Skip to main content

Quality Meshing of a Forest of Branching Structures

  • Conference paper
Proceedings of the 17th International Meshing Roundtable

Abstract

Neurons are cellular compartments possessing branching morphologies, with information processing functionality, and the ability to communicate with each other via synaptic junctions (e.g. neurons come within less than a nano-meter of each other in a specialized way). A collection of neurons in each part of the brain form a dense forest of such branching structures, with myriad inter-twined branches, inter-neuron synaptic connections, and a packing density that leaves only 5% - 10% volume fraction of exterior-cellular space. Small-scale variations in branching morphology of neurons and inter-neuron spacing can exert dramatically different electrical effects that are overlooked by models that treat dendrites as cylindrical compartments in one dimension with lumped parameters. In this paper, we address the problems of generating topologically accurate and spatially realistic boundary element meshes of a forest of neuronal membranes for analyzing their collective electrodynamic properties through simulation. We provide a robust multi-surface reconstruction and quality meshing solution for the forest of densely packed multiple branched structures starting from a stack of segmented 2D serial sections from electron microscopy imaging. The entire 3D domain is about 8 cubic microns, with inter-neuron spacing down to sub-nanometers, adding additional complexity to the robust reconstruction and meshing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, M.A.: Basic Topolgoy. Springer, New York (1983)

    Google Scholar 

  2. Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of medial axes: a state of the art report. In: Möller, B.H.T., Russell, B. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Mathematics and Visualization. Springer, Heidelberg (2007)

    Google Scholar 

  3. Bajaj, C., Xu, G., Holt, R., Netravali, A.: Hierarchical multiresolution reconstruction of shell surfaces. Comput. Aided Geom. Des. 19(2), 89–112 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bajaj, C.L., Coyle, E.J., Lin, K.-N.: Arbitrary topology shape reconstruction from planar cross sections. Graph. Models Image Process. 58(6), 524–543 (1996)

    Article  Google Scholar 

  5. Bajaj, C.L., Xu, G.: Regular algebraic curve segments (iii): applications in interactive design and data fitting. Comput. Aided Geom. Des. 18(3), 149–173 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barequet, G., Goodrich, M.T., Levi-Steiner, A., Steiner, D.: Straight-skeleton based contour interpolation. In: SODA 2003: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, pp. 119–127. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  7. Barequet, G., Sharir, M.: Piecewise-linear interpolation between polygonal slices. In: SCG 1994: Proceedings of the tenth annual symposium on Computational geometry, pp. 93–102. ACM, New York (1994)

    Chapter  Google Scholar 

  8. Barequet, G., Vaxman, A.: Nonlinear interpolation between slices. In: SPM 2007: Proceedings of the 2007 ACM symposium on Solid and physical modeling, pp. 97–107. ACM, New York (2007)

    Chapter  Google Scholar 

  9. Boissonnat, J.-D.: Shape reconstruction from planar cross sections. Comput. Vision Graph. Image Process. 44(1), 1–29 (1988)

    Article  Google Scholar 

  10. Boissonnat, J.-D., Memari, P.: Shape reconstruction from unorganized cross-sections. In: SGP 2007: Proc. of the fifth Eurographics symposium on Geometry processing, pp. 89–98 (2007)

    Google Scholar 

  11. Bresler, Y., Fessler, J.A., Macovski, A.: A bayesian approach to reconstruction from incomplete projections of a multiple object 3d domain. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 840–858 (1989)

    Article  Google Scholar 

  12. Chazal, F., Lieutier, A.: Stability and homotopy of a subset of the medial axis. In: Proc. 9th ACM Sympos. Solid Modeling and Applications, pp. 243–248 (2004)

    Google Scholar 

  13. Cheng, S.-W., Dey, T., Ramos, E., Ray, T.: Sampling and meshing a surface with guaranteed topology and geometry. In: SCG 2004: Proc. of the 20th Annual Symposium on Computational Geometry, pp. 280–289 (2004)

    Google Scholar 

  14. Cheng, S.-W., Dey, T.K.: Improved constructions of delaunay based contour surfaces. In: SMA 1999: Proceedings of the fifth ACM symposium on Solid modeling and applications, pp. 322–323. ACM, New York (1999)

    Chapter  Google Scholar 

  15. Christiansen, H.N., Sederberg, T.W.: Conversion of complex contour line definitions into polygonal element mosaics. SIGGRAPH Comput. Graph. 12(3), 187–192 (1978)

    Article  Google Scholar 

  16. CVC. LBIE: Level Set Boundary Interior and Exterior Mesher, http://cvcweb.ices.utexas.edu/ccv/projects/project.php?proID=10

  17. CVC. Volume Rover, http://ccvweb.csres.utexas.edu/ccv/projects/project.php?proID=9

  18. Dailey, M.E., Smith, S.J.: The Dynamics of Dendritic Structure in Developing Hippocampal Slices. J. Neurosci. 16(9), 2983–2994 (1996)

    Google Scholar 

  19. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997)

    MATH  Google Scholar 

  20. Edelsbrunner, H., Shah, N.: Triangulating topological spaces. Intl. Journal of Comput. Geom. and Appl. 7, 365–378 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fiala, J., Spacek, J., Harris, K.M.: Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research Reviews 39, 29–54 (2002)

    Article  Google Scholar 

  22. Fuchs, H., Kedem, Z.M., Uselton, S.P.: Optimal surface reconstruction from planar contours. Commun. ACM 20(10), 693–702 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  23. Garland, M.: QSlim, http://graphics.cs.uiuc.edu/~garland/software/qslim.html

  24. Geiger, B.: Three-dimensional modeling of human organs and its application to diagnosis and surgical planning. Technical report, INRIA (1993)

    Google Scholar 

  25. Goswami, S., Gillette, A., Bajaj, C.: Efficient delaunay mesh generation from sampled scalar functions. In: Proceedings of the 16th International Meshing Roundtable, pp. 495–511. Springer, Heidelberg (2007)

    Google Scholar 

  26. Harris, K., Perry, E., Bourne, J., Feinberg, M., Ostroff, L., Hurlburt, J.: Uniform serial sectioning for transmission electron microscopy. J Neurosci. 26(47), 12101–12103 (2006)

    Article  Google Scholar 

  27. Herman, G.T., Zheng, J., Bucholtz, C.A.: Shape-based interpolation. IEEE Comput. Graph. Appl. 12(3), 69–79 (1992)

    Article  Google Scholar 

  28. Klein, R., Schilling, A., Strasser, W.: Reconstruction and simplification of surfaces from contours. Graph. Models 62(6), 429–443 (2000)

    Article  MATH  Google Scholar 

  29. Lee, D.T.: Medial axis transformation of a planar shape. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4(4), 363–369 (1982)

    Article  Google Scholar 

  30. Lieutier, A.: Any open bounded subset of has the same homotopy type as its medial axis. Computer-Aided Design 36, 1029–1046 (2004)

    Article  Google Scholar 

  31. Liu, L., Bajaj, C., Deasy, J.O., Low, D.A., Ju, T.: Surface reconstruction from non-parallel curve networks. Computer Graphics Forum 27(2), 155–163 (2008)

    Article  Google Scholar 

  32. Meyers, D., Skinner, S., Sloan, K.: Surfaces from contours. ACM Trans. Graph. 11(3), 228–258 (1992)

    Article  MATH  Google Scholar 

  33. Narayanan, R., Johnston, D.: Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56, 1061–1075 (2007)

    Article  Google Scholar 

  34. Oliva, J.-M., Perrin, M., Coquillart, S.: 3d reconstruction of complex polyhedral shapes from contours using a simplified generalized voronoi diagram. Computer Graphics Forum 15(3), 397–408 (1996)

    Article  Google Scholar 

  35. Park, M., Salgado, J.M., Ostroff, L., Helton, T.D., Robinson, C.G., Harris, K.M., Ehlers, M.D.: Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52(5), 817–830 (2006)

    Article  Google Scholar 

  36. Sorra, K.E., Harris, K.M.: Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10(5), 501–511 (2000)

    Article  Google Scholar 

  37. Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Courses, p. 13. ACM, New York (2005)

    Chapter  Google Scholar 

  38. Zhang, Y., Bajaj, C., Xu, G.: Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Communications in Numerical Methods in Engineering 24 (in press, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bajaj, C., Gillette, A. (2008). Quality Meshing of a Forest of Branching Structures. In: Garimella, R.V. (eds) Proceedings of the 17th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87921-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87921-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87920-6

  • Online ISBN: 978-3-540-87921-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics