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Abstract

In this paper we study the relationship between Stochastic
Satisfiability (SSAT) (Papadimitriou 1985; Littman, Majer-
cik, & Pitassi 2001) and Extended Hybrid Probabilistic Logic
Programs (EHPP) with probabilistic answer set semantics
(Saad 2006). We show that any instance of SSAT can be mod-
ularly translated into an EHPP program with probabilistic an-
swer set semantics. In addition, we show that there is no mod-
ular mapping from EHPP to SSAT. This shows that EHPP is
more expressive than SSAT from the knowledge representa-
tion point of view. Moreover, we show that the translation in
the other way around from a program in EHPP to SSAT is
more involved. We show that not every program in EHPP can
be translated into an SSAT instance, rather a restricted class
of EHPP can be translated into SSAT.

1 Introduction

Hybrid Probabilistic Logic Programs (HPP) (Saad & Pon-
telli 2006) modifies the original Hybrid Probabilistic Logic
Programming framework of (Dekhtyar & Subrahmanian
2000) and generalizes and modifies firebabilistic anno-
tated logic programming framewaorkriginally proposed in
(Ng & Subrahmanian 1992) and further extended in (Ng &
Subrahmanian 1993; 1994). Probabilities in (Saad & Pon-
telli 2006) are presented in form of intervals where a proba-
bility interval represents the bounds on the degree of belief

a rational agent has about the truth of an event. The seman-

tics of HPP (Saad & Pontelli 2006), intuitively, captures the
probabilistic reasoning according to how likely are the vari-

was extended to Extended Hybrid Probabilistic Logic Pro-
grams (EHPP) (Saad 2006) to cope directly with classical
negation as well as non-monotonic negation to allow reason-
ing in the presence of incomplete knowledge. It was shown
that Baral et al's probabilistic logic programming approach
for reasoning with causal Bayes networks (P-log) (Baral,
Gelfond, & Rushton 2004) is naturally subsumed by EHPP
(Saad 2006). In addition, the semantics of EHPP is a natu-
ral extension to the answer set semantics of extended logic
programs (Gelfond & Lifschitz 1991).

Stochastic Satisfiability (SSAT) was first introduced in
(Papadimitriou 1985) as an extension to SAT with random
quantifiers, in addition to the existential quantifiers. The
introduction of randomized quantifiers in SSAT brings un-
certainty into the question of whether there is a satisfying
assignment to a propositional formula. In (Littman, Ma-
jercik, & Pitassi 2001), SSAT has been extended to allow
existential, randomized, and universal quantifiers. More-
over, SSAT solver has been presented (Littman, Majer-
cik, & Pitassi 2001) that extends Davis-Putnam-Lognmann-
Loveland (DPLL) algorithm (Davis, Logemann, & Loveland
1962) to solve SSAT instances. The extended DPLL algo-
rithm (Littman, Majercik, & Pitassi 2001) has been built by
exploiting the existing work to solve SAT as efficiently as
possible.

In this paper we study the relationship between Extended
Hybrid Probabilistic Logic Programs (EHHP) and Stochas-
tic Satisfiability (SSAT). We show that any SSAT formula
can be easily reduced to an EHPP program, with probabilis-

ous events to occur. It was shown that the HPP (Saad & Pon- i~ answer set semantics, using a local modular mapping.

telli 2006) framework is more suitable for reasoning and de- The jmportance of that is the application of SSAT to proba-
cision making tasks, including those arising from planning - jjistic planning, contingent probabilistic planning, the most
under probabilistic uncertainty (Saf';}d 2007). In addition, it _probable explanation in belief networks, the most likely tra-
subsumes Lakshmanan and Sadri's (Lakshmanan & Sadri joctory in probabilistic planning, and belief inference (Ma-
2001) probabilistic implication-based framework as well s jg(cik g Littman 1998; 2003; Littman, Majercik, & Pitassi

it is a natural extension of classical logic programming with 2001) carry over to EHPP. This shows that EHPP is applica-

answer set semantics. As a step towards enhancing its réa-|q (g 3 variety ofundamentaprobabilistic reasoning tasks
soning capabilities, the framework of HPP was extended to including those solved by SSAT. Moreover, we show that

cope with non-monotonic negation (Saad & Pontelli 2005) - hare is o similar local and modular mapping from EHPP

by introducing the notion of Normal Hybrid Probabilistic

Logic Programs (NHPP) and providing two different seman-
tics namely; stable probabilistic model semantics and well-
founded probabilistic model semantics. Furthermore, NHPP
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to SSAT implying that EHPP is more expressive than SSAT
from the knowledge representation point of view.

Moreover, we show that, in general, any EHPP pro-
gram cannot be translated into SSAT. However, there is a
class of EHPP that can be translated into SSAT, namely



EHPPsgar. This class of EHPP is expressive enough to
represent and reason withvariety of probabilistic reason-
ing tasks such as probabilistic planning and Bayes networks.
The importance of this translation frod@H PPgg a7 t0
SSAT is that it provides a foundation for an implementa-
tion for computing the probabilistic answer sets of EHPP by
exploiting the existing work on SSAT with a selection from

a variety of SSAT solvers.

This paper is organized as follows. Section 2 describes
the syntax and the probabilistic answer set semantics of
EHPPssar. Section 3 reviews SSAT. Section 4 pro-
vides the translation from SSAT tB HPPssar. In sec-
tion 5, we introduce the translation from a restricted class
of EH P Pggs 47 to SSAT. Conclusions and related work are
presented in section 6.

2 Extended Hybrid Probabilistic Logic
Programs (E H P Pssar)
In this section we define the syntax, declarative semantics,
and the probabilistic answer sets semanticE &fP Pgg a7 .

EHPPggar is a class of EHPP (Saad 2006) that is suf-
ficient to represent any instance of SSAT. The syntax and

semantics of the full version of EHPP is described in (Saad 2.

2006).

2.1 Language Syntax

Let C[0,1] denotes the set of all closed intervals in
[0,1]. In the context of EHPPssar, probabilities are
assigned to events (literals) as intervalsGfi0, 1]. Let
[aa, £1], [ae, B2] € C[0, 1]. Then theruth orderasserts that
(a1, 1] <i [ag, Bo] Iff oy < ap andB; < Bo. Let L be

an arbitrary first-order language with finitely many predicate
symbols, constants, and infinitely many variables. Function
symbols are disallowed. The Herbrand basé& @ denoted

by B.. A literal is either an atona or the negation of an
atom—a, where— is the classical negation. We denote the
set of all literals inZ by Lit. An annotationdenotes a prob-
ability interval inC/[0, 1]. An annotated literais an expres-
sion of the forml : u, wherel is a literal andu is an annota-
tion. An extended probabilistic rule (E-rule) is an expression
of the form

ll :Mla"'7lm:uma
not (lm—&-l : ﬂm-i—l)7 ..., not (ln : ,Un)

l:p <~

wherel, [; (1 <1i < n)are literals, angs, u; (1 < i < n)are
annotations. The intuitive meaning of an E-rule is that, if for
eachi; : p; (1 <1 < m),; is true with probability interval
at leasty; and for eachnot (I; : p;) (m+1 < j < n),

it is not knownthat /; is true with probability interval at
leasty;, thenl is true with probability interva. An ex-
tended probabilistic logic progranE{progran) is a pair

P = (R,7), whereR is a finite set of E-rules and is

a mappingr : Lit — cped. Cpea IS the disjunctive pos-
itive correlation probabilistic composition function defined
as cped([on, B1], [az, B2]) = [max(aq, az), max(S1, Ba)].
The mapping- in the above definition associates to each lit-
erall the disjunctive positive correlation probabilistic com-
position function,c,.q, that will be used to combine the

3.

o

probability intervals obtained from different E-rules having
[ in their heads. An E-program is ground if no variables ap-
pear in any of its rules.

2.2 Satisfaction and Models

A probabilistic interpretation (p-interpretation) is a mapping
h : Lit — C[0,1]. We say a seC, a subset ofLit, is a
consistent set of literals if there is no pair of complemen-
tary literalsa and—a belonging toC. A partial or total p-
interpretatiorh is a mapping from a consistent set of literals
C'to C|0,1].

Definition 1 (Probabilistic Satisfaction) Let P = (R, 7)
be a ground E-programy; be a p-interpretation, and

TEI:N — ll::ula"'alm:,uma

10t (41 ¢ mt1)y -« s n0t (Ly @ fin).

Then

1. h satisfied; : p; (denoted byh |= 1; : ;) iff I; € dom(h)

andpu; <; h(l;).
h satisfiesot (1; : p;) (denoted byr |= not (I; : p;)) iff
l; € dom(h) andp; £, h(l;) orl; ¢ dom(h).

h satisfiesBody = 11 : p1,...

NnLJrl)v s ,TLOt (ln : Nn)
(denoted byr |= Body) iff V(1 < i < m),h =1; : u;
andV(m+1<j <n),h =not (I; : y;).

Am o, not (lm—&-l :

4. h satisfies! : u «— Body iff h =1 : u or h does not

satisfy Body.

h satisfiesP iff h satisfies every E-rule iR and for every
literal I € dom(h), cpeaf{p|l : 4 — Body € R and h |=
Body} <i h(l).

Definition 2 (Models) Let P be an E-program. A proba-
bilistic model ¢-mode) of P is a p-interpretationh of P
that satisfiesP.

Given the p-modelsh; and he, we sayh; <, hg if

dom(hy) C dom(h2) andVl € dom(hy), h1(l) < ha(l).

We say thath is a minimal p-model ofP if there is no p-
modelh’ of P such thath' <, h.

2.3 The Probabilistic Answer Set Semantics of
E-programs

An E-program without hon-monotonic negation is simpler
and has exactly one minimal p-modgirgbabilistic an-
swer se} (Saad 2006). Therobabilistic answer setef E-
programs is defined in two steps. First, we guess a proba-
bilistic answer set for a certain E-progran®, then we de-
fine the notion of the probabilistic reduct &f with respect

to h. The probabilistic reduct is an E-program without non-
monotonic negation which has a unique probabilistic answer
set. Second, we determine whettieis a probabilistic an-
swer set forP. This is verified by determining whethéris

the probabilistic answer set of the probabilistic reductof
W.I.L. h.



Definition 3 (Probabilistic Reduct) Let P = (R, 7) be a
ground E-program and be a p-interpretation. The proba-

bilistic reductP" of P w.rt. his P* = (R", 7) where:

lipe—lripr,eo o lm t pom |
Lip—1U gyl o,
1ot (lm+1 : fhm+1),---,n0t (In : pn) € Rand
V(m+1<j<n), p; £ h(l;) orl; ¢ dom(h)

RM =

The probabilistic reducP” is an E-program without non-
monotonic negation. Therefore, its probabilistic answer set
is well-defined. For any.ot (; : ;) in the body ofr € R
with 1; £, h(l;) means that it is not known that the proba-
bility interval of ; is at leasfu; given the available knowl-
edge, anchot (I; : ;) is removed from the body of. In
addition, ifl; ¢ dom(h), i.e.,; is undefined inh, then it

is completelynot known (undecidablejat the probability
interval ofl; is at leasiu;. In this casenot (I; : u;) is also
removed from the body of.

Definition 4 A p-interpretationh is a probabilistic answer
set of an E-progran® if h is the probabilistic answer set of
ph.

3 Stochastic Satisfiability

In this section we review the definition of stochastic satisfia-
bility presented in (Papadimitriou 1985; Littman, Majercik,
& Pitassi 2001). Stochastic satisfiability (SSAT) (Papadim-
itriou 1985) extends deterministic satisfiability with random
quantifiers. Letx = {z1,...,x,} be a set ofn propo-
sitional variables (1 for true and O for false) an¢ix) be

a k-CNF propositional formula on the variablessin with

the underlying ordering:y, ..., z,. An assignmenfA of
propositional variables to values frofrue, false} is said

to be a satisfying assignment (model) to a formaia) if
¢(A) evaluates to true, otherwisd, is said to be unsatis-
fying. Formally, an SSAT formula contains both existential
and randomized quantifiers and takes the form

- 3, Yy, (Elp(x)] = 0).

The SSAT decision problem determines that, given a for-
mula ¢(x), if there exists a value far; such that for ran-
dom values (true or false with equal probability)af . . . ,
there exists a value far,, such that for random values gf,
such that the expected probability of satisfying the formula
¢(x) is at least a probability threshofj where0 < 6 < 1.

An SSAT formula (Littman, Majercik, & Pitassi 2001) can
be represented as a triple, ¢, ), where¢ is a CNF for-
mula over the variablesq,...,z,, 0 < 6 < 1, andQ is

the mapping? : x — {3,d}. The evaluation of an SSAT
formula, (¢, 0, @), is inductively defined on the number of
quantifiers to determine the expected probability of satisfy-
ing the formulap. Assumer; is the variable associated with
the leftmost quantifier. The expected probability of satisfy-
ing ¢, under@, denoted bywal (¢, @), is inductively defined
as:

e val(¢,Q) = 0.0 if ¢ contains an empty clause.
e val(¢, Q) = 1.0 if ¢ does not contain clauses.

Q
e val(¢p, Q) max(val(¢[z, =0, Q), val(P[z,=1,Q)) if
Qz1) =

Elwlvayla <

3.

* val(¢,Q)
where¢| ., -, is the (n-1)-variable CNF formula produced
from the n-variable formulap after assigning the vari-
able z; the valueb € {true, false} and simplifying

the outcome, in addition to, making any required variable
renumbering. Given, an SSAT formul&p, 0, Q), we say
Az, dy, . .., 3z, y, (E[p(x)] > 0) is true (satisfied) if
and only ifval(¢, Q) > 6.

If Q(xz1) = d, then the probability that, evaluates to
true leads to a satisfying formulais equally likely to the
probability thatz;, evaluates to false leads to a satisfying
¢, i.e., both have probability equal tb5. However, this is
not necessary. A randomly quantified variable can take the
value true or false with different probabilitied”z, is used
to represent that the random variabigis true with prob-
ability p, which implies that the probability that; is false
is 1 — p. Consequently, i)(z1) = 4%, val(¢, Q) becomes
val((b, Q) = val(¢|—w1:07 Q) X (1 _p) +val<¢’—$1:11 Q)) X
p

As pointed in (Littman, Majercik, & Pitassi 2001), many
decision problems can be reduced to special cases of SSAT.
The satisfiability problem (SAT), can be expressed as an in-
stance of SSAT by allowing only existential quantifiers and
settingd = 1 as: Jz1,...,3z, (El¢p(x)] = 1). Another
problem, MAJSAT, asks if the satisfying assignments of a
CNF formula¢(x) is at least half of the possible assign-
ments tog(x). MAJSAT can be represented as an instance
of SSAT of the formYzy, ..., dxz, (E[¢(x)] > 1). SAT
and MAJSAT can be combined together to form E-MAJSAT
(Littman, Majercik, & Pitassi 2001) which takes the form
Izq, ..., Fem, STy, ..., 2, (Elo(x)] > 0). E-
MAJSAT asks wether there is an assignment{o. . ., z,,
so that the combined probability of a satisfying assignment
of ¢(x) with random variables,,, .1, ..., z, is at leas?.

(val(¢[z,=0, Q) + val(¢[z,=1,Q))/2 if

4 Stochastic Satisfiability ask H P Pss ar

In this section we show that any SSAT formula,
(¢(x),0,Q), can be modularly translated into an E-program
in EH P Pss a7 Whose probabilistic answer sets correspond
to the models ofy(x). Moreover, we show that SAT, MA-
JSAT, and E-MAJSAT, which are instances of SSAT, can
be mapped t&F H PPss 7. These translations are mainly
adapted from (Niemela 1999).

4.1 SAT asEHPPssar

Any SAT formula, 3z4,...,3z, (E[¢(x)] = 1), can be
translated into an E-progran®, = (R, 7), whereR is a set
of E-rules consist of only atoms of the form

A: L] « Ap:[1,1],..., A, [1,1],
not (Amy1 : [1,1]),...,not (4, : [1,1])
where A, A;,..., A, are atoms andl, 1] represents the

truth valuetrue. The translation proceeds as follows:

1. For each existentially quantified variabi¢hat appears in
¢(x), we provide two atoms andz and include inR the
E-rules

x: [1,1] < not(z : [1,1]) T : [1,1] « not(z : [1,1])



wherez : [1, 1] corresponds to the fact thais true, how-
ever,z : [1, 1] means that the negation ®f(—x) is true or
x is false.

2. For each clause in ¢(x) and for each variablé in ¢,
if | =z, thenc : [1,1] « =z : [1,1] is included inR.
Otherwise, ifl = —x, thenR includes

c:[1,1] «—=:[1,1].

3. For each clausein ¢(x), we include inR

inconsistent : [1,1] «— not(inconsistent : [1,1]),

not(c: [1,1])

2. For each clause in ¢(x) and for each variablé in c,
if | =z, thenc : [1,1] « =z : [p,p] is included inR.
Otherwise, ifl = -z, thenR includes

c: L] «<Z:[1—-p,1-p].

3. For each clausein ¢(x), we include inR

inconsistent : [1,1] «— not(inconsistent : [1,1]),

not(c: [1,1])

whereinconsistent is a special atom that does not appear

in ¢(x).

whereinconsistent is a special atom that does notappear Theorem 1 LetS = (¢(x), %, Q) be a MAJSAT formula,

in ¢(x).
Proposition 1 LetS be a SAT formula an@® = (R, 7) be
the E-program translation of. Then,S has a model iffP
has a probabilistic answer set.

Example 1 Let S be a SAT formula of the form

Jo, Jy(El(@ V —y) A (hz Vy)] =1).
The E-program translation? = (R
following E-rules,R,

x:[1,1] < not (Z : [1,1]) T [1,1] « not (x: [1,1])
y: [, 1 —not (y:[L1])  7:[1,1] —mnot (y: [1,1])
ey [1L,1] —x:[1,1] ¢ : 1,1 «—7:[1,1]

co: [1,1] — T [1,1] co i [1,1] —y:[1,1]
inconsistent : [1,1] « not(inconsistent : [1,1]),

not(c; : [1,1])

wherel < ¢ < 2. P has two probabilistic answer setg
and ha, Wherehl(f) = [1,1], hl(y) = [1,1], hl(Cl) =
[1,1], ha(c2) = [1,1], and ho(z) = [1,1], hao(y) = [1,1],
ha(c1) = [1,1], ha(c2) = [1,1].

hy implies that—z and—y, as well as, the clauses andcs
are true inhy. Furthermoreh, means that, y, ¢q, co are
true in he. Notice thatS has two models;, = {-z, -y},
which implies that: andy are false ins;, andss = {z, y},

which means that: andy are true insy. This implies that
there is a one-to-one correspondence between the probabilis-h, (z) x hy(y) = 0.5 = val(H(x

tic answer sets of? and the models of, since,s; corre-
sponds tch; andss corresponds tas.

4.2 MAJSAT as EHPPgsar

Let & be a MAJSAT
gy, .. 8, (Elp(x)] > 1), where all vari-
ables appear i(x) are randomly quantified. We s&y
is satisfied iffval(¢, Q) >
E-program,P = (R,
of only atoms. The translation proceeds as follows:

1. For each randomly quantified variabtethat appears in

¢(x), with Q(z) = d”, we provide two atoms and™
and include inR the E-rules

z: [p,p) — not(z:[1—p,1-p])
Z:[1—p,1—p] < not(x:[p,p|)

wherez : [p,p] encodes the probability of being true
ispandz :

likely, thenp = 0.5.

,T), of S consists of the

formula of the form

1. & can be translated into an
T), whereR is a set of E-rules consist

[1 — p,1 — p] represents the probability of
x being false isl — p. Obviously, if events are equally

P = (R, 7) be the E-program translation of, and Ans
be the set of all probabilistic answer setsBf Then,¢(x)
has a model iffP has a probabilistic answer set, arfflis

satisfied iﬁZhGAns Haziedom(h) h(‘rl) = Ual(gb(X)’ Q) 2

1

Example 2 Let S be a MAJSAT formula of the form
ta, dy(El(x V ) A (22 Vy)] > 3).

