Skip to main content

Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm

  • Conference paper
Algorithmic Learning Theory (ALT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5254))

Included in the following conference series:

Abstract

We consider the extension of standard decision tree methods to the bipartite ranking problem. In ranking, the goal pursued is global: define an order on the whole input space in order to have positive instances on top with maximum probability. The most natural way of ordering all instances consists in projecting the input data x onto the real line using a real-valued scoring function s and the accuracy of the ordering induced by a candidate s is classically measured in terms of the AUC. In the paper, we discuss the design of tree-structured scoring functions obtained by maximizing the AUC criterion. In particular, the connection with recursive piecewise linear approximation of the optimal ROC curve both in the L 1-sense and in the L  ∞ -sense is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., Roth, D.: Generalization bounds for the area under the ROC curve. Journal of Machine Learning Research 6, 393–425 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks (1984)

    Google Scholar 

  3. Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and scoring using empirical risk minimization. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 1–15. Springer, Heidelberg (2005)

    Google Scholar 

  4. Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and empirical risk minimization of U-statistics. The Annals of Statistics 36, 844–874 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cortes, C., Mohri, M.: Auc optimization vs. error rate minimization. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16. MIT Press, Cambridge (2004)

    Google Scholar 

  6. Clémençon, S., Vayatis, N.: Tree-structured ranking rules and approximation of the optimal ROC curve. Technical Report hal-00268068, HAL (2008)

    Google Scholar 

  7. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  8. Devore, R., Lorentz, G.: Constructive Approximation. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  9. Egan, J.P.: Signal Detection Theory and ROC Analysis. Academic Press, London (1975)

    Google Scholar 

  10. Ferri, C., Flach, P.A., Hernández-Orallo, J.: Learning decision trees using the area under the roc curve. In: ICML 2002: Proceedings of the Nineteenth International Conference on Machine Learning, pp. 139–146. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  11. Freund, Y., Iyer, R.D., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 4, 933–969 (2003)

    Article  MathSciNet  Google Scholar 

  12. Györfi, L., Köhler, M., Krzyzak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  13. Hanley, J.A., McNeil, J.: The meaning and use of the area under a ROC curve. Radiology 143, 29–36 (1982)

    Google Scholar 

  14. Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine Learning 52(3), 199–215 (2003)

    Article  MATH  Google Scholar 

  15. Rakotomamonjy, A.: Optimizing area under roc curve with svms. In: Proceedings of the First Workshop on ROC Analysis in AI (2004)

    Google Scholar 

  16. Xia, F., Zhang, W., Wang, J.: An effective tree-based algorithm for ordinal regression. IEEE Intelligent Informatics Bulletin 7(1), 22–26 (2006)

    Google Scholar 

  17. Yan, L., Dodier, R.H., Mozer, M., Wolniewicz, R.H.: Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), pp. 848–855 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clémençon, S., Vayatis, N. (2008). Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2008. Lecture Notes in Computer Science(), vol 5254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87987-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87987-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87986-2

  • Online ISBN: 978-3-540-87987-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics