Abstract
We study the complexity of identifying (learning) timed automata in the limit from data. Timed automata are finite state models that model time explicitly, i.e., using numbers. Because timed automata use numbers to represent time, they can be exponentially more compact than models that model time implicitly, i.e., using states.
We show three results that are essential in order to exactly determine when timed automata are efficiently identifiable in the limit. First, we show that polynomial distinguishability is a necessary condition for efficient identifiability in the limit. Second, we prove that deterministic time automata with two or more clocks are not polynomially distinguishable. As a consequence, they are not efficiently identifiable. Last but not least, we prove that deterministic timed automata with one clock are polynomially distinguishable, which makes them very likely to be efficiently identifiable in the limit.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)
Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a nutschell. International journal on software tools for technology transfer 1(1-2), 134–152 (1997)
Sipser, M.: Introduction to the Theory of Computation. PWS Publishing (1997)
Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77 (1989)
Verwer, S., de Weerdt, M., Witteveen, C.: An algorithm for learning real-time automata. In: Benelearn, pp. 128–135 (2007)
Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433. Springer, Heidelberg (1998)
Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed automata. Theoretical Computer Science 211(1), 253–273 (1999)
Grinchtein, O., Jonsson, B., Petterson, P.: Inference of event-recording automata using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)
Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1978)
Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approximated within any polynomial. Journal of the ACM 40(1), 95–142 (1993)
Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)
Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. In: Pattern Recognition and Image Analysis. Series in Machine Perception and Artificial Intelligence, vol. 1, pp. 49–61. World Scientific, Singapore (1992)
de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Machine Learning 27 (1997)
Parekh, R., Hanovar, V.G.: On the relationship between models for learning in helpful environments. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 207–220. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Verwer, S., de Weerdt, M., Witteveen, C. (2008). Polynomial Distinguishability of Timed Automata. In: Clark, A., Coste, F., Miclet, L. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2008. Lecture Notes in Computer Science(), vol 5278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88009-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-88009-7_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88008-0
Online ISBN: 978-3-540-88009-7
eBook Packages: Computer ScienceComputer Science (R0)