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Abstract

In this paper we study the relationship between Stochastic
Satisfiability (SSAT) (Papadimitriou 1985; Littman, Majer-
cik, & Pitassi 2001) and Extended Hybrid Probabilistic Logic
Programs (EHPP) with probabilistic answer set semantics
(Saad 2006). We show that any instance of SSAT can be mod-
ularly translated into an EHPP program with probabilistic an-
swer set semantics. In addition, we show that there is no mod-
ular mapping from EHPP to SSAT. This shows that EHPP is
more expressive than SSAT from the knowledge representa-
tion point of view. Moreover, we show that the translation in
the other way around from a program in EHPP to SSAT is
more involved. We show that not every program in EHPP can
be translated into an SSAT instance, rather a restricted class
of EHPP can be translated into SSAT.

1 Introduction
Hybrid Probabilistic Logic Programs (HPP) (Saad & Pon-
telli 2006) modifies the original Hybrid Probabilistic Logic
Programming framework of (Dekhtyar & Subrahmanian
2000) and generalizes and modifies theprobabilistic anno-
tated logic programming framework, originally proposed in
(Ng & Subrahmanian 1992) and further extended in (Ng &
Subrahmanian 1993; 1994). Probabilities in (Saad & Pon-
telli 2006) are presented in form of intervals where a proba-
bility interval represents the bounds on the degree of belief
a rational agent has about the truth of an event. The seman-
tics of HPP (Saad & Pontelli 2006), intuitively, captures the
probabilistic reasoning according to how likely are the vari-
ous events to occur. It was shown that the HPP (Saad & Pon-
telli 2006) framework is more suitable for reasoning and de-
cision making tasks, including those arising from planning
under probabilistic uncertainty (Saad 2007). In addition, it
subsumes Lakshmanan and Sadri’s (Lakshmanan & Sadri
2001) probabilistic implication-based framework as well as
it is a natural extension of classical logic programming with
answer set semantics. As a step towards enhancing its rea-
soning capabilities, the framework of HPP was extended to
cope with non-monotonic negation (Saad & Pontelli 2005)
by introducing the notion of Normal Hybrid Probabilistic
Logic Programs (NHPP) and providing two different seman-
tics namely; stable probabilistic model semantics and well-
founded probabilistic model semantics. Furthermore, NHPP

Copyright c© 2007, authors listed above. All rights reserved.

was extended to Extended Hybrid Probabilistic Logic Pro-
grams (EHPP) (Saad 2006) to cope directly with classical
negation as well as non-monotonic negation to allow reason-
ing in the presence of incomplete knowledge. It was shown
that Baral et al’s probabilistic logic programming approach
for reasoning with causal Bayes networks (P-log) (Baral,
Gelfond, & Rushton 2004) is naturally subsumed by EHPP
(Saad 2006). In addition, the semantics of EHPP is a natu-
ral extension to the answer set semantics of extended logic
programs (Gelfond & Lifschitz 1991).

Stochastic Satisfiability (SSAT) was first introduced in
(Papadimitriou 1985) as an extension to SAT with random
quantifiers, in addition to the existential quantifiers. The
introduction of randomized quantifiers in SSAT brings un-
certainty into the question of whether there is a satisfying
assignment to a propositional formula. In (Littman, Ma-
jercik, & Pitassi 2001), SSAT has been extended to allow
existential, randomized, and universal quantifiers. More-
over, SSAT solver has been presented (Littman, Majer-
cik, & Pitassi 2001) that extends Davis-Putnam-Lognmann-
Loveland (DPLL) algorithm (Davis, Logemann, & Loveland
1962) to solve SSAT instances. The extended DPLL algo-
rithm (Littman, Majercik, & Pitassi 2001) has been built by
exploiting the existing work to solve SAT as efficiently as
possible.

In this paper we study the relationship between Extended
Hybrid Probabilistic Logic Programs (EHHP) and Stochas-
tic Satisfiability (SSAT). We show that any SSAT formula
can be easily reduced to an EHPP program, with probabilis-
tic answer set semantics, using a local modular mapping.
The importance of that is the application of SSAT to proba-
bilistic planning, contingent probabilistic planning, the most
probable explanation in belief networks, the most likely tra-
jectory in probabilistic planning, and belief inference (Ma-
jercik & Littman 1998; 2003; Littman, Majercik, & Pitassi
2001) carry over to EHPP. This shows that EHPP is applica-
ble to a variety offundamentalprobabilistic reasoning tasks
including those solved by SSAT. Moreover, we show that
there is no similar local and modular mapping from EHPP
to SSAT implying that EHPP is more expressive than SSAT
from the knowledge representation point of view.

Moreover, we show that, in general, any EHPP pro-
gram cannot be translated into SSAT. However, there is a
class of EHPP that can be translated into SSAT, namely



EHPPSSAT . This class of EHPP is expressive enough to
represent and reason with avarietyof probabilistic reason-
ing tasks such as probabilistic planning and Bayes networks.
The importance of this translation fromEHPPSSAT to
SSAT is that it provides a foundation for an implementa-
tion for computing the probabilistic answer sets of EHPP by
exploiting the existing work on SSAT with a selection from
a variety of SSAT solvers.

This paper is organized as follows. Section 2 describes
the syntax and the probabilistic answer set semantics of
EHPPSSAT . Section 3 reviews SSAT. Section 4 pro-
vides the translation from SSAT toEHPPSSAT . In sec-
tion 5, we introduce the translation from a restricted class
of EHPPSSAT to SSAT. Conclusions and related work are
presented in section 6.

2 Extended Hybrid Probabilistic Logic
Programs (EHPPSSAT )

In this section we define the syntax, declarative semantics,
and the probabilistic answer sets semantics ofEHPPSSAT .
EHPPSSAT is a class of EHPP (Saad 2006) that is suf-
ficient to represent any instance of SSAT. The syntax and
semantics of the full version of EHPP is described in (Saad
2006).

2.1 Language Syntax
Let C[0, 1] denotes the set of all closed intervals in
[0, 1]. In the context ofEHPPSSAT , probabilities are
assigned to events (literals) as intervals inC[0, 1]. Let
[α1, β1], [α2, β2] ∈ C[0, 1]. Then thetruth orderasserts that
[α1, β1] ≤t [α2, β2] iff α1 ≤ α2 andβ1 ≤ β2. Let L be
an arbitrary first-order language with finitely many predicate
symbols, constants, and infinitely many variables. Function
symbols are disallowed. The Herbrand base ofL is denoted
by BL. A literal is either an atoma or the negation of an
atom¬a, where¬ is the classical negation. We denote the
set of all literals inL by Lit. An annotationdenotes a prob-
ability interval inC[0, 1]. An annotated literalis an expres-
sion of the forml : µ, wherel is a literal andµ is an annota-
tion. An extended probabilistic rule (E-rule) is an expression
of the form

l : µ ← l1 : µ1, . . . , lm : µm,
not (lm+1 : µm+1), . . . , not (ln : µn)

wherel, li (1 ≤ i ≤ n) are literals, andµ, µi (1 ≤ i ≤ n) are
annotations. The intuitive meaning of an E-rule is that, if for
eachli : µi (1 ≤ i ≤ m), li is true with probability interval
at leastµi and for eachnot (lj : µj) (m + 1 ≤ j ≤ n),
it is not known that lj is true with probability interval at
leastµj , then l is true with probability intervalµ. An ex-
tended probabilistic logic program (E-program) is a pair
P = 〈R, τ〉, whereR is a finite set of E-rules andτ is
a mappingτ : Lit → cpcd. cpcd is the disjunctive pos-
itive correlation probabilistic composition function defined
as cpcd([α1, β1], [α2, β2]) = [max(α1, α2),max(β1, β2)].
The mappingτ in the above definition associates to each lit-
eral l the disjunctive positive correlation probabilistic com-
position function,cpcd, that will be used to combine the

probability intervals obtained from different E-rules having
l in their heads. An E-program is ground if no variables ap-
pear in any of its rules.

2.2 Satisfaction and Models

A probabilistic interpretation (p-interpretation) is a mapping
h : Lit → C[0, 1]. We say a setC, a subset ofLit, is a
consistent set of literals if there is no pair of complemen-
tary literalsa and¬a belonging toC. A partial or total p-
interpretationh is a mapping from a consistent set of literals
C to C[0, 1].

Definition 1 (Probabilistic Satisfaction) Let P = 〈R, τ〉
be a ground E-program,h be a p-interpretation, and

r ≡ l : µ ← l1 : µ1, . . . , lm : µm,
not (lm+1 : µm+1), . . . , not (ln : µn).

Then

1. h satisfiesli : µi (denoted byh |= li : µi) iff li ∈ dom(h)
andµi ≤t h(li).

2. h satisfiesnot (lj : µj) (denoted byh |= not (lj : µj)) iff
lj ∈ dom(h) andµj �t h(lj) or lj /∈ dom(h).

3. h satisfiesBody ≡ l1 : µ1, . . . , lm : µm, not (lm+1 :
µm+1), . . . , not (ln : µn)
(denoted byh |= Body) iff ∀(1 ≤ i ≤ m), h |= li : µi

and∀(m + 1 ≤ j ≤ n), h |= not (lj : µj).

4. h satisfiesl : µ ← Body iff h |= l : µ or h does not
satisfyBody.

5. h satisfiesP iff h satisfies every E-rule inR and for every
literal l ∈ dom(h), cpcd{{µ|l : µ← Body ∈ R and h |=
Body}} ≤t h(l).

Definition 2 (Models) Let P be an E-program. A proba-
bilistic model (p-model) of P is a p-interpretationh of P
that satisfiesP .

Given the p-modelsh1 and h2, we say h1 ≤o h2 if
dom(h1) ⊆ dom(h2) and∀l ∈ dom(h1), h1(l) ≤t h2(l).
We say thath is a minimal p-model ofP if there is no p-
modelh′ of P such thath′ <o h.

2.3 The Probabilistic Answer Set Semantics of
E-programs

An E-program without non-monotonic negation is simpler
and has exactly one minimal p-model (probabilistic an-
swer set) (Saad 2006). Theprobabilistic answer setsof E-
programs is defined in two steps. First, we guess a proba-
bilistic answer seth for a certain E-programP , then we de-
fine the notion of the probabilistic reduct ofP with respect
to h. The probabilistic reduct is an E-program without non-
monotonic negation which has a unique probabilistic answer
set. Second, we determine whetherh is a probabilistic an-
swer set forP . This is verified by determining whetherh is
the probabilistic answer set of the probabilistic reduct ofP
w.r.t. h.



Definition 3 (Probabilistic Reduct) Let P = 〈R, τ〉 be a
ground E-program andh be a p-interpretation. The proba-
bilistic reductPh of P w.r.t. h is Ph = 〈Rh, τ〉 where:

Rh =


l : µ← l1 : µ1, . . . , lm : µm |

l : µ← l1 : µ1, . . . , lm : µm,
not (lm+1 : µm+1), . . . , not (ln : µn) ∈ R and
∀(m + 1 ≤ j ≤ n), µj �t h(lj) or lj /∈ dom(h)


The probabilistic reductPh is an E-program without non-
monotonic negation. Therefore, its probabilistic answer set
is well-defined. For anynot (lj : µj) in the body ofr ∈ R
with µj �t h(lj) means that it is not known that the proba-
bility interval of lj is at leastµj given the available knowl-
edge, andnot (lj : µj) is removed from the body ofr. In
addition, if lj /∈ dom(h), i.e., lj is undefined inh, then it
is completelynot known (undecidable)that the probability
interval of lj is at leastµj . In this case,not (lj : µj) is also
removed from the body ofr.

Definition 4 A p-interpretationh is a probabilistic answer
set of an E-programP if h is the probabilistic answer set of
Ph.

3 Stochastic Satisfiability
In this section we review the definition of stochastic satisfia-
bility presented in (Papadimitriou 1985; Littman, Majercik,
& Pitassi 2001). Stochastic satisfiability (SSAT) (Papadim-
itriou 1985) extends deterministic satisfiability with random
quantifiers. Letx = {x1, . . . , xn} be a set ofn propo-
sitional variables (1 for true and 0 for false) andφ(x) be
a k-CNF propositional formula on the variables inx, with
the underlying orderingx1, . . . , xn. An assignmentA of
propositional variables to values from{true, false} is said
to be a satisfying assignment (model) to a formulaφ(x) if
φ(A) evaluates to true, otherwise,A is said to be unsatis-
fying. Formally, an SSAT formula contains both existential
and randomized quantifiers and takes the form

∃x1,

R

y1, . . . ,∃xn,

R

yn (E[φ(x)] ≥ θ).

The SSAT decision problem determines that, given a for-
mula φ(x), if there exists a value forx1 such that for ran-
dom values (true or false with equal probability) ofy1, . . . ,
there exists a value forxn such that for random values ofyn,
such that the expected probability of satisfying the formula
φ(x) is at least a probability thresholdθ, where0 ≤ θ ≤ 1.
An SSAT formula (Littman, Majercik, & Pitassi 2001) can
be represented as a triple〈φ, θ, Q〉, whereφ is a CNF for-
mula over the variablesx1, . . . , xn, 0 ≤ θ ≤ 1, andQ is
the mappingQ : x → {∃,

R

}. The evaluation of an SSAT
formula, 〈φ, θ, Q〉, is inductively defined on the number of
quantifiers to determine the expected probability of satisfy-
ing the formulaφ. Assumex1 is the variable associated with
the leftmost quantifier. The expected probability of satisfy-
ing φ, underQ, denoted byval(φ,Q), is inductively defined
as:

• val(φ,Q) = 0.0 if φ contains an empty clause.

• val(φ,Q) = 1.0 if φ does not contain clauses.

• val(φ,Q) = max(val(φdx1=0, Q), val(φdx1=1, Q)) if
Q(x1) = ∃.

• val(φ,Q) = (val(φdx1=0, Q) + val(φdx1=1, Q))/2 if
Q(x1) =

R

.

whereφdxi=b is the (n-1)-variable CNF formula produced
from the n-variable formulaφ after assigning the vari-
able xi the value b ∈ {true, false} and simplifying
the outcome, in addition to, making any required variable
renumbering. Given, an SSAT formula,〈φ, θ, Q〉, we say
∃x1,

R

y1, . . . ,∃xn,

R

yn (E[φ(x)] ≥ θ) is true (satisfied) if
and only ifval(φ,Q) ≥ θ.

If Q(x1) =

R

, then the probability thatx1 evaluates to
true leads to a satisfying formulaφ is equally likely to the
probability thatx1 evaluates to false leads to a satisfying
φ, i.e., both have probability equal to0.5. However, this is
not necessary. A randomly quantified variable can take the
value true or false with different probabilities.

Rpx1 is used
to represent that the random variablex1 is true with prob-
ability p, which implies that the probability thatx1 is false
is 1− p. Consequently, ifQ(x1) =

Rp, val(φ,Q) becomes
val(φ,Q) = val(φdx1=0, Q)×(1−p)+val(φdx1=1, Q))×
p.

As pointed in (Littman, Majercik, & Pitassi 2001), many
decision problems can be reduced to special cases of SSAT.
The satisfiability problem (SAT), can be expressed as an in-
stance of SSAT by allowing only existential quantifiers and
settingθ = 1 as: ∃x1, . . . ,∃xn (E[φ(x)] = 1). Another
problem, MAJSAT, asks if the satisfying assignments of a
CNF formulaφ(x) is at least half of the possible assign-
ments toφ(x). MAJSAT can be represented as an instance
of SSAT of the form

R

x1, . . . ,

R

xn (E[φ(x)] ≥ 1
2 ). SAT

and MAJSAT can be combined together to form E-MAJSAT
(Littman, Majercik, & Pitassi 2001) which takes the form
∃x1, . . . ,∃xm,

R

xm+1, . . . ,

R

xn (E[φ(x)] ≥ θ). E-
MAJSAT asks wether there is an assignment tox1, . . . , xm

so that the combined probability of a satisfying assignment
of φ(x) with random variablesxm+1, . . . , xn is at leastθ.

4 Stochastic Satisfiability asEHPPSSAT

In this section we show that any SSAT formula,
〈φ(x), θ,Q〉, can be modularly translated into an E-program
in EHPPSSAT whose probabilistic answer sets correspond
to the models ofφ(x). Moreover, we show that SAT, MA-
JSAT, and E-MAJSAT, which are instances of SSAT, can
be mapped toEHPPSSAT . These translations are mainly
adapted from (Niemela 1999).

4.1 SAT asEHPPSSAT

Any SAT formula,∃x1, . . . ,∃xn (E[φ(x)] = 1), can be
translated into an E-program,P = 〈R, τ〉, whereR is a set
of E-rules consist of only atoms of the form

A : [1, 1] ← A1 : [1, 1], . . . , Am : [1, 1],
not (Am+1 : [1, 1]), . . . , not (An : [1, 1])

where A,A1, . . . , An are atoms and[1, 1] represents the
truth valuetrue. The translation proceeds as follows:

1. For each existentially quantified variablex that appears in
φ(x), we provide two atomsx andx and include inR the
E-rules

x : [1, 1]← not(x : [1, 1]) x : [1, 1]← not(x : [1, 1])



wherex : [1, 1] corresponds to the fact thatx is true, how-
ever,x : [1, 1] means that the negation ofx (¬x) is true or
x is false.

2. For each clausec in φ(x) and for each variablel in c,
if l = x, thenc : [1, 1] ← x : [1, 1] is included inR.
Otherwise, ifl = ¬x, thenR includes

c : [1, 1]← x : [1, 1].
3. For each clausec in φ(x), we include inR

inconsistent : [1, 1] ← not(inconsistent : [1, 1]),
not(c : [1, 1])

whereinconsistent is a special atom that does not appear
in φ(x).

Proposition 1 LetS be a SAT formula andP = 〈R, τ〉 be
the E-program translation ofS. Then,S has a model iffP
has a probabilistic answer set.

Example 1 Let S be a SAT formula of the form
∃x,∃y(E[(x ∨ ¬y) ∧ (¬x ∨ y)] = 1).

The E-program translation,P = 〈R, τ〉, ofS consists of the
following E-rules,R,

x : [1, 1]← not (x : [1, 1]) x : [1, 1]← not (x : [1, 1])
y : [1, 1]← not (y : [1, 1]) y : [1, 1]← not (y : [1, 1])
c1 : [1, 1]← x : [1, 1] c1 : [1, 1]← y : [1, 1]
c2 : [1, 1]← x : [1, 1] c2 : [1, 1]← y : [1, 1]

inconsistent : [1, 1] ← not(inconsistent : [1, 1]),
not(ci : [1, 1])

where1 ≤ i ≤ 2. P has two probabilistic answer setsh1

and h2, whereh1(x) = [1, 1], h1(y) = [1, 1], h1(c1) =
[1, 1], h1(c2) = [1, 1], andh2(x) = [1, 1], h2(y) = [1, 1],
h2(c1) = [1, 1], h2(c2) = [1, 1].
h1 implies that¬x and¬y, as well as, the clausesc1 andc2

are true inh1. Furthermore,h2 means thatx, y, c1, c2 are
true in h2. Notice thatS has two modelss1 = {¬x,¬y},
which implies thatx andy are false ins1, ands2 = {x, y},
which means thatx andy are true ins2. This implies that
there is a one-to-one correspondence between the probabilis-
tic answer sets ofP and the models ofS, since,s1 corre-
sponds toh1 ands2 corresponds toh2.

4.2 MAJSAT asEHPPSSAT

Let S be a MAJSAT formula of the formRp1x1, . . . ,

Rpnxn (E[φ(x)] ≥ 1
2 ), where all vari-

ables appear inφ(x) are randomly quantified. We sayS
is satisfied iffval(φ,Q) ≥ 1

2 . S can be translated into an
E-program,P = 〈R, τ〉, whereR is a set of E-rules consist
of only atoms. The translation proceeds as follows:

1. For each randomly quantified variablex that appears in
φ(x), with Q(x) =

Rp, we provide two atomsx andx
and include inR the E-rules

x : [p, p] ← not(x : [1− p, 1− p])
x : [1− p, 1− p] ← not(x : [p, p])

wherex : [p, p] encodes the probability ofx being true
is p andx : [1 − p, 1 − p] represents the probability of
x being false is1 − p. Obviously, if events are equally
likely, thenp = 0.5.

2. For each clausec in φ(x) and for each variablel in c,
if l = x, thenc : [1, 1] ← x : [p, p] is included inR.
Otherwise, ifl = ¬x, thenR includes

c : [1, 1]← x : [1− p, 1− p].

3. For each clausec in φ(x), we include inR

inconsistent : [1, 1] ← not(inconsistent : [1, 1]),
not(c : [1, 1])

whereinconsistent is a special atom that does not appear
in φ(x).

Theorem 1 Let S = 〈φ(x), 1
2 ,Q〉 be a MAJSAT formula,

P = 〈R, τ〉 be the E-program translation ofS, and Ans
be the set of all probabilistic answer sets ofP . Then,φ(x)
has a model iffP has a probabilistic answer set, andS is
satisfied iff

∑
h∈Ans

∏
xi∈dom(h) h(xi) = val(φ(x),Q) ≥

1
2 .

Example 2 Let S be a MAJSAT formula of the formR

x,

R

y(E[(x ∨ ¬y) ∧ (¬x ∨ y)] ≥ 1
2 ).

The E-program translation,P = 〈R, τ〉, ofS consists of the
following E-rules,R,

x : ν ← not (x : ν) x : ν ← not (x : ν)
y : ν ← not (y : ν) y : ν ← not (y : ν)
c1 : [1, 1]← x : ν c1 : [1, 1]← y : ν
c2 : [1, 1]← x : ν c2 : [1, 1]← y : ν

inconsistent : [1, 1] ← not(inconsistent : [1, 1]),
not(ci : [1, 1])

where1 ≤ i ≤ 2 and ν ≡ [0.5, 0.5]. Clearly, S is sat-
isfied, sinceval(((x ∨ ¬y) ∧ (¬x ∨ y)), Q) = 1

2 ≥
1
2 .

On the other hand,P has two probabilistic answer sets
h1 and h2, whereh1(x) = [0.5, 0.5], h1(y) = [0.5, 0.5],
h1(c1) = [1, 1], h1(c2) = [1, 1], and h2(x) = [0.5, 0.5],
h2(y) = [0.5, 0.5], h2(c1) = [1, 1], h2(c2) = [1, 1], and
hence,

∑
h∈Ans

∏
xi∈dom(h) h(xi) = h1(x) × h1(y) +

h2(x)× h2(y) = 0.5 = val(φ(x),Q) ≥ 1
2 .

Moreover, ((x ∨ ¬y) ∧ (¬x ∨ y)) has two modelss1 =
{¬x,¬y} ands2 = {x, y}. This implies that there is a one-
to-one correspondence between the probabilistic answer sets
of P and the models of((x ∨ ¬y) ∧ (¬x ∨ y)), sinces1

corresponds toh1 ands2 corresponds toh2.

4.3 E-MAJSAT asEHPPSSAT

Let S be an E-MAJSAT formula of the form
∃x1, . . . ,∃xn,

Rp1y1, . . . ,

Rpnyn (E[φ(x)] ≥ θ), where
a sequence of existentially quantified variables,xi

(1 ≤ i ≤ n), are followed by a sequence of randomly quan-
tified variables,yi (1 ≤ i ≤ n). Similarly, we say that an
E-MAJSAT formulaS is satisfied iffval(φ,Q) ≥ θ. Since
E-MAJSAT combines both SAT and MAJSAT together, a
translation form E-MAJSAT to an E-program combines the
SAT and MAJSAT translations to E-programs together.S
can be translated into an E-program,P = 〈R, τ〉, where
R is a set of E-rules consist of only atoms. The translation
proceeds as follows:



1. For each existentially quantified variablex that appears in
φ(x), we provide two atomsx andx and include inR the
E-rules

x : [1, 1]← not(x : [1, 1]) x : [1, 1]← not(x : [1, 1])

2. For each randomly quantified variabley that appears in
φ(x), with Q(y) =

Rp, we provide two atomsy andy
and include inR the E-rules

y : [p, p] ← not(y : [1− p, 1− p])
y : [1− p, 1− p] ← not(y : [p, p])

3. For each clausec in φ(x) and for each variablel in c,
if l = x, with Q(x) = ∃, thenc : [1, 1] ← x : [1, 1] is
included inR. Otherwise, ifl = ¬x, thenR includes

c : [1, 1]← x : [1, 1].
4. For each clausec in φ(x) and for each variablel in c, if

l = y, with Q(y) =

Rp, thenc : [1, 1] ← y : [p, p] is
included inR. Otherwise, ifl = ¬y, thenR includes

c : [1, 1]← y : [1− p, 1− p].
5. For each clausec in φ(x), we include inR

inconsistent : [1, 1] ← not(inconsistent : [1, 1]),
not(c : [1, 1])

whereinconsistent is a special atom that does not appear
in φ(x).

Theorem 2 Let S = 〈φ(x), θ,Q〉 be an E-MAJSAT for-
mula, P = 〈R, τ〉 be the E-program translation ofS,
Ans be the set of all probabilistic answer sets ofP , and
h, h′ ∈ Ans be probabilistic answer sets ofP . Then,φ(x)
has a model iffP has a probabilistic answer set, andS is
satisfied iff

max
h|=x̃1:[1,1],...,x̃n:[1,1]

h(x̃n)
∑

h′|=D

n∏
i=1

h′(ỹi)

 ≥ θ.

whereD ≡ x̃1 : [1, 1], . . . , x̃n : [1, 1], ỹ1 : [p1, p1], . . . , ỹn :
[pn, pn] andx̃i = xi or x̃i = ¬xi and ỹi = yi or ỹi = ¬yi.

Intuitively, in the expression of Theorem 2, the maximum
is taken over all the possible assignments to the existen-
tially quantified variables. For a given assignment to the
existentially quantified variables,̃x1, . . . , x̃n, a summation
is taken over the product of probabilities associated with
all randomly quantified variables in each satisfying assign-
ment toφ(x), of the formx̃1, . . . , x̃n, ỹ1, . . . , ỹn, that con-
tainsx̃1, . . . , x̃n. This satisfying assignment corresponds to
a probabilistic answer seth′ of P .

Example 3 Let S be an E-MAJSAT formula of the form
∃x,

R

y(E[(x ∨ ¬y) ∧ (¬x ∨ y)] ≥ 0.75).
The E-program,P = 〈R, τ〉, translation ofS consists of the
following E-rules,R,

x : [1, 1]← not (x : [1, 1]) x : [1, 1]← not (x : [1, 1])
y : ν ← not (y : ν) y : ν ← not (y : ν)
c1 : [1, 1]← x : [1, 1] c1 : [1, 1]← y : ν
c2 : [1, 1]← x : [1, 1] c2 : [1, 1]← y : ν

inconsistent : [1, 1] ← not(inconsistent : [1, 1]),
not(ci : [1, 1])

where 1 ≤ i ≤ 2 and ν ≡ [0.5, 0.5]. It can
be easily verified thatS is unsatisfied, sinceval(((x ∨
¬y) ∧ (¬x ∨ y)), Q) = 0.5 � 0.75. On the other
hand, P has two probabilistic answer setsh1 and h2,
where h1(x) = [1, 1], h1(y) = [0.5, 0.5], h1(c1) =
[1, 1], h1(c2) = [1, 1], and h2(x) = [1, 1], h2(y) =
[0.5, 0.5], h2(c1) = [1, 1], h2(c2) = [1, 1], and hence,
maxh1|=x:[1,1],h2|=x:[1,1] [h1(x)× h1(y), h2(x)× h2(y)] =
0.5 = val(φ(x), Q) � 0.75. Moreover,((x∨¬y)∧(¬x∨y))
has two modelss1 = {¬x,¬y} ands2 = {x, y}. This im-
plies that there is a one-to-one correspondence between the
probabilistic answer sets ofP and the models of((x∨¬y)∧
(¬x∨y)), sinces1 corresponds toh1 ands2 corresponds to
h2.

The translation from a general SSAT formula, where ex-
istentially quantified variables alternating with randomly
quantified variables, is the same as the translation from an
E-MAJSAT formula to an E-program. Then, the following
proposition directly follows.

Proposition 2 Let S be an SSAT formula of the form
∃x1,

R

y1, . . . ,∃xn,

R

yn (E[φ(x)] ≥ θ) and P = 〈R, τ〉
be the E-program translation ofS. Then,φ(x) has a model
iff P has a probabilistic answer set.

Example 4 Consider the following SSAT formula,S, from
(Littman, Majercik, & Pitassi 2001), whereS of the formR

x, ∃y,

R

z(E[(x ∨ y) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y)] ≥ 0.5).
The E-program,P = 〈R, τ〉, translation ofS consists of the
following E-rules,R,

x : ν ← not (x : ν) x : ν ← not (x : ν)
y : [1, 1]← not (y : [1, 1]) y : [1, 1]← not (y : [1, 1])
z : ν ← not (z : ν) z : ν ← not (z : ν)
c1 : [1, 1]← x : ν c1 : [1, 1]← y : [1, 1]
c2 : [1, 1]← y : [1, 1] c2 : [1, 1]← z : ν
c3 : [1, 1]← x : ν c3 : [1, 1]← y : [1, 1]

inconsistent : [1, 1] ← not(inconsistent : [1, 1]),
not(ci : [1, 1])

where1 ≤ i ≤ 3 andν ≡ [0.5, 0.5]. It can be easily ver-
ified thatS is satisfied, sinceval(((x ∨ y) ∧ (y ∨ ¬z) ∧
(¬x ∨ ¬y)), Q) = 0.75 ≥ 0.5. On the other hand,P
has three probabilistic answer setsh1, h2, and h3, where
h1(x) = [0.5, 0.5], h1(y) = [1, 1], h1(z) = [0.5, 0.5],
h1(c1) = [1, 1], h1(c2) = [1, 1], h1(c3) = [1, 1]. But,
h2(x) = [0.5, 0.5], h2(y) = [1, 1], h2(z) = [0.5, 0.5],
h2(c1) = [1, 1], h2(c2) = [1, 1], h2(c3) = [1, 1]. Finally,
h3(x) = [0.5, 0.5], h3(y) = [1, 1], h3(z) = [0.5, 0.5],
h3(c1) = [1, 1], h3(c2) = [1, 1], h3(c3) = [1, 1]. More-
over, ((x ∨ y) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y)) has three models
s1 = {x,¬y,¬z}, s2 = {¬x, y, z}, ands3 = {¬x, y,¬z}.
This implies that there is a one-to-one correspondence be-
tween the probabilistic answer sets ofP and the models of
((x ∨ y) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y)), sinces1, s2, and s3

correspond toh1, h2, andh3 respectively.

Observe that the translation from SSAT toEHPPSSAT is
modular, since small local changes in the clauses inφ causes
small local changes in the corresponding E-program trans-
lation. However, this is not the case in the reverse direc-
tion. There is no local modular mapping fromEHPPSSAT



to SSAT. This implies thatEHPPSSAT is more expressive
than SSAT from the knowledge representation point of view.
Similar to (Niemela 1999), let, e.g.,M(.) be a modular map-
ping from EHPPSSAT to SSAT. LetP = 〈R, τ〉 be an
E-program inEHPPSSAT that is modularly mapped to an
SSAT formulaS = 〈M(R), θ,Q〉, whereM(R) = φ(x).
M(.) is said to be modular if for each set of factsF that is
mapped toM(F), we haveP = 〈R∪F , τ〉 has a probabilis-
tic answer set iffM(R) ∪M(F) has a model. Intuitively,
adding a fact to an E-program should make a local change in
the translated SSAT formula, but not require translating the
entire E-program.

Proposition 3 There is no modular mapping from
EHPPSSAT to SSAT.

Proof. Following a proof of a corresponding proposition in
(Niemela 1999), consider the E-programP = 〈R, τ〉 where
R contains the E-rulea : [1, 1] ← not (a : [1, 1]). Con-
sider also thatM(.) is a modular mapping. It can be seen
thatP has no probabilistic answer sets, and hence,M(R) is
unsatisfiable. However,M(R) ∪M({a : [1, 1] ←}) is un-
satisfiable regardless the choice ofM({a : [1, 1]←}). This
implies thatP = 〈R ∪ {a : [1, 1]←}, τ〉 has no probabilis-
tic answer sets as well. However, this is not the case, since
P has a probabilistic answer seth, whereh(a) = [1, 1].
Therefore, there does not exist any modular mapping from
EHPPSSAT to SSAT.

5 EHPPSSAT as SSAT
In general, it is not possible to translate any E-program
in EHPPSSAT or EHPP (Saad 2006) to SSAT, since
EHPPSSAT allows probability intervals while SSAT deals
with point probabilities. In addition, EHPP (Saad 2006)
allows conjunctions and disjunctions of literals to appear
in the body of E-rules. However, we show that there is a
class ofEHPPSSAT , namelyrestrictedEHPPSSAT , that
can be translated into SSAT. An E-program inrestricted
EHPPSSAT takes the formP = 〈R ∪ Rneg, τ〉, where
τ : Lit → cpcd andR ∪ Rneg is a set of E-rules that satisfy
the following conditions:

1. All events that appear inR are atomic events, represented
as positive literals (atoms) inR.

2. All probabilities that appear in any E-rule inR are point
probabilities of the form[p, p].

3. If the probability of an eventa is [p, p], then the probabil-
ity of all occurrences ofa in R is [p, p].

4. For any eventa that appears inR, we havePr(a) +
Pr(¬a) = 1.

5. For each eventa that appears inR with probability
[p, p] < [1, 1], the E-rule

a : [1− p, 1− p]← not (a : [p, p])

belongs toRneg. If the probability ofa is [1, 1], then the
above E-rule is simply written as

a : [1, 1]← not (a : [1, 1]).

This set of E-rules,Rneg, is not used in the translation
from P to an SSAT formula. However, E-rules inRneg

are used to encode the default probabilities, i.e., to encode
the fact that the probability of¬a is 1− Pr(a).

Observe that an E-program in restrictedEHPPSSAT con-
tains E-rules that consist of only atoms of the form

r ≡ A : µ ← A1 : µ1, . . . , Am : µm,
not (Am+1 : µm+1), . . . , not (An : µn)

where A,Ai(1 ≤ i ≤ n) are atoms. Let
Head(r) = A, Pos(r) = {A1, . . . , Am}, andNeg(r) =
{Am+1, . . . , An}. A positive dependency graph of an E-
program,P = 〈R ∪ Rneg, τ〉 in restrictedEHPPSSAT , is
a directed graph,GP , such that (i) vertices ofGP are atoms
appearing inR and (ii) for each E-ruler in R, there is an
edge fromHead(r) to each atom inPos(r).

Definition 5 An E-programP in restrictedEHPPSSAT is
tight E-program if the positive dependency graph ofP is
acyclic.

5.1 Tight EHPPSSAT as SSAT
Any tight E-program,P = 〈R ∪ Rneg, τ〉 in restricted
EHPPSSAT , can be translated into an SSAT formula. The
resulting SSAT formula can be viewed as SAT, MAJSAT, or
E-MAJSAT, depending on the probability values that appear
in R, and the type of quantifiers that we associate with each
distinct variable in the resulting SSAT formula. If all prob-
abilities that appear inR are[1, 1], then the resulting SSAT
formula,S, is SAT with existential quantifier associated with
each variable appearing inS. But, if all probabilities that ap-
pear inR are[p, p] 6= [1, 1], then the resulting formula,S, is
MAJSAT with randomized quantifier associated with each
variable inS. If the probabilities appearing inR are a com-
bination of[p, p] and[1, 1], then the resulting formula,S, can
be viewed as E-MAJSAT or MAJSAT, depending on how we
want to view the formula. IfS is viewed as E-MAJSAT, then
an atoma in R, whose associated probability is[1, 1], cor-
responds to an existentially quantified variable inS. How-
ever, if a is associated with probability[p, p] 6= [1, 1] in R,
thena corresponds to a randomly quantified variable inS
(given that all existentially quantified variables are followed
by the randomly quantified ones). Letatoms(P ) denotes
the set of atoms that appearing inR. The translation from
an E-program, in restrictedEHPPSSAT , to SSAT is pro-
vided by defining the notion ofprobabilistic completionof
EHPPSSAT adapted from (Clark 1978). The probabilistic
completion of an E-program,P = 〈R∪Rneg, τ〉 in restricted
EHPPSSAT , is denoted byComp(P ) = 〈R, Q〉, where:

• R is the set of propositional formulas formed from the
E-rules inR as follows:

– For eachA ∈ atoms(P ), if

A : µ ← Ai
1 : µi

1, . . . , A
i
m : µi

m,
not (Ai

m+1 : µi
m+1), . . . , not (Ai

n : µi
n)

for 1 ≤ i ≤ k, is the set of E-rules inR whose heads
containA, thenA ≡ Body1 ∨ · · · ∨Bodyk ∈ R where
Bodyi = Ai

1 ∧ . . . ∧ Ai
m ∧ ¬Ai

m+1 ∧ . . . ∧ ¬Ai
n. If



k = 0, i.e., there is no E-rule inR whose head contains
A, then¬A ∈ R.

– If R contains an E-rule of the form

inconsistent : [1, 1] ← not(inconsistent : [1, 1]),
A1 : µ1, . . . , Am : µm,
not (Am+1 : µm+1), . . . ,
not (An : µn)

then,¬Body ∈ R, where

Body = A1 ∧ . . . ∧Am ∧ ¬Am+1 ∧ . . . ∧ ¬An

• Q is a mapping, where for each atomA ∈ atoms(P ),
we haveQ(A) =

Rp, if A : [p, p] appears in any E-rule
r in R (either in the head ofr or in its body). Similarly,
Q(A) = ∃, if A : [1, 1] appears in any E-ruler in R (if the
resulting SSAT is viewed as E-MAJSAT). In the mapping
Q, Q(A) =

Rp says that, in the resulting SSAT formula,
A is randomly quantified variable with the probability of
A being true isp.

Theorem 3 Let P = 〈R ∪ Rneg, τ〉 be a tight E-program
in restrictedEHPPSSAT andComp(P ) = 〈R, Q〉 be the
probabilistic completion ofP . Then,R has a model iffP
has a probabilistic answer set.

Theorem 4 Let P = 〈R ∪ Rneg, τ〉 be a tight E-program
in restrictedEHPPSSAT andComp(P ) = 〈R, Q〉 be the
probabilistic completion ofP . LetAns be the set of all prob-
abilistic answer sets ofP and h, h′ ∈ Ans. Then,S =
〈R, θ,Q〉 is satisfied iff

∑
h∈Ans

∏
Ai∈dom(h) h(Ai) =

val(R, Q) ≥ θ, viewing the SSAT formula,S, as MAJSAT,
whereθ = 1

2 , and

max
h|=x̃1:[1,1],...,x̃n:[1,1]

h(x̃n)
∑

h′|=D

n∏
i=1

h′(ỹi)

 ≥ θ.

whereD ≡ x̃1 : [1, 1], . . . , x̃n : [1, 1], ỹ1 : [p1, p1], . . . , ỹn :
[pn, pn] and x̃i = xi or x̃i = ¬xi and ỹi = yi or ỹi = ¬yi,
viewing the SSAT formula,S, as E-MAJSAT.

In the following examples, without loss of generality, we
consider MAJSAT translation from E-programs.

Example 5 Consider the E-program,P = 〈R ∪ Rneg, τ〉
in restrictedEHPPSSAT , whereR ∪Rneg contains the E-
rules

a : [0.3, 0.3] ← not (b : [0.4, 0.4])
b : [0.4, 0.4] ← not (a : [0.3, 0.3])
a : [0.7, 0.7] ← not (a : [0.3, 0.3])
b : [0.6, 0.6] ← not (b : [0.4, 0.4])

Obviously, the first two E-rules belong toR and the last two
E-rules belong toRneg. Clearly, P is tight. The proba-
bilistic completion ofP is Comp(R, Q), whereR = {a ≡
¬b, b ≡ ¬a} = {(a ∨ b), (¬a ∨ ¬b)}, andQ(a) =

R0.3,
Q(b) =

R0.4. P has two probabilistic answer setsh1

and h2, where h1(a) = [0.3, 0.3], h1(b) = [0.6, 0.6],
and h2(a) = [0.7, 0.7], h2(b) = [0.4, 0.4]. In addition,
R = {(a∨ b), (¬a∨¬b)} has two modelss1 = {a,¬b} and

s2 = {¬a, b}. This implies that there is a one-to-one cor-
respondence between the probabilistic answer sets ofP and
the models ofR, sinces1 corresponds toh1 and s2 corre-
sponds toh2. It can be easily verified that the SSAT formula,
S = 〈R, 0.5, Q〉, is unsatisfied, sinceval(R, Q) = 0.46 �
0.5, in addition, we have

∑
h∈Ans

∏
xi∈dom(h) h(xi) =

h1(a)×h1(b)+h2(a)×h2(b) = 0.46 = val(R, Q) � 0.5.

Example 6 Consider the E-program,P = 〈R ∪ Rneg, τ〉
in restrictedEHPPSSAT , whereR ∪Rneg contains the E-
rules

a : [0.3, 0.3] ← not (b : [0.4, 0.4])
a : [0.7, 0.7] ← not (a : [0.3, 0.3])
b : [0.6, 0.6] ← not (b : [0.4, 0.4])

The first E-rule belongs toR and the last two E-rules
belong to Rneg. Clearly, P is tight. The probabilis-
tic completion ofP is Comp(R, Q), whereR = {a ≡
¬b,¬b} = {(a ∨ b), (¬a ∨ ¬b), (¬b)}, andQ(a) =

R0.3,
Q(b) =

R0.4. P has only one probabilistic answer set
h, whereh(a) = [0.3, 0.3], h(b) = [0.6, 0.6]. In addi-
tion, R = {(a ∨ b), (¬a ∨ ¬b), (¬b)} has only one model
s = {a,¬b}. This implies that there is a one-to-one cor-
respondence between the probabilistic answer set ofP and
the model ofR, sinces corresponds toh. It can be eas-
ily verified that the SSAT formula,S = 〈R, 0.5, Q〉, is un-
satisfied, sinceval(R, Q) = 0.18 � 0.5, in addition, we
have

∑
h∈Ans

∏
xi∈dom(h) h(xi) = h(a)× h(b) = 0.18 =

val(R, Q) � 0.5.

Example 7 Consider the E-program,P = 〈R ∪ Rneg, τ〉
in restrictedEHPPSSAT , whereR ∪Rneg contains the E-
rules

a : [0.3, 0.3] ← not (a : [0.3, 0.3])
a : [0.7, 0.7] ← not (a : [0.3, 0.3])

The first E-rule belongs toR and the last E-rule belongs to
Rneg. Clearly,P is tight. The probabilistic completion ofP
is Comp(R, Q), whereR = {a ≡ ¬a}, andQ(a) =

R0.3.
It can be easily verified thatP has no probabilistic answer
sets. In addition,R does not have any models either. This
implies that there is a one-to-one correspondence between
the probabilistic answer sets ofP and the models ofR.
Moreover, the SSAT formula,S = 〈R, 0.5, Q〉, is unsat-
isfied, sinceval(R, Q) = 0 � 0.5, in addition, we have∑

h∈Ans

∏
xi∈dom(h) h(xi) = 0 = val(R, Q) � 0.5.

Example 8 Consider the E-program,P = 〈R ∪ Rneg, τ〉
in restrictedEHPPSSAT , whereR ∪Rneg contains the E-
rules

a : [0.9, 0.9] ← not (b : [0.2, 0.2])
b : [0.2, 0.2] ← not (a : [0.9, 0.9])
c : [1, 1] ← a : [0.9, 0.9]
c : [1, 1] ← b : [0.2, 0.2]
a : [0.1, 0.1] ← not (a : [0.9, 0.9])
b : [0.8, 0.8] ← not (b : [0.2, 0.2])
c : [1, 1] ← not (c : [1, 1])

The first four E-rules belong toR and the last three E-
rules belong toRneg. Clearly, P is tight. The probabilis-
tic completion ofP is Comp(R, Q), whereR = {a ≡



¬b, b ≡ ¬a, c ≡ a ∨ b}, andQ(a) =

R0.9, Q(b) =

R0.2,
Q(c) =

R1. P has two probabilistic answer setsh1 andh2,
whereh1(a) = [0.9, 0.9], h1(b) = [0.8, 0.8], h1(c) = [1, 1],
andh2(a) = [0.1, 0.1], h2(b) = [0.2, 0.2], h2(c) = [1, 1].
In addition,R = {a ≡ ¬b, b ≡ ¬a, c ≡ a ∨ b} has two
modelss1 = {a,¬b, c} and s2 = {¬a, b, c}. This implies
that there is a one-to-one correspondence between the prob-
abilistic answer sets ofP and the models ofR, sinces1

corresponds toh1 ands2 corresponds toh2. It can be easily
verified that the SSAT formula,S = 〈R, 0.5, Q〉, is satis-
fied, sinceval(R, Q) = 0.74 ≥ 0.5, in addition, we have∑

h∈Ans

∏
xi∈dom(h) h(xi) = h1(a) × h1(b) × h1(c) +

h2(a)× h2(b)× h2(c) = 0.74 = val(R, Q) ≥ 0.5.

5.2 Non-Tight EHPPSSAT as SSAT
Let P = 〈R ∪ Rneg, τ〉 be any E-program in restricted
EHPPSSAT andComp(P ) = 〈R, Q〉 be its probabilistic
completion. It is possible to get a model ofR that does not
correspond to any probabilistic answer set ofP , and hence,
Theorems 3 and 4 do not apply for that E-program. This oc-
curs for any E-program in restrictedEHPPSSAT that is not
tight. Consider the following E-program.

Example 9 Let P = 〈R ∪ Rneg, τ〉 be an E-program in
restrictedEHPPSSAT , whereR ∪ Rneg consists of the E-
rules

a : [0.5, 0.5] ← b : [0.3, 0.3]
b : [0.3, 0.3] ← a : [0.5, 0.5]
a : [0.5, 0.5] ← not (a : [0.5, 0.5])
b : [0.7, 0.7] ← not (b : [0.3, 0.3])

The probabilistic completion ofP is Comp(P ) = 〈R, Q〉,
where R = {a ≡ b} and Q(a) =

R0.5, Q(b) =R0.3. This E-program,P , has only one probabilistic an-
swer set,h, whereh(a) = [0.5, 0.5] and h(b) = [0.7, 0.7]
(h(a) corresponds toPr(¬a) and h(b) corresponds to
Pr(¬b)). We have,

∑
h∈Ans

∏
Ai∈dom(h) h(Ai) =∏

Ai∈dom(h) h(Ai) = h(a)×h(b) = [0.5, 0.5]×[0.7, 0.7] =
[0.35, 0.35]. But, on the other hand, there are two mod-
els ofR that contribute toval(R, Q). These models are
s1 = {¬a,¬b} and s2 = {a, b}. The probabilistic an-
swer seth of P corresponds to the models1 = {¬a,¬b}
of R. Given the modelss1 and s2 of R, it can be eas-
ily verified thatval(R, Q) = [0.5, 0.5]. This implies that∑

h∈Ans

∏
Ai∈dom(h) h(Ai) 6= val(R, Q).

There is a one-to-one correspondence between the proba-
bilistic answer sets of any tight E-program,P , in restricted
EHPPSSAT , and the models ofR in Comp(P ) = 〈R, Q〉.
But this is not the case for the E-program in Example 9. The
reason is that this E-program,P , is not tight, since there
is a cycle in the positive dependency graph ofP . The set
{a, b} is a cycle (loop) inP because in the positive depen-
dency graph ofP , a depends onb from the first E-rule and
b depends ona from the second E-rule. This loop does
not allow us to conclude any knowledge about the prob-
abilities of a and b using the probabilistic answer set se-
mantics ofEHPPSSAT . However, in SSAT, assumptions

can be made about the truth values and the probabilities of
a and b in that loop. These loops are the reason for the
existence of a model (or models) ofR that does not cor-
respond to any probabilistic answer set ofP , and hence∑

h∈Ans

∏
Ai∈dom(h) h(Ai) 6= val(R, Q). In the rest of

this section, we follow the approach of (Lin & Zhao 2004)
adapted to deal withEHPPSSAT .

Definition 6 Let P = 〈R ∪ Rneg, τ〉 be a (finite and non-
tight) E-program in restrictedEHPPSSAT and LP be a
non-empty subset ofatoms(P ). Then,LP is a loop ofP if
for anyA,B ∈ LP , there exists a path of length> 0 from
A to B, in the positive dependency graph ofP , such that all
the vertices in the path are inLP .

Following (Lin & Zhao 2004), to allow Theorems 3 and 4 to
be applied to non-tight E-programsP = 〈R∪Rneg, τ〉 in re-
strictedEHPPSSAT , we associate to each loop,LP , of P a
formula,LF , called loop formula, and add this loop formula
LF toR in the probabilistic completion,Comp = 〈R, Q〉,
of P . This obtains a one-to-one correspondence between the
models ofR ∪ LF and the probabilistic answer sets ofP ,
and hence, Theorems 3 and 4 apply to non-tight E-programs
(whereLF is the set of all loop formulas ofP ). The loop
means that non of the atoms involved in the loop can be de-
fined in any probabilistic answer set,h, of P , and hence they
do not exist indom(h). The added loop formulas associated
with each loop ofP toR in the probabilistic completion of
P means that the atoms of the loops are not in any model of
R∪ LF .

Definition 7 Let P = 〈R ∪ Rneg, τ〉 be an E-program in
restrictedEHPPSSAT andLP be a loop inP . We define

R+
P (LP ) =


A : µ← A1 : µ1, . . . , Am : µm,
not (Am+1 : µm+1), . . . , not (An : µn)
A : µ← A1 : µ1, . . . , Am : µm,
not (Am+1 : µm+1), . . . , not (An : µn) ∈ R,

and A ∈ LP, (∃A′).A′ ∈ LP, A′ ∈ B


R−

P (LP ) =


A : µ← A1 : µ1, . . . , Am : µm,
not (Am+1 : µm+1), . . . , not (An : µn)
A : µ← A1 : µ1, . . . , Am : µm,
not (Am+1 : µm+1), . . . , not (An : µn) ∈ R,

and A ∈ LP,¬ (∃A′).A′ ∈ LP, A′ ∈ B


whereB = {A1, . . . , Am, Am+1, . . . , An}.
Intuitively, similar to (Lin & Zhao 2004),R+

P (LP ) contains
the E-rules inR that are involved in the loopLP . However,
R−

P (LP ) contains the E-rules inR that are not in the loop
LP . Clearly,R+

P (LP ) andR−
P (LP ) are disjoint sets.

Definition 8 Let P = 〈R ∪ Rneg, τ〉 be an E-program in
restrictedEHPPSSAT andLP be a loop inP . Let

Ai : µi ← Aij
1 : µij

1 , . . . , Aij
m : µij

m,

not (Aij
m+1 : µij

m+1), . . . , not (Aij
n : µij

n )

for 1 ≤ j ≤ kn, be the set of E-rules inR−
P (LP ), for an

atomAi (1 ≤ i ≤ n). Then, the implication

¬[Body11∨· · ·∨Body1k1∨. . .∨Bodyn1∨. . .∨Bodynkn ] ⊃
∧

A∈LP

¬A



is called a probabilistic loop formula, denoted byLF (LP ),
of LP , whereBodyij = Aij

1 ∧ . . . ∧ Aij
m ∧ ¬Aij

m+1 ∧ . . . ∧
¬Aij

n .

Theorem 5 Let P = 〈R ∪ Rneg, τ〉 be any E-program in
restrictedEHPPSSAT , Comp(P ) = 〈R, Q〉 be the proba-
bilistic completion ofP , Ans be the set of all probabilis-
tic answer sets ofP and h ∈ Ans. Let LF be the set
of all probabilistic loop formulas associated with all loops
of P . Then,R ∪ LF has a model iffP has a probabilis-
tic answer set, andS = 〈R ∪ LF , θ,Q〉 is satisfied iff∑

h∈Ans

∏
Ai∈dom(h) h(Ai) = val(R∪LF , Q) ≥ θ, view-

ing the SSAT formula,S, as MAJSAT, whereθ = 1
2 , and

max
h|=x̃1:[1,1],...,x̃n:[1,1]

h(x̃n)
∑

h′|=D

n∏
i=1

h′(ỹi)

 ≥ θ

whereD ≡ x̃1 : [1, 1], . . . , x̃n : [1, 1], ỹ1 : [p1, p1], . . . , ỹn :
[pn, pn] and x̃i = xi or x̃i = ¬xi and ỹi = yi or ỹi = ¬yi,
viewing the SSAT formula,S, as E-MAJSAT.

Example 10 Consider again the non-tight E-program,P ,
from Example 9. This E-program belongs to restricted
EHPPSSAT and has one loopLP = {a, b}, where

R+(LP ) = {a : [0.5, 0.5]← b : [0.3, 0.3],
b : [0.3, 0.3]← a : [0.5, 0.5]}

R−(LP ) = ∅.

Thus, the loop formulaLF (LP ) is ¬false ⊃ (¬a ∧ ¬b),
which is equivalent to(¬a ∧ ¬b). AddingLF (LP ) to R
outcomes the propositional formulaR ∪ LF (LP ) = {a ≡
b, (¬a ∧ ¬b)}, which has only one model{¬a,¬b}. It can
be easily verified thatval(R ∪ {(¬a ∧ ¬b)}, Q) = 0.35.
This implies that the only probabilistic answer seth, where
h(a) = [0.5, 0.5], h(b) = [0.7, 0.7], of P corresponds to
the only model ofR ∪ LF (LP ). Moreover, the SSAT for-
mula,S = 〈R ∪ {(¬a ∧ ¬b)}, 0.5, Q〉, is unsatisfied, since∑

h∈Ans

∏
Ai∈dom(h) h(Ai) = 0.35 = val(R ∪ {(¬a ∧

¬b)}, Q) � 0.5.

6 Related Work and Conclusions
We studied the relationship between Extended Hybrid Prob-
abilistic Logic Programs and Stochastic Satisfiability. We
presented a modular translation from SSAT to a class of
EHPP with probabilistic answer set semantics. The trans-
lation is based on a corresponding local translation from
SAT to normal logic programs described in (Niemela 1999).
This translation shows that thefundamentalprobabilistic
reasoning tasks that can be encoded by SSAT (Majercik &
Littman 1998; 2003; Littman, Majercik, & Pitassi 2001) —
such as probabilistic planning, contingent probabilistic plan-
ning, the most probable explanation in a belief network, the
most likely trajectory in probabilistic planning, and belief
inference — can be also encoded and reasoned about us-
ing EHPP. Moreover, we have shown that there is no modu-
lar mapping from EHPP to SSAT. This shows that EHPP is
more expressive than SSAT from the knowledge representa-
tion point of view.

In addition, we presented a translation fromEHPPSSAT

to SSAT that relies on a corresponding translation from
normal logic programs to SAT described in (Clark 1978;
Lin & Zhao 2004). EHPPSSAT is a restricted class of
EHPP, since not every program in EHPP can be translated
into SSAT. This is because EHPP allows probability inter-
vals and conjunctions and disjunctions of literals to appear in
the body of rules. However, SSAT allows point probabilities.
Two classes ofEHPPSSAT are identified; tight and non-
tight EHPPSSAT . The translation form tightEHPPSSAT

to SSAT is based on the translation from tight normal logic
programs (Fages 1994) to SAT, using Clark’s completion
(Clark 1978), by employing the notion of probabilistic com-
pletion that is a probabilistic extension to Clark’s comple-
tion (Clark 1978). In addition, the translation form non
tight EHPPSSAT to SSAT relies on the translation from
non tight normal logic programs to SAT, using loop formu-
las (Lin & Zhao 2004), by employing the notion of prob-
abilistic loop formulas that is a probabilistic extension to
loop formulas of (Lin & Zhao 2004). The translation from
EHPPSSAT to SSAT provides a foundation for an imple-
mentation for computing the probabilistic answer set seman-
tics of EHPP by exploiting the existing work on SSAT with
a selection from a variety of SSAT solvers.

A similar relationship between SSAT and other proba-
bilistic logic programming frameworks, e.g., (Ng & Subrah-
manian 1992; 1993; 1994; Dekhtyar & Subrahmanian 2000;
Kern-Isberner & Lukasiewicz 2004; Lukasiewicz 1998;
Baral, Gelfond, & Rushton 2004; Kersting & Raedt 2000;
Lakshmanan & Sadri 2001; Poole 1997; Vennekens, Ver-
baeten, & Bruynooghe 2004), has not been studied. How-
ever, the relationship between the probabilistic logic pro-
gramming frameworks (Ng & Subrahmanian 1992; 1993;
1994; Dekhtyar & Subrahmanian 2000; Kern-Isberner &
Lukasiewicz 2004; Lukasiewicz 1998) and a different ex-
tension to SAT, namely, Probabilistic SAT (PSAT) (Boole
1854) has been studied. Given an assignment of probabili-
ties to a collection of propositional formulas, PSAT asks if
this assignment is consistent. The solution to PSAT is based
on the possible world semantics. The possible world seman-
tics solution to PSAT is achieved by compiling a linear pro-
gram from the given probability assignments to a collection
of propositional formulas, PSAT, and if this linear program
has a solution, implies that the probability assignments to
the set of propositional formulas is consistent. The rela-
tionship between PSAT and the probabilistic logic program-
ming frameworks presented in (Ng & Subrahmanian 1992;
1993; 1994; Dekhtyar & Subrahmanian 2000; Kern-Isberner
& Lukasiewicz 2004; Lukasiewicz 1998) has been studied.
This relationship has been investigated by translating a prob-
abilistic logic program,P , in (Ng & Subrahmanian 1992;
1993; 1994; Dekhtyar & Subrahmanian 2000; Kern-Isberner
& Lukasiewicz 2004; Lukasiewicz 1998), to PSAT, by com-
piling a linear program,LP, that is equivalent to PSAT
from P . A solution toLP implies thatP is consistent.
This corresponds to translating a probabilistic logic pro-
gram in (Ng & Subrahmanian 1992; 1993; 1994; Dekhtyar
& Subrahmanian 2000; Kern-Isberner & Lukasiewicz 2004;
Lukasiewicz 1998) to PSAT. However, it is not clear how



to translate PSAT to a probabilistic logic program in (Ng
& Subrahmanian 1992; 1993; 1994; Dekhtyar & Subrahma-
nian 2000; Kern-Isberner & Lukasiewicz 2004; Lukasiewicz
1998). The probabilistic logic programming frameworks of
(Baral, Gelfond, & Rushton 2004; Kersting & Raedt 2000;
Poole 1997; Vennekens, Verbaeten, & Bruynooghe 2004) re-
late probabilistic logic programming to Bayesian networks,
which is different from SSAT and PSAT.
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