Skip to main content

Dealing with Large Datasets Using an Artificial Intelligence Clustering Tool

  • Chapter
Tools and Applications with Artificial Intelligence

Abstract

Nowadays, clustering on very large datasets is a very common task. In many scientific and research areas such as bioinformatics and/or economics, clustering on very big datasets has to be performed by people that are not familiar with computerized methods. In this contribution, an artificial intelligence clustering tool is presented which is user friendly and includes various powerful clustering algorithms that are able to cope with very large datasets that vary in nature. Moreover, the tool, presented in this contribution, allows the combination of various artificial intelligence algorithms in order to achieve better results. Experimental results show that the proposed artificial intelligence clustering tool is very flexible and has significant computational power, a fact that makes it suitable for clustering applications of very large datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bolshakova, N., Azuaje, F., Cunningham, P.: An integrated tool for microarray data clustering and cluster validity assessment. Bioinf. 21(4), 451–455 (2005)

    Article  Google Scholar 

  2. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median problems. FOCS, 378–388 (1999)

    Google Scholar 

  3. Fotakis, D.: Incremental Algorithms for Facility Location and K-meadian. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 321–347. Springer, Heidelberg (2004)

    Google Scholar 

  4. Fotakis, D.: Memoryless “Facility Location in One Pass. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 608–620. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Cllaghan, L.: Clustering Data Streams:Theory and Practice. IEEE TDKE 15(3), 515–528 (2003)

    Google Scholar 

  6. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Inc., New York (1990)

    Google Scholar 

  7. Li, S.: The development of a hybrid intelligent system for developing marketing strategy. Decis. Support Syst. 27, 395–409 (2000)

    Article  Google Scholar 

  8. Meyerson, A.: Online Facility Location. In: FOCS, pp. 426–431 (2001)

    Google Scholar 

  9. O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-data algorithms for high-quality clustering. IEEE ICDE 685(2002)

    Google Scholar 

  10. Ryu, T.W., Eick, C.F.: A database clustering methodology and tool. Inf. Sci. 171, 29–59 (2005)

    Article  Google Scholar 

  11. Stan, D., Sethi, I.K.: eID: a system for exploration of image databases. Inf. Process Manag. 39, 335–361 (2003)

    Article  MATH  Google Scholar 

  12. Torra, V., Miyamoto, S., Lanau, S.: Exploration of textual document archives using a fuzzy hierarchical clustering algorithm in the GAMBAL system. Inf. Process Manag. 41, 587–598 (2005)

    Article  MATH  Google Scholar 

  13. Tsang, E., Yung, P., Li, J.: EDDIE-Automation, a decision support tool for financial forecasting. Decis. Support Syst. 37, 559–565 (2004)

    Article  Google Scholar 

  14. Wainreb, G., Haspel, N., Wolfson, H.J., Nussinov, R.: A permissive secondary structure-guided superposition tool for clustering of protein fragments toward protein structure prediction via fragment assembly. Bioinf. 22(11), 1343–1352 (2006)

    Article  Google Scholar 

  15. Yoshida, R., Higuchi, T., Imoto, S., Miyano, S.: ArrayCluster: an analytic tool for clus-tering, data visualization and module finder on gene expression profiles. Bioinf. 22(12), 1538–1539 (2006)

    Article  Google Scholar 

  16. Zheng, J., Svensson, J.T., Madishetty, K., Close, T.J., Jiang, T., Lonardi, S.: OligoSpawn: a software tool for the design of overgo probes from large unigene datasets. BMC Bioinf. 7, 7 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moschopoulos, C.N., Tsiatsis, P., Beligiannis, G.N., Fotakis, D., Likothanassis, S.D. (2009). Dealing with Large Datasets Using an Artificial Intelligence Clustering Tool. In: Koutsojannis, C., Sirmakessis, S. (eds) Tools and Applications with Artificial Intelligence. Studies in Computational Intelligence, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88069-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88069-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88068-4

  • Online ISBN: 978-3-540-88069-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics