Skip to main content

Discovering Local Patterns of Co-evolution

  • Conference paper
Comparative Genomics (RECOMB-CG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5267))

Included in the following conference series:

Abstract

Co-evolution is the process in which a set of orthologs exhibits a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions, about their complementary and backup relations, and more generally, for answering fundamental questions about the evolution of biological systems.

Orthologs that exhibit strong signal of co-evolution in part of the evolutionary tree may show mild signal of co-evolution in other parts of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive evolution. Previous works in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local.

In this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above. We use our approach to trace the co-evolution of fungal and Eukaryotic genes at a high resolution across the different parts of the corresponding phylogenetic trees. Our analysis shows that local co-evolution is a wide-scale phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benton, M.J., Donoghue, P.C.J.: Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24(1), 26–53 (2007)

    Article  Google Scholar 

  2. Berbee, M., Taylor, J.: Systematics and evolution. In: McLaughlin, D., McLaughlin, E., Lemke, P. (eds.) The Mycota, vol. VIIB, pp. 229–245. Springer, Berlin (2001)

    Google Scholar 

  3. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. 8th Int. Conf. Intell. Syst. Mol. Biol., pp. 93–103 (2000)

    Google Scholar 

  4. Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., et al.: Genome evolution in yeasts. Nature 430, 35–44 (2004)

    Article  Google Scholar 

  5. Ben-Dor, A., et al.: Discovering local structure in gene expression data: The order-preserving submatrix problem. J. Comput. Biol. 10(3-4), 373–384 (2003)

    Article  Google Scholar 

  6. Tanay, A.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, S136–144 (2002)

    Google Scholar 

  7. Barker, D., et al.: Predicting functional gene links using phylogenetic-statistical analysis of whole genomes. PLoS Comput. Biol. 1, 24–31 (2005)

    Article  Google Scholar 

  8. Barker, D., et al.: Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23(1), 14–20 (2007)

    Article  MathSciNet  Google Scholar 

  9. Juan, D., et al.: High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. PNAS 105(3), 934–939 (2008)

    Article  Google Scholar 

  10. Ober, D., et al.: Molecular evolution by change of function. alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eif5a precursor protein. J. Biol. Chem. 278(15), 12805–12812 (2003)

    Article  Google Scholar 

  11. Krylov, D.M., et al.: Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13(10), 2229–2235 (2003)

    Article  Google Scholar 

  12. Wall, D.P., et al.: Functional genomic analysis of the rate of protein evolution. Proc. Natl. Acad. Sci. U.S.A. 102(15), 5483–5488 (2005)

    Article  Google Scholar 

  13. Oron, E., et al.: Genomic analysis of cop9 signalosome function in drosophila melanogaster reveals a role in temporal regulation of gene expression. Mol. Syst. Biol. 3, 108 (2007)

    Article  Google Scholar 

  14. Pazos, F., et al.: Correlated mutations contain information about protein-protein interaction. J. Mol. Biol. 271, 511–523 (1997)

    Article  Google Scholar 

  15. Wapinski, I., et al.: Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–65 (2007)

    Article  Google Scholar 

  16. Wu, J., et al.: Identification of functional links between genes using phylogenetic profiles. Bioinformatics 19, 1524–1530 (2003)

    Article  Google Scholar 

  17. Marino-Ramirez, L., et al.: Co-evolutionary rates of functionally related yeast genes. Evolutionary Bioinformatics, 2295–2300 (2006)

    Google Scholar 

  18. Bowers, P.M., et al.: Prolinks: a database of protein functional linkages derived from coevolution. Genome Biology 5, R35(2004)

    Article  Google Scholar 

  19. Grossmann, S., et al.: An improved statistic for detecting over-represented gene ontology annotations in gene sets. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 85–98. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Chena, Y., et al.: The coordinated evolution of yeast proteins is constrained by functional modularity. Trends in Genetics 22(8), 416–419 (2006)

    Article  Google Scholar 

  21. Garey, M.R., Johnsons, D.S.: Computers and Interactability: A Guide to the Theory of NP-Completeness, p. 196. Freeman, New York (1979)

    MATH  Google Scholar 

  22. Knudsen, B.: Optimal multiple parsimony alignment with affine gap cost using a phylogenetic tree. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 433–446. Springer, Heidelberg (2003)

    Google Scholar 

  23. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  24. Man, O., Pilpel, Y.: Differential translation efficiency of orthologous genes is involved in phenotypic divergence of yeast species. Nature Genetics 39, 415–421 (2007)

    Article  Google Scholar 

  25. Ohno, S.: Evolution by gene duplication. Springer, Heidelberg (1970)

    Google Scholar 

  26. Scannell, D.R., Butler, G., Wolfe, K.H.: Yeast genome evolution-the origin of the species. Yeast 24(11), 929–942 (2007)

    Article  Google Scholar 

  27. Snel, B., Huynen, M.A.: Quantifying modularity in the evolution of biomolecular systems. Genome Res. 14(3), 391–397 (2004)

    Article  Google Scholar 

  28. Wolfe, K.H., Shields, D.C.: Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387(6634), 708–713 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felder, Y., Tuller, T. (2008). Discovering Local Patterns of Co-evolution. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87989-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87988-6

  • Online ISBN: 978-3-540-87989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics