Forum 27(2), 155–163 (2008)
Meyers, D., Skinner, S., Sloan, K.: Surfaces from contours. ACM Trans. Graph. 11(3), 228–258 (1992)
Narayanan, R., Johnston, D.: Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56, 1061–1075 (2007)
Oliva, J.-M., Perrin, M., Coquillart, S.: 3d reconstruction of complex polyhedral shapes from contours using a simplified generalized voronoi diagram. Computer Graphics Forum 15(3), 397–408 (1996)
Park, M., Salgado, J.M., Ostroff, L., Helton, T.D., Robinson, C.G., Harris, K.M., Ehlers, M.D.: Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52(5), 817–830 (2006)
Sorra, K.E., Harris, K.M.: Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10(5), 501–511 (2000)
Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Courses, p. 13. ACM, New York (2005)
Zhang, Y., Bajaj, C., Xu, G.: Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Communications in Numerical Methods in Engineering 24 (in press, 2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bajaj, C., Gillette, A. (2008). Quality Meshing of a Forest of Branching Structures. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-87921-3_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87920-6
Online ISBN: 978-3-540-87921-3
eBook Packages: EngineeringEngineering (R0)