Skip to main content

On the Relationship between Hybrid Probabilistic Logic Programs and Stochastic Satisfiability

  • Conference paper
Scalable Uncertainty Management (SUM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5291))

Included in the following conference series:

  • 499 Accesses

Abstract

In this paper we study the relationship between Stochastic Satisfiability (SSAT) [20,12] and Extended Hybrid Probabilistic Logic Programs (EHPP) with probabilistic answer set semantics [22]. We show that any instance of SSAT can be modularly translated into an EHPP program with probabilistic answer set semantics. In addition, we prove that there is no modular mapping from EHPP to SSAT. This shows that EHPP is more expressive than SSAT from the knowledge representation point of view. Moreover, we present that the translation in the other way around from a program in EHPP to SSAT is more involved. We show that not every program in EHPP can be translated into an SSAT instance, rather a restricted class of EHPP can be translated into SSAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: 7th International Conference on Logic Programming and Nonmonotonic Reasoning. Springer, Heidelberg (2004)

    Google Scholar 

  2. Boole, G.: The laws of thought. Macmillan, London (1854)

    Google Scholar 

  3. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)

    Google Scholar 

  4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic program. Journal of Logic Programming 43(3), 187–250 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fages, F.: Consistency of clark’s completion and existence of stable models. Methods of Logic in Computer Science 1, 51–60 (1994)

    Google Scholar 

  7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3-4), 363–385 (1991)

    Article  Google Scholar 

  8. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the power of maximum entropy. Artificial Intelligence 157(1-2), 139–202 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kersting, K., De Raedt, L.: Bayesian logic programs. Inductive Logic Programming (2000)

    Google Scholar 

  10. Lakshmanan, L.V.S., Sadri, F.: On a theory of probabilistic deductive databases. Journal of Theory and Practice of Logic Programming 1(1), 5–42 (2001)

    Article  MathSciNet  Google Scholar 

  11. Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by sat solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Littman, M., Majercik, S., Pitassi, T.: Stochastic boolean satisfiability. Journal of Automated Reasoning 27(3), 251–296 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lukasiewicz, T.: Probabilistic logic programming. In: 13th European Conference on Artificial Intelligence, pp. 388–392 (1998)

    Google Scholar 

  14. Majercik, S., Littman, M.: Maxplan: A new approach to probabilistic planning. In: Fourth International Conference on Artificial Intelligence Planning, pp. 86–93 (1998)

    Google Scholar 

  15. Majercik, S., Littman, M.: Contingent planning under uncertainty via stochastic satisfiability. Artificial Intelligence 147(1-2), 119–162 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information & Computation 101(2) (1992)

    Google Scholar 

  17. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective and conditional probabilities in deductive databases. Journal of Automated Reasoning 10(2) (1993)

    Google Scholar 

  18. Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive databases. Information & Computation 110(1) (1994)

    Google Scholar 

  19. Niemela, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

    Article  MathSciNet  Google Scholar 

  20. Papadimitriou, C.H.: Games against nature. Journal of Computer and System Sciences 31(2), 288–301 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 94(1-2), 7–56 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Saad, E.: Incomplete knowledge in hybrid probabilistic logic programs. In: Tenth European Conference on Logics in Artificial Intelligence. Springer, Heidelberg (2006)

    Google Scholar 

  23. Saad, E.: A logical approach to qualitative and quantitative reasoning. In: 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (2007)

    Google Scholar 

  24. Saad, E.: Probabilistic planning in hybrid probabilistic logic programs. In: First International Conference on Scalable Uncertainty Management. Springer, Heidelberg (2007)

    Google Scholar 

  25. Saad, E., Pontelli, E.: A new approach to hybrid probabilistic logic programs. Annals of Mathematics and Artificial Intelligence 48(3-4), 187–243 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: International Conference on Logic Programming, pp. 431–445 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saad, E. (2008). On the Relationship between Hybrid Probabilistic Logic Programs and Stochastic Satisfiability. In: Greco, S., Lukasiewicz, T. (eds) Scalable Uncertainty Management. SUM 2008. Lecture Notes in Computer Science(), vol 5291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87993-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87993-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87992-3

  • Online ISBN: 978-3-540-87993-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics