Abstract
Over the recent years, research on Learning Classifier Systems (LCSs) got more and more pronounced and diverse. There have been significant advances of the LCS field on various fronts including system understanding, representations, computational models, and successful applications. In comparison to other machine learning techniques, the advantages of LCSs have become more pronounced: (1) rule-comprehensibility and thus knowledge extraction is straightforward; (2) online learning is possible; (3) local minima are avoided due to the evolutionary learning component; (4) distributed solution representations evolve; or (5) larger problem domains can be handled. After the tenth edition of the International Workshop on LCSs, more than ever before, we are looking towards an exciting future. More diverse and challenging applications, efficiency enhancements, studies of dynamical systems, and applications to cognitive control approaches appear imminent. The aim of this paper is to provide a look back at the LCS field, whereby we place our emphasis on the recent advances. Moreover, we take a glimpse ahead by discussing future challenges and opportunities for successful system applications in various domains.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbass, H.A., Bacardit, J., Butz, M.V., Llora, X.: Online adaption in learning classifier systems: Stream data mining. Technical Report 2004031, Illinois Genetic Algorithms Lab, University of Illinois at Urbana-Champaign (2004)
Ahluwalia, M., Bull, L.: A genetic programming-based classifier system. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 11–18. Morgan Kaufmann, San Francisco (1999)
Bacardit, J., Garrell, J.M.: Analysis and improvements of the adaptive discretization intervals knowledge representation. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 726–738. Springer, Heidelberg (2004)
Bacardit, J., Goldberg, D., Butz, M., Llorà, X., Garrell, J.M.: Speeding-up pittsburgh learning classifier systems: Modeling time and accuracy. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 1021–1031. Springer, Heidelberg (2004)
Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining era: Representations, generalization, and run-time. PhD thesis, Ramon Llull University, Barcelona, Catalonia, Spain (2004)
Bacardit, J., Butz, M.V.: Data mining in learning classifier systems: Comparing XCS with gassist. In: Advances at the frontier of Learning Classifier Systems, pp. 282–290. Springer, Heidelberg (2007)
Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the minimum description length principle for a pittsburgh approach learning classifier system. In: Proceedings of the 6th International Workshop on Learning Classifier Systems. LNCS (LNAI). Springer, Heidelberg (in press, 2003)
Bacardit, J., Goldberg, D.E., Butz, M.V.: Improving the performance of a pittsburgh learning classifier system using a default rule. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 4399, pp. 291–307. Springer, Heidelberg (2007)
Bacardit, J., Krasnogor, N.: Empirical evaluation of ensemble techniques for a pittsburgh learning classifier system. In: Ninth International Workshop on Learning Classifier Systems (IWLCS 2006). LNCS (LNAI). Springer, Heidelberg (to appear, 2006)
Bacardit, J., Krasnogor, N.: Smart crossover operator with multiple parents for a pittsburgh learning classifier system. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 1441–1448. ACM Press, New York (2006)
Bacardit, J., Stout, M., Krasnogor, N., Hirst, J.D., Blazewicz, J.: Coordination number prediction using learning classifier systems: performance and interpretability. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 247–254. ACM Press, New York (2006)
Basu, M., Ho, T.K.E.: Data Complexity in Pattern Recognition. Springer, Heidelberg (2006)
Bernadó-Mansilla, E., Llorà, X., Traus, I.: Multiobjective Learning Classifier Systems. In: Multi-Objective Machine Learning. Studies in Computational Intelligence, vol. 16, pp. 261–288. Springer, Heidelberg (2006)
Bernadó-Mansilla, E., Garrell-Guiu, J.M.: Accuracy-based learning classifier systems: Models, analysis and applications to classification tasks. Evolutionary Computation 11, 209–238 (2003)
Bernadó-Mansilla, E., Ho, T.K.: Domain of Competence of XCS Classifier System in Complexity Measurement Space. IEEE Transactions on Evolutionary Computation 9, 82–104 (2005)
Bernadó-Mansilla, E., Kam Ho, T.: On Classifier Domains of Competence. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 1, pp. 136–139 (2004)
Bernadó-Mansilla, E., Llorà, X., Garrell, J.M.: XCS and GALE: a comparative study of two learning classifier systems with six other learning algorithms on classification tasks. In: Fourth International Workshop on Learning Classifier Systems - IWLCS-2001, pp. 337–341 (2001)
Bonarini, A.: Evolutionary Learning of Fuzzy rules: competition and cooperation. In: Fuzzy Modelling: Paradigms and Practice, pp. 265–284. Kluwer Academic Press, Norwell (1996)
Brown, G., Kovacs, T., Marshall, J.A.R.: Ucspv: principled voting in ucs rule populations. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1774–1781. ACM Press, New York (2007)
Browne, W.: The development of an industrial learning classifier system for data-mining in a steel hot strip mill. In: Bull, L. (ed.) Applications of Learning Classifier Systems, pp. 223–259. Springer, Heidelberg (2004)
Browne, W.N., Ioannides, C.: Investigating scaling of an abstracted lcs utilising ternary and s-expression alphabets. In: GECCO 2007: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2759–2764. ACM Press, New York (2007)
Bull, L., Hurst, J., Tomlison, A.: Self-adaptive mutation in classifier system controllers. In: Meyer, J.A., Berthoz, A., Floreano, D., Roitblatt, H., Wilson, S. (eds.) From Animals to Animats 6 - The Sixth International Conference on the Simulation of Adaptive Behaviour. MIT Press, Cambridge (2000)
Bull, L., Studley, M., Bagnall, A., Whittley, I.: Learning classifier system ensembles with rule-sharing. IEEE Transactions on Evolutionary Computation 11, 496–502 (2007)
Bull, L. (ed.): Applications of Learning Classifier Systems. Springer, Heidelberg (2004)
Bull, L.: On lookahead and latent learning in simple LCS. In: GECCO 2007: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2633–2636. ACM, New York (2007)
Butz, M.V., Goldberg, D.E., Lanzi, P.L.: Computational complexity of the XCS classifier system. In: Bull, L., Kovacs, T. (eds.) Foundations of Learning Classifier Systems. Studies in Fuzziness and Soft Computing, pp. 91–126. Springer, Heidelberg (2005)
Butz, M.V.: Anticipatory learning classifier systems. Kluwer Academic Publishers, Boston (2002)
Butz, M.V.: Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 1835–1842. ACM Press, New York (2005)
Butz, M.V.: Rule-Based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis and Design. Springer, Heidelberg (2006)
Butz, M.V., Goldberg, D.E.: Bounding the population size in XCS to ensure reproductive opportunities. In: Proceedings of the Fifth Genetic and Evolutionary Computation Conference (GECCO 2003), pp. 1844–1856 (2003)
Butz, M.V., Goldberg, D.E., Lanzi, P.L.: Gradient descent methods in learning classifier systems: Improving XCS performance in multistep problems. IEEE Transactions on Evolutionary Computation 9, 452–473 (2005)
Butz, M.V., Goldberg, D.E., Lanzi, P.L., Sastry, K.: Problem solution sustenance in XCS: Markov chain analysis of niche support distributions and the impact on computational complexity. Genetic Programming and Evolvable Machines 8, 5–37 (2007)
Butz, M.V., Hoffmann, J.: Anticipations control behavior: Animal behavior in an anticipatory learning classifier system. Adaptive Behavior 10, 75–96 (2002)
Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: Toward a theory of generalization and learning in XCS. IEEE Transactions on Evolutionary Computation 8, 28–46 (2004)
Butz, M.V., Lanzi, P.L., Wilson, S.W.: Hyper-ellipsoidal conditions in xcs: rotation, linear approximation, and solution structure. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 1457–1464. ACM Press, New York (2006)
Butz, M.V., Pelikan, M., Llorà, X., Goldberg, D.E.: Automated global structure extraction for effective local building block processing in XCS. Evol. Comput. 14, 345–380 (2006)
Butz, M.V., Sastry, K., Goldberg, D.E.: Strong, stable, and reliable fitness pressure in XCS due to tournament selection. Genetic Programming and Evolvable Machines 6, 53–77 (2005)
Casillas, J., Carse, B., Bull, L.: Fuzzy-xcs: A michigan genetic fuzzy system. IEEE Transactions on Fuzzy Systems 15, 536–550 (2007)
Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems. Evolutionary tuning and learning of fuzzy knowledge bases. World Scientific, Singapore (2001)
De Jong, K.: Learning with genetic algorithms: An overview. Mach. Learn. 3, 121–138 (1988)
DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic algorithms. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 651–656. Morgan Kaufmann, San Francisco (1991)
Dixon, P.W., Corne, D.W., Oates, M.J.: A Preliminary Investigation of Modified XCS as a Generic Data Mining Tool. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 133–150. Springer, Heidelberg (2002)
Drugowitsch, J., Barry, A.: A formal framework and extensions for function approximation in learning classifier systems. Machine Learning 70, 45–88 (2008)
Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer, Heidelberg (2002)
Fu, C., David, L.: A Modified Classifier System Compaction Algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 920–925. Morgan Kaufmann Publishers Inc., San Francisco (2002)
Gérard, P., Meyer, J.A., Sigaud, O.: Combining latent learning and dynamic programming in MACS. European Journal of Operational Research 160, 614–637 (2005)
Gérard, P., Sigaud, O.: Adding a generalization mechanism to YACS. In: Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 951–957 (2001)
Ghahramani, Z., Wolpert, D.M.: Modular decomposition in visuomotor learning. Nature, 392–395 (1997)
Ghosh, A., Nath, B.: Multi-objective rule mining using genetic algorithms. Information Sciences 163, 123–133 (2004)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Inc., Reading (1989)
Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Dordrecht (2002)
Grush, R.: The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences 27, 377–396 (2004)
Haruno, M., Wolpert, D.M., Kawato, M.: Hierarchical mosaic for movement generation. In: Ono, T., Matsumoto, G., Llinas, R., Berthoz, A., Norgren, R., Nishijo, H., Tamura, R. (eds.) Excepta Medica International Coungress Series, vol. 1250, pp. 575–590. Elsevier, Amsterdam (2003)
Dam, H.H., Lokan, C., Abbas, H.A.: Evolutionary online data mining: An investigation in a dynamic environment. In: Evolutionary Computation in Dynamic and Uncertain Environments, pp. 153–178. Springer, Heidelberg (2007)
Ho, T.K., Basu, M.: Measuring the complexity of classification problems. In: 15th International Conference on Pattern Recognition, pp. 43–47 (2000)
Holland, J.H.: A cognitive system with powers of generalization and adaptation (Unpublished manuscript) (1977)
Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. In: Hayes-Roth, D., Waterman, F. (eds.) Pattern-directed Inference Systems, pp. 313–329. Academic Press, New York (1978)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)
Holland, J.H.: Adaptation. In: Rosen, R., Snell, F. (eds.) Progress in theoretical biology, vol. 4, pp. 263–293. Academic Press, New York (1976)
Holland, J.H.: Properties of the bucket brigade algorithm. In: Proceedings of an International Conference on Genetic Algorithms and their Applications, pp. 1–7 (1985)
Holmes, J.H., Durbin, D.R., Winston, F.K.: The learning classifier system: an evolutionary computation approach to knowledge discovery in epidemiologic surveillance. Artificial Intelligence In Medicine 19, 53–74 (2000)
Hurst, J., Bull, L.: A neural learning classifier system with self-adaptive constructivism for mobile robot learning. Artificial Life 12, 1–28 (2006)
Ishibuchi, H., Nakashima, T., Murata, T.: Three-objective genetics-based machine learning for linguistic rule extraction. Information Sciences 136, 109–133 (2001)
Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. International Journal of Approximate Reasoning 44, 4–31 (2007)
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9, 3–12 (2005)
Kharbat, F., Bull, L., Odeh, M.: Revisiting genetic selection in the xcs learning classifier system. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005), pp. 2061–2068 (2005)
Kovacs, T.: XCS Classifier System Reliably Evolves Accurate, Complete and Minimal Representations for Boolean Functions. In: Roy, R., Chawdhry, P., Pant, R. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 59–68. Springer, Heidelberg (1997)
Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxonomy and design issues. IEEE Transactions on Evolutionary Computation 9, 474–488 (2005)
Bull, L., Studley, M., Bagnall, A.J., Whittley, I.: On the use of rule sharing in learning classifier system ensembles. In: Proceedings of the 2005 Congress on Evolutionary Computation (2005)
Landau, S., Picault, S., Sigaud, O., Gérard, P.: Further comparison between ATNoSFERES and XCSM. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2002. LNCS (LNAI), vol. 2661, pp. 99–117. Springer, Heidelberg (2003)
Lanzi, P.L.: An analysis of generalization in the XCS classifier system. Evolutionary Computation 7, 125–149 (1999)
Lanzi, P.L.: Adaptive agents with reinforcement learning and internal memory. In: From Animals to Animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior, pp. 333–342 (2000)
Lanzi, P.L.: Learning classifier systems: then and now. Evolutionary Intelligence 1, 63–82 (2008)
Lanzi, P.L., Loiacono, D.: Classifier systems that compute action mappings. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, London, England, pp. 1822–1829. ACM Press, New York (2007)
Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Extending xcsf beyond linear approximation. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 1827–1834. ACM, New York (2005)
Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Classifier prediction based on tile coding. In: GECCO 2006: Genetic and Evolutionary Computation Conference, pp. 1497–1504 (2006)
Lanzi, P.L., Loiacono, D., Wilson, S.W., Goldberg, D.E.: Prediction update algorithms for XCSF: RLS, kalman filter, and gain adaptation. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 1505–1512. ACM Press, New York (2006)
Lanzi, P.L., Perrucci, A.: Extending the representation of classifier conditions part II: From messy coding to s-expressions. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 1, pp. 345–352. Morgan Kaufmann, San Francisco (1999)
Lanzi, P.L., Rocca, S., Solari, S.: An approach to analyze the evolution of symbolic conditions in learning classifier systems. In: GECCO 2007: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2795–2800. ACM Press, New York (2007)
Larranaga, P., Lozano, J. (eds.): Estimation of Distribution Algorithms, A New Tool for Evolutionnary Computation. Genetic Algorithms and Evolutionnary Computation. Kluwer Academic Publishers, Dordrecht (2002)
Llorà, X., Priya, A., Bhargava, R.: Observer-invariant histopathology using genetics-based machine learning. Natural Computing, Special issue on Learning Classifier Systems (in press, 2008)
Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained parallel evolutionary algorithms. In: Proceedings of the Third Genetic and Evolutionary Computation Conference, pp. 461–468. Morgan Kaufmann, San Francisco (2001)
Llorà, X., Reddy, R., Matesic, B., Bhargava, R.: Towards better than human capability in diagnosing prostate cancer using infrared spectroscopic imaging. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 2098–2105. ACM Press, New York (2007)
Llorà, X., Sastry, K.: Fast rule matching for learning classifier systems via vector instructions. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 1513–1520. ACM Press, New York (2006)
Llorà, X., Sastry, K., Goldberg, D.E., delaOssa, L.: The x-ary extended compact classifier system: Linkage learning in pittsburgh LCS. In: Proceedings of the 9th International Workshop on Learning Classifier Systems - IWLCS 2006. LNCS (LNAI). Springer, Heidelberg (in press, 2006)
Llorà, X., Sastry, K., Yu, T.L., Goldberg, D.E.: Do not match, inherit: fitness surrogates for genetics-based machine learning techniques. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1798–1805. ACM, New York (2007)
Loiacono, D., Marelli, A., Lanzi, P.L.: Support vector regression for classifier prediction. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1806–1813. ACM Press, New York (2007)
Luca Lanzi, P., Loiacono, D.: XCSF with neural prediction. Evolutionary Computation, CEC 2006. IEEE Congress on (0-0 0) 2270–2276 (2006)
Marshall, J.A.R., Brown, G., Kovacs, T.: Bayesian estimation of rule accuracy in ucs. In: GECCO 2007: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2831–2834. ACM Press, New York (2007)
O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24, 939–1031 (2001)
Orriols-Puig, A., Bernadó-Mansilla, E.: The Class Imbalance Problem in UCS Classifier System: Fitness Adaptation. In: Proceedings of the 2005 Congress on Evolutionary Computation, vol. 1, pp. 604–611. IEEE Computer Society Press, Los Alamitos (2005)
Orriols-Puig, A., Bernadó-Mansilla, E.: Bounding XCS’s Parameters for Unbalanced Datasets. In: Proceedings of the 2006 Genetic and Evolutionary Computation Conference, vol. 2, pp. 1561–1568. ACM Press, New York (2006)
Orriols-Puig, A., Bernadó-Mansilla, E.: The Class Imbalance Problem in Learning Classifier Systems: A Preliminary Study. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2003. LNCS (LNAI), vol. 4399, pp. 164–183. Springer, Heidelberg (2007)
Orriols-Puig, A., Casillas, J., Bernadó-Mansilla, E.: Fuzzy-UCS: A Michigan-style Learning Fuzzy-Classifier System for Supervised Learning. IEEE Transactions on Evolutionary Computation (in press, 2008)
Orriols-Puig, A., Goldberg, D., Sastry, K., Bernadó-Mansilla, E.: Modeling XCS in Class Imbalances: Population Size and Parameter Settings. In: Proceedings of the 2007 Genetic and Evolutionary Computation Conference, vol. 2, pp. 1838–1845. ACM Press, New York (2007)
Orriols-Puig, A., Sastry, K., Lanzi, P., Goldberg, D., Bernadó-Mansilla, E.: Modeling selection pressure in XCS for proportionate and tournament selection. In: Proceedings of the 2007 Genetic and Evolutionary Computation Conference, vol. 2, pp. 1846–1853. ACM Press, New York (2007)
Orriols Puig, A., Bernadó-Mansilla, E.: Analysis of Reduction Algorithms in XCS Classifier System. In: Recent Advances in Artificial Intelligence Research and Development. Frontiers in Artificial Intelligence and Applications, vol. 113, pp. 383–390. IOS Press, Amsterdam (2004)
Orriols-Puig, A., Bernadó-Mansilla, E., Sastry, K., Goldberg, D.E.: Substructrual surrogates for learning decomposable classification problems: implementation and first results. In: GECCO 2007: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2875–2882. ACM, New York (2007)
Orriols-Puig, A., Sastry, K., Goldberg, D.E., Bernadó-Mansilla, E.: Substructural surrogates for learning decomposable classification problems. In: Bacardit, J., et al. (eds.) IWLCS 2006/2007. LNCS (LNAI), vol. 4998. Springer, Heidelberg (2008)
Parodi, A., Bonelli, P.: A new approach to fuzzy classifier systems. In: 5th International Conference on Genetic Algorithms, pp. 223–230. Morgan Kaufmann, San Francisco (1993)
Rivest, R.L.: Learning decision lists. Machine Learning 2, 229–246 (1987)
Smith, R.E., El-Fallah, A., Ravichandran, B., Mehra, R., Dike, B.A.: The fighter aircraft LCS: A real-world, machine innovation application. In: Bull, L. (ed.) Applications of Learning Classifier Systems, pp. 113–142. Springer, Heidelberg (2004)
Smith, R.E., Jiang, M.K.: A learning classifier system with mutual-information-based fitness. Evolutionary Computation, 2007. CEC 2007. IEEE Congress on (25-28 Sept. 2007) (2173)–2180
Smith, S.F.: A Learning System Based on Genetic Algorithms. PhD thesis, University of Pittsburgh (1980)
Smith, S.F.: Flexible learning of problem solving heuristics through adaptive search. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Los Altos, CA, pp. 421–425. Morgan Kaufmann, San Francisco (1983)
Stolzmann, W.: Anticipatory classifier systems. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 658–664 (1998)
Stone, C., Bull, L.: For real! XCS with continuous-valued inputs. Evolutionary Computation Journal 11, 298–336 (2003)
Stout, M., Bacardit, J., Hirst, J.D., Krasnogor, N.: Prediction of recursive convex hull class assignments for protein residues. Bioinformatics (in press, 2008)
Suzuki, T., Kodama, T., Furuhashi, T., Tsut, H.: Fuzzy modeling using genetic algorithms with fuzzy entropy as conciseness measure. Information Sciences 136, 53–67 (2001)
Tamee, K., Bull, L., Pinngern, O.: Towards clustering with XCS. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1854–1860. ACM Press, New York (2007)
Valenzuela-Rendón, M.: The fuzzy classifier system: A classifier system for continuously varying variables. In: Fourth International Conference on Genetic Algorithms (ICGA), pp. 346–353. Morgan Kaufmann, San Francisco (1991)
Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3, 149–175 (1995)
Wilson, S.W.: Knowledge growth in an artificial animal. In: Proceedings of an International Conference on Genetic Algorithms and Their Applications, pp. 16–23 (1985)
Wilson, S.W.: Classifier systems and the animat problem. Machine Learning 2, 199–228 (1987)
Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2, 1–18 (1994)
Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Booker, L., Forrest, S., Mitchell, M., Riolo, R.L. (eds.) Festschrift in Honor of John H. Holland, Center for the Study of Complex Systems, pp. 111–121 (1999)
Wilson, S.W.: Classifiers that approximate functions. Natural Computing: an international journal 1, 211–234 (2002)
Wilson, S.W.: Compact Rulesets from XCSI. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321. Springer, Heidelberg (2002)
Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317–1329 (1998)
Wyatt, D., Bull, L.: A memetic learning classifier system for describing continuous-valued problem spaces. In: Hart, W., Krasnogor, N., Smith, J. (eds.) Recent Advances in Memetic Algorithms, pp. 355–396. Springer, Heidelberg (2004)
Wyatt, D., Bull, L., Parmee, I.: Building Compact Rulesets for Describing Continuous-Valued Problem Spaces Using a Learning Classifier System. In: Parmee, I. (ed.) Adaptive Computing in Design and Manufacture, vol. VI, pp. 235–248. Springer, Heidelberg (2004)
Zatuchna, Z.V.: AgentP: A Learning Classifier System with Associative Perception in Maze Environments. PhD thesis, School of Computing Sciences, UEA (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bacardit, J., Bernadó-Mansilla, E., Butz, M.V. (2008). Learning Classifier Systems: Looking Back and Glimpsing Ahead. In: Bacardit, J., Bernadó-Mansilla, E., Butz, M.V., Kovacs, T., Llorà, X., Takadama, K. (eds) Learning Classifier Systems. IWLCS IWLCS 2006 2007. Lecture Notes in Computer Science(), vol 4998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88138-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-88138-4_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88137-7
Online ISBN: 978-3-540-88138-4
eBook Packages: Computer ScienceComputer Science (R0)