The E-program translation? = (R, 7), of S consists of the

following E-rules,R,

z:v—not (T:v) T:v -« not(x:v)
y:v<«—not(g:v) y:v—mnot(y:v)
L1 —z:v e [L1—7g:v

o [L,1]—7Z:v c2: L]~y v

inconsistent : [1,1] «— mnot(inconsistent : [1,1]),
not(c; : [1,1])

wherel < ¢ < 2andv = [0.5,0.5]. Clearly, S is sat-

isfied, sinceval(((z V —y) A (-2 V ¥)),Q) = &+ > L.

On the other hand,P has two probabilistic answer sets

hi and hy, whereh,(Z) = [0.5,0.5], h1(y) = [0.5,0.5],

hl(Cl) = [1,1}, hl(CQ) = [1 1] anth( ) = [05 05]

haly) = 0.3, ha(er) = [1 1) ha(ez) = 1.1, and

hence’ZheAns Ha: edom(h) h’( ) = hl ) ( )
),Q) >3

Moreover, ((z V —y) A (-x V y)) has two models;; =

{—x, -y} andsy; = {z,y}. This implies that there is a one-
to-one correspondence between the probabilistic answer sets
of P and the models of(z vV —y) A (-x V y)), sinces;
corresponds té; ands, corresponds tés.

4.3 E-MAJSAT as EHPPsgar

Let S be an E-MAJSAT formula of the form
Az, ..., 3z, Py, .., 8"y, (Elo(x)] > 6), where

a sequence of existentially quantified variables;

(1 < i < n), are followed by a sequence of randomly quan-
tified variablesy; (1 < i < n). Similarly, we say that an
E-MAJSAT formulaS is satisfied iffval(¢, Q) > 6. Since
E-MAJSAT combines both SAT and MAJSAT together, a
translation form E-MAJSAT to an E-program combines the
SAT and MAJSAT translations to E-programs togethér.
can be translated into an E-prograf, = (R, ), where

R is a set of E-rules consist of only atoms. The translation
proceeds as follows:



For each existentially quantified variabi¢hat appears in
¢(x), we provide two atoms andz and include inR the
E-rules

z:[1,1] « not(z : [1,1]) ([, 1])

For each randomly quantified variabjehat appears in
#(x), with Q(y) = d”, we provide two atomg andy
and include inR the E-rules

y:[ 7p} — TLOt( [1*]771* ])
g:[1=p,1—p] « mnot(y:[p,p])

For each clause in ¢(x) and for each variablé in c,
if I =, with Q(x) = 3, thenc : [1,1] « x : [1,1]is
included inR. Otherwise, ifl = —z, thenR includes
c:[1,1] «z: [1,1].
For each clausein ¢(x) and for each variabléin ¢, if
I =y, with Q(y) = &%, thenc : [1,1] « y : [p,p] is
included inR. Otherwise, ifl = —y, then R includes
c:[L]—=y:[1—-p1-pl
For each clausein ¢(x), we include inR

T:[1,1] < not(x

inconsistent : [1,1] « not(inconsistent : [1,1]),

not(c: [1,1])
whereinconsistent is a special atom that does not appear

in ¢(x).
Theorem 2 Let S = (¢(x),0,Q) be an E-MAJSAT for-
mula, P = (R,7) be the E-program translation of,
Ans be the set of all probabilistic answer sets Bf and
h,h' € Ans be probabilistic answer sets ¢f. Then,¢(x)
has a model iffP has a probabilistic answer set, arfélis
satisfied iff

max R ( >0
BT[], @n:[1,1] Z H )| =

W=D i=1
whereD = 7 : [1,1],...,2, : [L1],91 : [p1,p1)y---» Un :

[pn,pn] @NAZ; = 2; Or 2; = —x; andy; = y; Or y; = —y;.

Intuitively, in the expression of Theorem 2, the maximum
is taken over all the possible assignments to the existen-
tially quantified variables. For a given assignment to the
existentially quantified variables;, ..., z,, a summation

is taken over the product of probabilities associated with
all randomly quantified variables in each satisfying assign-
ment tog(x), of the formzy, ..., Z,,v1, ..., ys, that con-
tainszy, ..., x,. This satisfying assignment corresponds to
a probabilistic answer sét of P.

Example 3 Let S be an E-MAJSAT formula of the form
Jz, dy(E[(z V —y) A (mz V y)] > 0.75).

The E-programpP = (R, 7), translation ofS consists of the

following E-rules,R,

x:[1,1] « not (T : [1,1]) T:[1,1] <« not (z: [1,1])
y:v—not (y:v) y:v—not(y:v)

¢ [1,1] — 2 [1,1] L1 «<7g:v
co:[1,1] «—T:[1,1] L1 —yv
inconsistent : [1,1] « not(mconsistent :[1,1]),

not(c

i [15 1])

wherel < ¢ < 2 and v [0.5,0.5]. It can
be easily verified thatS is unsatisfied, sinceal(((z Vv

—y) A (mz V y)),Q) = 0.5 # 0.75. On the other
hand, P has two probabilistic answer sets; and ho,
where h1(f) = [ 1] 1( ) = [05,05], hl(Cl) =
[1,1], hi(c2) = [1,1], and he(z) = [1,1], ho(y) =
[0.5,0.5], ha(c1) = [1,1], ha(e2) = [1,1], and hence,
Maxp, z:1,1], h2|—:p [1,1] [h1( ) X hi(y), he(x) % he(7)] =
0.5 = val(¢(x), Q) # 0.75. Moreover,((zV-y)A(-zVy))

has two modeI31 = {—x,~y} andsy = {z,y}. Thisim-
plies that there is a one-to-one correspondence between the
probabilistic answer sets d? and the models df{z vV —y) A

(mx Vy)), sinces; corresponds td; andss, corresponds to

ho.

The translation from a general SSAT formula, where ex-
istentially quantified variables alternating with randomly
quantified variables, is the same as the translation from an
E-MAJSAT formula to an E-program. Then, the following
proposition directly follows.

Proposition 2 Let S be an SSAT formula of the form
dx1,dy1, ..., Jx,, dy, (E[é(x)] > 6) and P = (R, 7)
be the E-program translation &. Then,¢(x) has a model
iff P has a probabilistic answer set.

Example 4 Consider the following SSAT formul&, from
(Littman, Majercik, & Pitassi 2001), wher§ of the form

dz, Jy, dz(El(x Vy) A (y V —2) A (v —y)] > 0.5).
The E-programP = (R, 1), translation ofS consists of the
following E-rules,R,

x:v—not (T:v) T:v < not(z:v)

y:[1,1] <« not (g: [1,1]) 7 [1,1] <« not (y: [1,1])

z:ve—not(Z:v Z:v <+ not(z:v)

a:[L1l]—z:v 61:[1,1]<—y:[1,1]

co: [1,1] — gy [1,1] co: L] —Z:v

es: 1,1 —Z:v es:[1,1] —7:[1,1)

inconsistent : [1,1] «— not(inconsistent : [1,1]),
not(c; : [1,1])

wherel < i < 3andv = [0.5,0.5]. It can be easily ver-
ified thatS is satisfied, sinceal(((z V y) A (y V —2) A
(mz vV —y)),Q) = 0.75 > 0.5. On the other handP
has three probabilistic answer sets, hg, and hs, where

hi(z) = [0.5,0.5], hi(y) = [1,1], ha(z) = [0.5,0.5],
hl(fl) = [ 1], hl(Cg) = [ ] hl(Cg) []. 1] But,
ho(7) = [0.5,0.5), haly) = [1,1], ha(z) = [0.5,0.5),
hQ(Cl) = [1,1], hz(Cg) = [ s ] hg(Cg) [1 1] Flnally,
hs(®) = [05,0.5], hs(y) = [L1], hs(z) = [0.5,0.3],
h3(01) = [1 }, hg(CQ) = [1 ] h3(03) [1 1] More-
over,((z Vy) A (y VvV —z) A (mz V —y)) has three models

s1 = {z,wy, -z}, so = {—x,y, 2z}, andss = {—z,y, z}.
This implies that there is a one-to-one correspondence be-
tween the probabilistic answer sets Bfand the models of
((xVy AyV-z)A(—zV -y)), sincesy, s, and ss
correspond tohy, hs, andhg respectively.

Observe that the translation from SSATEH PPggat iS
modular, since small local changes in the clausesdauses
small local changes in the corresponding E-program trans-
lation. However, this is not the case in the reverse direc-
tion. There is no local modular mapping frafivd P Pgg a7



to SSAT. This implies thabl H P Psg 41 iS more expressive
than SSAT from the knowledge representation point of view.
Similar to (Niemela 1999), let, e.gM((.) be a modular map-
ping from EHPPssar to SSAT. LetP = (R, 7) be an
E-program inE'H P Psg 47 that is modularly mapped to an
SSAT formulaS = (M(R), 6, Q), where M(R) = ¢(x).
M(.) is said to be modular if for each set of factsthat is
mapped toM (F), we haveP = (RUF, 7) has a probabilis-

tic answer set ifiM (R) U M(F) has a model. Intuitively,
adding a fact to an E-program should make a local change in
the translated SSAT formula, but not require translating the
entire E-program.

Proposition 3 There is no modular

EHPPgg 7 to SSAT.

Proof. Following a proof of a corresponding proposition in
(Niemela 1999), consider the E-progrdm= (R, 7) where

R contains the E-rule : [1,1] < not (a : [1,1]). Con-
sider also thatM(.) is a modular mapping. It can be seen
that P has no probabilistic answer sets, and herle€ R) is
unsatisfiable. HoweveM (R) U M({a : [1,1] «<}) is un-
satisfiable regardless the choice/of({a : [1,1] <}). This
implies thatP = (RU {a : [1,1] «}, 7) has no probabilis-

mapping from

This set of E-rulesR,..q4, iS not used in the translation
from P to an SSAT formula. However, E-rules i,

are used to encode the default probabilities, i.e., to encode
the fact that the probability ofa is 1 — Pr(a).

Observe that an E-program in restrictedi P Pss 4 cOn-
tains E-rules that consist of only atoms of the form

TEA:N — Al:p’lv"wAm:va
not (Am+1 : mt1),---,n0t (A pin)
where A, A;(1 < i < n) are atoms. Let

Head(r) = A, Pos(r) = {A1,...,An}, andNeg(r) =
{Am+1,-..,A}. A positive dependency graph of an E-
program,P = (R U R,.g4, 7) in restrictedEH PPssar, is

a directed graph7 p, such that (i) vertices af p are atoms
appearing inR and (ii) for each E-ruler in R, there is an
edge fromH ead(r) to each atom iPos(r).

Definition 5 An E-programP in restrictedEH P Psgar IS
tight E-program if the positive dependency graphrofis
acyclic.

5.1 Tight EH PPgsar as SSAT
Any tight E-program, P (R U Ryeq,7) in restricted

tic answer sets as well. However, this is not the case, since EH PPsgs 41, can be translated into an SSAT formula. The

P has a probabilistic answer skt whereh(a) = [1,1].
Therefore, there does not exist any modular mapping from
EHPPggs 7 to SSAT.

5 FEHPPgsar as SSAT

In general, it is not possible to translate any E-program
in EHPPssar or EHPP (Saad 2006) to SSAT, since
EH P Pgg a1 allows probability intervals while SSAT deals
with point probabilities. In addition, EHPP (Saad 2006)
allows conjunctions and disjunctions of literals to appear
in the body of E-rules. However, we show that there is a
class ofEH P Psg a1, namelyrestricted E H P Psg 4, that
can be translated into SSAT. An E-program rastricted
EHPPsgar takes the formP = (R U Ry.q4,T), Where

T Lit — cpeq aNAR U R,,4 IS a set of E-rules that satisfy
the following conditions:

1. All events that appear iR are atomic events, represented

as positive literals (atoms) iR.

2. All probabilities that appear in any E-rule i are point
probabilities of the formip, p].

3. If the probability of an event is [p, p], then the probabil-
ity of all occurrences o, in R is [p, p].

4. For any event that appears ik, we havePr(a) +
Pr(—a) =1.

5. For each event that appears inR with probability
[p,p] < [1,1], the E-rule

a:[1-p,1—p|<mnot(a:lppl|)

belongs toR,,.,. If the probability ofa is [1, 1], then the
above E-rule is simply written as

a:[1,1] « not (a: [1,1]).

resulting SSAT formula can be viewed as SAT, MAJSAT, or
E-MAJSAT, depending on the probability values that appear
in R, and the type of quantifiers that we associate with each
distinct variable in the resulting SSAT formula. If all prob-
abilities that appear iR are[1, 1], then the resulting SSAT
formula,S, is SAT with existential quantifier associated with
each variable appearingdh But, if all probabilities that ap-
pear inR are[p, p] # [1, 1], then the resulting formulas, is
MAJSAT with randomized quantifier associated with each
variable inS. If the probabilities appearing iR are a com-
bination offp, p] and[1, 1], then the resulting formuld, can

be viewed as E-MAJSAT or MAJSAT, depending on how we
want to view the formula. I is viewed as E-MAJSAT, then
an atoma in R, whose associated probability is, 1], cor-
responds to an existentially quantified variableSinHow-
ever, ifa is associated with probability, p] # [1,1] in R,
thena corresponds to a randomly quantified variableSin
(given that all existentially quantified variables are followed
by the randomly quantified ones). Letoms(P) denotes
the set of atoms that appearing it The translation from
an E-program, in restricte H PPss 41, t0 SSAT is pro-
vided by defining the notion gbrobabilistic completiorof
EHPPggs a1 adapted from (Clark 1978). The probabilistic
completion of an E-progran, = (RUR,,4, T) in restricted
EHPPssar, is denoted by omp(P) = (R, Q), where:

e R is the set of propositional formulas formed from the
E-rules inR as follows:

— For eachA € atoms(P), if
Acp — Al:pl,. . ALl o
not (A, 41t fiyy1), - - -, not (Ag )

for1 < ¢ < k, is the set of E-rules iR whose heads
containA, thenA = Body; V - - -V Body,, € R where
Body; = AT N ... NAL N=AL AN N DALL I



k =0, i.e., there is no E-rule iR whose head contains
A, then—-4 € R.

— If R contains an E-rule of the form

not(inconsistent : [1,1]),
Al 1#17-~7Am1Mm7
not (Am+1 : /-‘Lm+l)7 EERR
not (A, : tn)

inconsistent : [1,1] «

then,—Body € R, where

BOdy:Al/\.../\Am/\_‘Am+1/\.../\_‘An

e () is a mapping, where for each atom € atoms(P),
we haveQ(A) = dP,if A : [p,p] appears in any E-rule
r in R (either in the head of or in its body). Similarly,
Q(A) = 3,if A:[1,1] appears in any E-rulein R (if the
resulting SSAT is viewed as E-MAJSAT). In the mapping
Q, Q(A) = ¥’ says that, in the resulting SSAT formula,
A is randomly quantified variable with the probability of
A being true igp.

Theorem 3 Let P = (R U R4, 7) be a tight E-program
in restricted EH P Pssar and Comp(P) = (R, Q) be the
probabilistic completion of?. Then,R has a model iffP

has a probabilistic answer set.

Theorem 4 Let P = (R U R4, 7) be a tight E-program
in restricted EH PPgs 4 and Comp(P) = (R, Q) be the
probabilistic completion of. Let Ans be the set of all prob-
abilistic answer sets o and h,h’ € Ans. Then,§ =
<R797Q> is satisfied iﬁ:ZheAns HAiedom(h,) h(Al) =
val(R, Q) > 0, viewing the SSAT formuls, as MAJSAT,
wheref = 1, and

Z Hh/@i)] >0

WED i=1

whereD = 7; : [1,1],. 1,1, [phpl] e Tn
[P, Pn] andz; = z; or xl = ﬂx, andy; = y; or y; = —w;,
viewing the SSAT formul&, as E-MAJSAT.

In the following examples, without loss of generality, we
consider MAJSAT translation from E-programs.

Example 5 Consider the E-programP = (R U Rycq, T)
in restrictedEH P Psg 41, whereR U R,,., contains the E-
rules

max [h(~
REF1[L 1)o@ [L,1]

a:[0.3,0.3] «— not(b:[0.4,0.4])
b:[0.4,0.4] < mnot(a:][0.3,0.3])
a:[0.7,0.77 «— not (a:][0.3,0.3])
b:[0.6,0.6] «— not (b:[0.4,0.4])

Obviously, the first two E-rules belong fband the last two
E-rules belong toR,.,. Clearly, P is tight. The proba-
bilistic completion ofP is Comp(R, @), whereR = {a =
—b,b = —-a} = {(a VD), (—aV b}, andQ(a) = ",

Q(b) = ¥%*. P has two probabilistic answer sefs,
and hy, where hy(a) = [0.3,0.3], hi(b) = [0.6,0.6],
and he(a) = [0.7,0.7], ha(b) = [0.4,0.4]. In addition,

R = {(aVd),(—aV-b)} has two models; = {a, b} and

s9 = {—a,b}. This implies that there is a one-to-one cor-
respondence between the probabilistic answer seisarfd
the models ofR, sinces; corresponds td:; and sy corre-
sponds taw,. It can be easily verified that the SSAT formula,
S = (R,0.5,Q), is unsatisfied, sinceal(R,Q) = 0.46 #
0.5, in addition, we haved -, c ans 1l caomn) M) =

hl( )Xhl(b)+h2( )th(b) —046—1)(11 R Q }_4 0.5.

Example 6 Consider the E-programpP = (R U R4, T)
in restrictedEH P Pgg a7, WwhereR U R,,., contains the E-
rules

a:[0.3,0.3] <« not (b:[0.4,0.4])
a:[0.7,0.7] < not (a:][0.3,0.3])
b:[0.6,0.6] « not (b:[0.4,0.4])

The first E-rule belongs ta? and the last two E-rules
belong to R,.,. Clearly, P is tight. The probabilis-
tic completion ofP is Comp(R,Q), whereR = {a =
—b,=b} = {(a V b),(=a V =b), (=)}, andQ(a) = ¥°?,
Q(b) = d"*. P has only one probabilistic answer set
h, whereh(a) = [0.3,0.3], h(b) = [0.6,0.6]. In addi-
tion, R = {(a vV b),(—a V —b), (=b)} has only one model
s = {a,—b}. This implies that there is a one-to-one cor-
respondence between the probabilistic answer sét ahd
the model ofR, sinces corresponds tc:. It can be eas-
ily verified that the SSAT formul& = (R,0.5,Q), is un-
satisfied, sinceral(R,Q) = 0.18 # 0.5, in addition, we

haveZhEAns Hmiedom(h) h(xl) = h(a’) X h(B) =018 =
val(R,Q) # 0.5.

Example 7 Consider the E-programP = (R U R4, T)
in restrictedEH P Pgg a7, WhereR U R,,., contains the E-
rules
a:[0.3,0.3] :[0.3,0.3])
a:[0.7,0.7] : [0.3,0.3])

The first E-rule belongs t&® and the last E-rule belongs to
R,..4. Clearly, P is tight. The probabilistic completion @t

is Comp(R, Q), whereR = {a = —a}, andQ(a) = ¥°?.

It can be easily verified thaP has no probabilistic answer
sets. In additionR does not have any models either. This
implies that there is a one-to-one correspondence between
the probabilistic answer sets d? and the models oRR.
Moreover, the SSAT formul& = (R,0.5,Q), is unsat-
isfied, sinceval(R,Q) = 0 # 0.5, in addition, we have
ZhGAns Hm,;edom(h) h(xl) =0= ’U(ll(R, Q) :\Lé 0.5.

Example 8 Consider the E-programpP = (R U R4, T)
in restrictedEH P Psg a1, WwhereR U R,,., contains the E-
rules

— not (a
— not (a

a:[0.9,0.9] «— mnot(b:]0.2,0.2])
b:[0.2,0.2] «— not (a:[0.9,0.9])
c:[1, 1] — a:[0.9,0.9]
c:[1,1] — b:[0.2,0.2]
@:(0.1,0.1] «— not (a:[0.9,0.9])
b:[0.8,0.8] « not (b:[0.2,0.2]
c:[1,1] — mnot (c:[1,1])

The first four E-rules belong t& and the last three E-
rules belong toR,.,. Clearly, P is tight. The probabilis-
tic completion ofP is Comp(R,Q), whereR = {a =



—b,b = ~a,c = a V b}, andQ(a) = 47, Q(b) = ¥°?

Qc) = dl. P hastwo probabilistic answer sets and hs,
whereh, (a) = [0.9,0.9], h1(b) = [0.8,0.8], hy(c) = [1,1],
and hy(a) = [0.1,0.1], ha(b) = [0.2, 02] ho(c) = [1,1].

In addition,R = {a = —b,b = —a,c = a V b} has two
modelss; = {a,—b,c} and S92 = {—\a b c}. This implies

can be made about the truth values and the probabilities of
a andb in that loop. These loops are the reason for the
existence of a model (or models) & that does not cor-
respond to any probabilistic answer set Bf and hence

he Ans HAiedom(h) h(A;) # val(R,Q). In the rest of
this section, we follow the approach of (Lin & Zhao 2004)

that there is a one-to-one correspondence between the prob- adapted to deal witlv H P Pss a7

abilistic answer sets of and the models oR, sinces;

corresponds té, ands, corresponds td.,. It can be easily
verified that the SSAT formuld, = (R,0.5,Q), is satis-
fied, sinceval(R, Q) = 0.74 > 0.5, in addition, we have

ZhEAns Hwiedom(h) h(xl) = h’l(a’) X h’l(g) X h’l(c) +
ha(@) % ha(b) x ha(c) = 0.74 = val(R, Q) > 0.5.

5.2 Non-Tight EH PPssar as SSAT

Let P = (R U R4, 7) be any E-program in restricted
EHPPgsar andComp(P) = (R, Q) be its probabilistic
completion. It is possible to get a modelBfthat does not
correspond to any probabilistic answer seffand hence,

Definition 6 Let P = (R U R4, 7) be a (finite and non-
tight) E-program in restricted? H PPsgar and LP be a
non-empty subset afoms(P). Then,LP is a loop of P if
forany A, B € LP, there exists a path of length 0 from
Ato B, in the positive dependency graphiefsuch that all
the vertices in the path are ihP.

Following (Lin & Zhao 2004), to allow Theorems 3 and 4 to
be applied to non-tight E-progranis= (RUR,,4, T) in re-
strictedE H P Pss o, We associate to each loappP, of P a
formula, LF, called loop formula, and add this loop formula
LF to R in the probabilistic completiorC'omp = (R, Q),

of P. This obtains a one-to-one correspondence between the

Theorems 3 and 4 do not apply for that E-program. This oc- models ofR U LF and the probabilistic answer sets Bf

curs for any E-program in restrictddH P Pss 47 that is not
tight. Consider the following E-program.

Example 9 Let P = (R U R,.4,7) be an E-program in
restricted £ H P Psgs a1, WhereR U R, consists of the E-
rules

a:[0.5,05] «— b:[0.3,0.3]
b:(03,03] « a:[05,05)
@:[05,05 « no( [0.5,0.5])
b:[0.7,0.7] — mnot (b:[0.3,0.3])

The probabilistic completion aP is Comp(P) = (R, Q),
whereR = {a = b} and Q(a) = ¥°7, Q(b) =
a3, This E-program,P, has only one probabilistic an-
swer seth, whereh(a) = [0.5,0.5] and h(b) = [0.7,0.7]
(h(a) corresponds toPr(—a) and h(b) corresponds to
Pr(=b)).  We have,} ,a.s Ilacaomm MAi) =
T4, cdomn h(As) = h(@) x h(b) = [0.5,0.5]x[0.7,0.7] =
[0.35,0.35].
els of R that contribute toval(R, Q). These models are
= {-a,-b} and s = {a,b}. The probabilistic an-
swer seth of P corresponds to the model = {—a, b}
of R. Given the modelg; and s, of R, it can be eas-
ily verified thatval(R,Q) = [0.5,0.5]. This implies that

2 heAns HALEdom(h,) h(A;) # val(R, Q).

But, on the other hand, there are two mod-

and hence, Theorems 3 and 4 apply to non-tight E-programs
(whereLF is the set of all loop formulas aP). The loop
means that non of the atoms involved in the loop can be de-
fined in any probabilistic answer sét,of P, and hence they

do not exist indom(h). The added loop formulas associated
with each loop ofP to R in the probabilistic completion of

P means that the atoms of the loops are not in any model of
RULF.

Definition 7 Let P = (R U R,,.4, 7) be an E-program in
restrictedE H P Pss o7 and L P be a loop inP. We define

Acp— A g,y At fom,

not (Am+1 ¢ fmt1), ..., n0t (An : ln)

Acp— A g, At fom,

not (Am+1 ¢ fmt1)s ..., not (An : fn)
and A€ LP,(3A"). A" € LP, A’ €

Acp— A pr,. .oy Am o fim,

not (Am+1 : m+1)s---,n0t (An : tin)

Acp—Ar g1, .oy Am o i,

not (Am+1 ¢ m+1),---,n0t (An : pn) € R,
and A € LP,—- (3A").A' ¢ LP,A' € B

whereB = {Ay,..., Am, Amt1,- -5 Ante

Intuitively, similar to (Lin & Zhao 2004) R}, (L P) contains
the E-rules inR that are involved in the loop P. However,
R, (LP) contains the E-rules i that are not in the loop

RE(LP) =

mm

Rp(LP) =

There is a one-to-one correspondence between the proba-LP. Clearly, R};(LP) and Ry (LP) are disjoint sets.

bilistic answer sets of any tight E-prograif, in restricted
EHPPsgsar, and the models dR in Comp(P) = (R, Q).

But this is not the case for the E-program in Example 9. The

reason is that this E-progran®, is not tight, since there
is a cycle in the positive dependency graphibf The set

{a, b} is a cycle (loop) inP because in the positive depen-

dency graph ofP, a depends o from the first E-rule and

b depends oru from the second E-rule. This loop does
not allow us to conclude any knowledge about the prob-
abilities of @ and b using the probabilistic answer set se-

mantics of EH PPgs 4. However, in SSAT, assumptions

Definition 8 Let P = (R U R,,,4, ) be an E-program in
restrictedE H PPss 47 and LP be a loop inP. Let

At — A“ u17...,A i o
not (A7YJL+1 :um-&-l) ’nOt (A?nj : /’[’?rg)

for1 < j < k,, be the set of E-rules iR, (LP
atomA? (1 < i < n). Then, the implication

), for an

~[Body11V- - -VBodyi, V.. VBodym V.. NVBodyk,] >\ —A
AeLP



is called a probabilistic loop formula, denoted By (LP),
of LP, whereBody;; = A7 N ... NAY N=AY L ALOA
—AY.

Theorem5 Let P = (R U R4, 7) be any E-program in
restrictedEH PPgs a1, Comp(P) = (R, Q) be the proba-
bilistic completion ofP, Ans be the set of all probabilis-
tic answer sets o and h € Ans. Let LF be the set
of all probabilistic loop formulas associated with all loops
of P. Then,R U LF has a model iffP has a probabilis-
tic answer set, andS = (R U LF,0,Q) is satisfied iff
le,eAns HAiEdom(h) h(AZ) = Ual(RU‘Cj:’ Q) > 0, view-
ing the SSAT formulas, as MAJSAT, wheré = 1, and

ma h(Zp K(g)| >0
h,hi-l:[1,1],.??,%:[1,1] [ ( ) Z H (y )] -

whereD = 71 : [1,1],...,%n ¢ [L1],91 : [p1,p1)y---5 Un -
[pn,pn] @NAZ; = x; Or T; = —x; andy; = y; or y; = —y;,
viewing the SSAT formul&, as E-MAJSAT.

Example 10 Consider again the non-tight E-progran®,
from Example 9. This E-program belongs to restricted
EHPPssar and has one loo.P = {a, b}, where

RT(LP) = {a:[0.5,0.5] — b:[0.3,0.3],
b:10.3,0.3] — a:[0.5,0.5]}
R=(LP) = 0.

Thus, the loop formuld F/(LP) is —false D (—a A —b),
which is equivalent tq—a A —b). AddingLF(LP) to R
outcomes the propositional formuR U LF(LP) = {a =
b, (ma A —b)}, which has only one modé¢ha, —b}. It can
be easily verified thatal(R U {(-a A =b)},Q) = 0.35.
This implies that the only probabilistic answer $gtwhere
h(a) [0.5,0.5], h(b) [0.7,0.7], of P corresponds to
the only model ofR U LF(LP). Moreover, the SSAT for-
mula,§ = (R U {(—a A =)}, 0.5, Q), is unsatisfied, since
Pneans 1a,edomn) MA) = 0.35 = val(R U {(-a A
—b)}, Q) Z 0.5.

6 Related Work and Conclusions

We studied the relationship between Extended Hybrid Prob-
abilistic Logic Programs and Stochastic Satisfiability. We
presented a modular translation from SSAT to a class of
EHPP with probabilistic answer set semantics. The trans-
lation is based on a corresponding local translation from
SAT to normal logic programs described in (Niemela 1999).
This translation shows that thiendamentalprobabilistic
reasoning tasks that can be encoded by SSAT (Majercik &
Littman 1998; 2003; Littman, Majercik, & Pitassi 2001) —
such as probabilistic planning, contingent probabilistic plan-
ning, the most probable explanation in a belief network, the
most likely trajectory in probabilistic planning, and belief

In addition, we presented a translation fréi P Psg a1
to SSAT that relies on a corresponding translation from
normal logic programs to SAT described in (Clark 1978;
Lin & Zhao 2004). FHPPssar is a restricted class of
EHPP, since not every program in EHPP can be translated
into SSAT. This is because EHPP allows probability inter-
vals and conjunctions and disjunctions of literals to appear in
the body of rules. However, SSAT allows point probabilities.
Two classes o H P Psgs o7 are identified; tight and non-
tight EH P Psg 4r. The translation form tight H P Psg a7
to SSAT is based on the translation from tight normal logic
programs (Fages 1994) to SAT, using Clark's completion
(Clark 1978), by employing the notion of probabilistic com-
pletion that is a probabilistic extension to Clark’s comple-
tion (Clark 1978). In addition, the translation form non
tight EHPPggsar to SSAT relies on the translation from
non tight normal logic programs to SAT, using loop formu-
las (Lin & Zhao 2004), by employing the notion of prob-
abilistic loop formulas that is a probabilistic extension to
loop formulas of (Lin & Zhao 2004). The translation from
EHPPsgsar to SSAT provides a foundation for an imple-
mentation for computing the probabilistic answer set seman-
tics of EHPP by exploiting the existing work on SSAT with
a selection from a variety of SSAT solvers.

A similar relationship between SSAT and other proba-
bilistic logic programming frameworks, e.g., (Ng & Subrah-
manian 1992; 1993; 1994; Dekhtyar & Subrahmanian 2000;
Kern-Isberner & Lukasiewicz 2004; Lukasiewicz 1998;
Baral, Gelfond, & Rushton 2004; Kersting & Raedt 2000;
Lakshmanan & Sadri 2001; Poole 1997; Vennekens, Ver-
baeten, & Bruynooghe 2004), has not been studied. How-
ever, the relationship between the probabilistic logic pro-
gramming frameworks (Ng & Subrahmanian 1992; 1993;
1994; Dekhtyar & Subrahmanian 2000; Kern-Isberner &
Lukasiewicz 2004; Lukasiewicz 1998) and a different ex-
tension to SAT, namely, Probabilistic SAT (PSAT) (Boole
1854) has been studied. Given an assignment of probabili-
ties to a collection of propositional formulas, PSAT asks if
this assignment is consistent. The solution to PSAT is based
on the possible world semantics. The possible world seman-
tics solution to PSAT is achieved by compiling a linear pro-
gram from the given probability assignments to a collection
of propositional formulas, PSAT, and if this linear program
has a solution, implies that the probability assignments to
the set of propositional formulas is consistent. The rela-
tionship between PSAT and the probabilistic logic program-
ming frameworks presented in (Ng & Subrahmanian 1992;
1993; 1994; Dekhtyar & Subrahmanian 2000; Kern-Isberner
& Lukasiewicz 2004; Lukasiewicz 1998) has been studied.
This relationship has been investigated by translating a prob-
abilistic logic program,P, in (Ng & Subrahmanian 1992;
1993; 1994; Dekhtyar & Subrahmanian 2000; Kern-Isberner
& Lukasiewicz 2004; Lukasiewicz 1998), to PSAT, by com-
piling a linear program,.P, that is equivalent to PSAT

inference — can be also encoded and reasoned about usfrom P. A solution to LP implies that P is consistent.

ing EHPP. Moreover, we have shown that there is no modu-
lar mapping from EHPP to SSAT. This shows that EHPP is

more expressive than SSAT from the knowledge representa-

tion point of view.

This corresponds to translating a probabilistic logic pro-
gram in (Ng & Subrahmanian 1992; 1993; 1994; Dekhtyar
& Subrahmanian 2000; Kern-Isberner & Lukasiewicz 2004;
Lukasiewicz 1998) to PSAT. However, it is not clear how



to translate PSAT to a probabilistic logic program in (Ng
& Subrahmanian 1992; 1993; 1994; Dekhtyar & Subrahma-
nian 2000; Kern-Isberner & Lukasiewicz 2004; Lukasiewicz
1998). The probabilistic logic programming frameworks of
(Baral, Gelfond, & Rushton 2004; Kersting & Raedt 2000;
Poole 1997; Vennekens, Verbaeten, & Bruynooghe 2004) re-
late probabilistic logic programming to Bayesian networks,
which is different from SSAT and PSAT.
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