Skip to main content

Clustering Dynamic Web Usage Data

  • Chapter
Innovative Applications in Data Mining

Part of the book series: Studies in Computational Intelligence ((SCI,volume 169))

  • 890 Accesses

Abstract

Most classification methods are based on the assumption that data conforms to a stationary distribution. The machine learning domain currently suffers from a lack of classification techniques that are able to detect the occurrence of a change in the underlying data distribution. Ignoring possible changes in the underlying concept, also known as concept drift, may degrade the performance of the classification model. Often these changes make the model inconsistent and regular updatings become necessary. Taking the temporal dimension into account during the analysis ofWeb usage data is a necessity, since the way a site is visited may indeed evolve due to modifications in the structure and content of the site, or even due to changes in the behavior of certain user groups. One solution to this problem, proposed in this article, is to update models using summaries obtained by means of an evolutionary approach based on an intelligent clustering approach. We carry out various clustering strategies that are applied on time sub-periods. To validate our approach we apply two external evaluation criteria which compare different partitions from the same data set. Our experiments show that the proposed approach is efficient to detect the occurrence of changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderberg, M.R.: Cluster analysis for applications. In: Probability and Mathematical Statistics. Academic Press, New York (1973)

    Google Scholar 

  2. Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Journal of Knowledge and Information Systems 1(1), 5–32 (1999)

    Google Scholar 

  3. Da Silva, A., De Carvalho, F., Lechevallier, Y., Trousse, B.: Characterizing visitor groups from web data streams. In: Proceedings of the 2nd IEEE International Conference on Granular Computing (GrC 2006), pp. 389–392, May 10- 12 (2006)

    Google Scholar 

  4. Da Silva, A., De Carvalho, F., Lechevallier, Y., Trousse, B.: Mining web usage data for discovering navigation clusters. In: 11th IEEE Symposium on Computers and Communications (ISCC 2006), pp. 910–915 (2006)

    Google Scholar 

  5. Diday, E., Simon, J.C.: Clustering analysis. In: Fu, K. (ed.) Digital Pattern Classification, pp. 47–94. Springer, Heidelberg (1976)

    Google Scholar 

  6. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2, 193–218 (1985)

    Article  Google Scholar 

  7. Kosala, R., Blockeel, H.: Web mining research: A survey. ACM SIGKDD Explorations: Newsletter of the Special Interest Group on Knowledge Discovery and Data Mining 2, 1–15 (2000)

    Google Scholar 

  8. Laxman, S., Sastry, P.S.: A survey of temporal data mining. SADHANA - Academy Proceedings in Engineering Sciences, Indian Academy of Sciences 31(2), 173–198 (2006)

    MATH  MathSciNet  Google Scholar 

  9. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkley Symposium on Mathematics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  10. Milligan, G.W., Cooper, M.C.: A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research 21(4), 441–458 (1986)

    Article  Google Scholar 

  11. Roddick, J.F., Spiliopoulou, M.: A survey of temporal knowledge discovery paradigms and methods. IEEE Transactions on Knowledge and Data Engineering 14(4), 750–767 (2002)

    Article  Google Scholar 

  12. Rossi, F., De Carvalho, F., Lechevallier, Y., Da Silva, A.: Comparaison de dissimilarités pour l’analyse de l’usage d’un site web. In: Actes des 6me journes Extraction et Gestion des Connaissances (EGC 2006), Revue des Nouvelles Technologies de l’Information (RNTI-E-6), vol. II, pp. 409–414 (January 2006)

    Google Scholar 

  13. Rossi, F., De Carvalho, F., Lechevallier, Y., Da Silva, A.: Dissimilarities for web usage mining. In: Actes des 10me Confrence de la Fdration Internationale des Socits de Classification (IFCS2006) (July 2006)

    Google Scholar 

  14. Spiliopoulou, M.: Data mining for the web. In: Workshop on Machine Learning in User Modelling of the ACAI 1999, pp. 588–589 (1999)

    Google Scholar 

  15. Tanasa, D., Trousse, B.: Advanced data preprocessing for intersites web usage mining. IEEE Intelligent Systems 19(2), 59–65 (2004)

    Article  Google Scholar 

  16. van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworths, London (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Silva, A., Lechevallier, Y., Rossi, F., de Carvalho, F. (2009). Clustering Dynamic Web Usage Data. In: Nedjah, N., de Macedo Mourelle, L., Kacprzyk, J. (eds) Innovative Applications in Data Mining. Studies in Computational Intelligence, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88045-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88045-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88044-8

  • Online ISBN: 978-3-540-88045-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics