Skip to main content

Hurdles Hardly Have to Be Heeded

  • Conference paper
Comparative Genomics (RECOMB-CG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5267))

Included in the following conference series:

Abstract

As data about genomic architecture accumulates, genomic rearrangements have attracted increasing attention. One of the main rearrangement mechanisms, inversions (also called reversals), was characterized by Hannenhalli and Pevzner and this characterization in turn extended by various authors. The characterization relies on the concepts of breakpoints, cycles, and obstructions colorfully named hurdles and fortresses. In this paper, we study the probability of generating a hurdle in the process of sorting a permutation if one does not take special precautions to avoid them (as in a randomized algorithm, for instance). To do this we revisit and extend the work of Caprara and of Bergeron by providing simple and exact characterizations of the probability of encountering a hurdle in a random permutation. Using similar methods we, for the first time, find an asymptotically tight analysis of the probability that a fortress exists in a random permutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001); A preliminary version appeared in WADS 2001, pp. 365–376

    Article  Google Scholar 

  2. Bergeron, A.: A very elementary presentation of the Hannenhalli–Pevzner theory. Discrete Applied Mathematics 146(2), 134–145 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bergeron, A., Chauve, C., Hartman, T., Saint-Onge, K.: On the properties of sequences of reversals that sort a signed permutation. In: JOBIM, 99–108 (June 2002)

    Google Scholar 

  4. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Caprara, A.: On the tightness of the alternating-cycle lower bound for sorting by reversals. J. Combin. Optimization 3, 149–182 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: Proc. 27th Ann. ACM Symp. Theory of Comput. (STOC 1995), pp. 178–189. ACM Press, New York (1995)

    Chapter  Google Scholar 

  7. Hannenhalli, S., Pevzner, P.A.: Transforming mice into men (polynomial algorithm for genomic distance problems). In: Proc. 36th Ann. IEEE Symp. Foundations of Comput. Sci. (FOCS 1995), pp. 581–592. IEEE Computer Society Press, Piscataway (1995)

    Chapter  Google Scholar 

  8. Kaplan, H., Verbin, E.: Efficient data structures and a new randomized approach for sorting signed permutations by reversals. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 170–185. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Sankoff, D., Haque, L.: The distribution of genomic distance between random genomes. J. Comput. Biol. 13(5), 1005–1012 (2006)

    Article  MathSciNet  Google Scholar 

  10. Sturtevant, A.H., Beadle, G.W.: The relation of inversions in the x-chromosome of drosophila melanogaster to crossing over and disjunction. Genetics 21, 554–604 (1936)

    Google Scholar 

  11. Sturtevant, A.H., Dobzhansky, Th.: Inversions in the third chromosome of wild races of drosophila pseudoobscura and their use in the study of the history of the species. Proc. Nat’l Acad. Sci., USA 22, 448–450 (1936)

    Article  Google Scholar 

  12. Tannier, E., Sagot, M.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swenson, K.M., Lin, Y., Rajan, V., Moret, B.M.E. (2008). Hurdles Hardly Have to Be Heeded. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87989-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87988-6

  • Online ISBN: 978-3-540-87989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics