Skip to main content

CDPM: Finding and Evaluating Community Structure in Social Networks

  • Conference paper
Advanced Data Mining and Applications (ADMA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5139))

Included in the following conference series:

  • 2753 Accesses

Abstract

In this paper we proposed a CDPM (Clique Directed Percolation Method) algorithm, which clusters tightly cohesive cliques as cluster atoms and merge the cluster atoms into communities under the direction of a proposed object function, namely Structure Silhouette Coefficient (SSC). SSC could measure the quality of community divisions which allows communities share actors. Experiments demonstrate our algorithm can divide social networks into communities at a higher quality than compared algorithms.

This work was jointly supported by: (1) National Science Fund for Distinguished Young Scholars (No. 60525110); (2) National 973 Program (No. 2007CB307100, 2007CB307103); (3) Program for New Century Excellent Talents in University (No. NCET-04-0111); (4) Development Fund Project for Electronic and Information Industry (Mobile Service and Application System Based on 3G).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(026113), 56–68 (2004)

    Google Scholar 

  2. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  3. Derényi, I., Palla, G., Vicsek, T.: Clique Percolation in Random Networks. PRL 94 (160202), 76–85 (2005)

    Google Scholar 

  4. Gregory, S.: An Algorithm to Find Overlapping Community Structure in Networks. In: Knowledge Discovery in Databases: PKDD 2007. LNCS, vol. 4213, pp. 593–600 (2007)

    Google Scholar 

  5. Palla, G., Barabási, A.-L., Vicsek, T.: Quantifying social group evolution. Nature, 446–664 (2007)

    Google Scholar 

  6. Adamcsek, B., Palla, G., Farkas, I., Derényi, I., Vicsek, T.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021–1023 (2006)

    Article  Google Scholar 

  7. Li, X., Liu, B., Yu, P.S.: Discovering overlapping communities of named entities. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 593–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Out-of-Core Coherent Closed Quasi-Clique. Mining from Large Dense Graph Databases. ACM Transactions on Database Systems 13(2), Article 13 (2007)

    Google Scholar 

  9. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Google Scholar 

  10. Li, W., Bin, W., Nan, D., Qi, Y.: A New Algorithm for Enumerating All Maximal Cliques in Complex Network. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 606–617. Springer, Heidelberg (2006)

    Google Scholar 

  11. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlapping communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer, Heidelberg (2005)

    Google Scholar 

  12. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)

    Google Scholar 

  13. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54, 396–405 (2003)

    Article  Google Scholar 

  14. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wan, L., Liao, J., Zhu, X. (2008). CDPM: Finding and Evaluating Community Structure in Social Networks. In: Tang, C., Ling, C.X., Zhou, X., Cercone, N.J., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2008. Lecture Notes in Computer Science(), vol 5139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88192-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88192-6_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88191-9

  • Online ISBN: 978-3-540-88192-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics