Skip to main content

Computer Simulations of Complex Many-Body Systems

  • Conference paper
High Performance Computing in Science and Engineering '08

Summary

The static and dynamic properties of model magnetic systems have been studied by the Landau-Lifshitz-Gilbert equation. Soft matter systems have been investigated by Monte Carlo and Brownian Dynamics simulations. In particular the behaviour of two dimensional binary hard disk mixtures in external periodic potentials has been studied as well as the transport of colloids in micro-channels and the features of lipid bilayers under tension. Certain aspects of star cluster formation processes have been computed using smoothed particle hydrodynamics. The conductance of ferromagnetic atomic-sized contacts has been analyzed by Molecular Dynamics simulations with respect to their conductance and structural properties under stretching. In the next sections we give an overview on our recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.M. Miller et al., Appl. Phys. Lett. 81, 2211 (2002).

    Article  Google Scholar 

  2. G.A. Prinz, J. Magn. Magn. Mat., 200, 57 (1999).

    Article  Google Scholar 

  3. B.D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38, R199 (2005).

    Article  Google Scholar 

  4. U. Nowak, Ann. Rev. of Comp. Phys. 9, 105 (2001).

    Article  Google Scholar 

  5. D. Backes, C. Schieback, M. Kläui, F. Junginger, H. Ehrke, P. Nielaba et al., Appl. Phys. Lett. 91, (2007).

    Google Scholar 

  6. Z. Li et al., Phys. Rev. B70, 024417 (2004).

    Google Scholar 

  7. A. Thiaville, Y. Nakatani, J. Miltat, N. Vernier, J. Appl. Phys. 95, 7049 (2004).

    Article  Google Scholar 

  8. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69, 990 (2005).

    Article  Google Scholar 

  9. C. Schieback et al., Eur. J. Phys. B 58, 429 (2007).

    Article  Google Scholar 

  10. D. Mutter: Diplomarbeit, Univ. Konstanz (2007).

    Google Scholar 

  11. M. Albrecht et al.: Nat. Mater. 4, 203 (2005).

    Article  Google Scholar 

  12. Lue, L. and Woodcock, L.V. (1999) Mol. Phys. 96 1435.

    Article  Google Scholar 

  13. F. Bürzle, P. Nielaba, Phys. Rev. E76, 051112 (2007).

    Google Scholar 

  14. J. Baumgartl, M. Brunner, C. Bechinger, Phys. Rev. Lett. 93, 168301 (2004).

    Article  Google Scholar 

  15. E. Frey, D.R. Nelson, L. Radzihovsky, Phys. Rev. Lett. 83, 2977 (1999); L. Radzihovsky, E. Frey, D.R. Nelson, Phys. Rev. E63, 031503 (2001).

    Article  Google Scholar 

  16. Franzrahe K. and Nielaba P. (2007) Phys. Rev. E 76 061503.

    Article  Google Scholar 

  17. Franzrahe K., Nielaba P., Ricci A., Binder K., Sengupta S., Keim P. and Maret G., J. Phys.: Condens. Mat. in press (2008).

    Google Scholar 

  18. Franzrahe K. et al., (2005) Comp. Phys. Commun. 169 197.

    Article  Google Scholar 

  19. Franzrahe K. et al., in “High Performance Computing in Science and Engineering’07”, ed. by Nagel W.E., Kröner D., Resch M., Springer Verlag (2007), 83.

    Google Scholar 

  20. P. Henseler, Dissertation, U. Konstanz (2008).

    Google Scholar 

  21. M. Köppl, P. Henseler, A. Erbe, P. Nielaba, and P. Leiderer. Phys. Rev. Lett. 97, 208302 (2006).

    Article  Google Scholar 

  22. R. Haghgooie, C. Li, P. Doyle, Langmuir 22, 3601 (2006).

    Article  Google Scholar 

  23. R. Haghgooie and P.S. Doyle. Phys. Rev. E 72, 11405 (2005).

    Article  Google Scholar 

  24. M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids (Oxford Science Publications, 1987).

    Google Scholar 

  25. P. Henseler et al., in preparation (2008).

    Google Scholar 

  26. N. Schwierz, Diplomarbeit, U. Konstanz (2008).

    Google Scholar 

  27. A. Erbe, private communication.

    Google Scholar 

  28. F. Schmid, D. Düchs, O. Lenz, B. West, Comp. Phys. Commun. 177, 168 (2007).

    Article  Google Scholar 

  29. O. Lenz and F. Schmid, J. Mol. Liq. 117, 147 (2005).

    Article  Google Scholar 

  30. O. Lenz and F. Schmid, Phys. Rev. Lett. 98, 058104 (2007).

    Article  Google Scholar 

  31. O. Lenz, Dissertation, Univ. Bielefeld (2007).

    Google Scholar 

  32. G. Arreaga-García, J. Klapp, L. Di, G. Sigalotti, R. Gabbasov, ApJ, 666, 290 (2007).

    Article  Google Scholar 

  33. J. Ballesteros-Paredes, R.S. Klessen, M.-M. Mac Low, E. Vazquez-Semadeni, in Protostars & Planets V, eds. B. Reipurth, D. Jewitt, K. Keil, University of Arizona Press, 63 (2007).

    Google Scholar 

  34. J.J. Monaghan, Rep. Prog. Phys. 68, 1703 (2005).

    Article  MathSciNet  Google Scholar 

  35. D.J. Price, Publications of the Astronomical Society of Australia, 24, 159 (2007).

    Article  MathSciNet  Google Scholar 

  36. D.J. Price, M.R. Bate, MNRAS, 377, 77 (2007).

    Article  Google Scholar 

  37. S. Rosswog, D.J. Price, MNRAS, 379, 915 (2007).

    Article  Google Scholar 

  38. V. Springel, MNRAS, 364, 1105 (2005).

    Article  Google Scholar 

  39. N. Agraït, A. Levy Yeyati, and J.M. van Ruitenbeek, Phys. Rep. 377, 81 (2003).

    Article  Google Scholar 

  40. J.C. Cuevas, A. Levy Yeyati, A. Martín-Rodero, Phys. Rev. Lett. 80, 1066 (1998).

    Article  Google Scholar 

  41. E. Scheer, N. Agraït, J.C. Cuevas, A. Levy Yeyati, B. Ludoph, A. Martín-Rodero, G. Rubio, J.M. van Ruitenbeek and C. Urbina, Nature 394, 154 (1998).

    Article  Google Scholar 

  42. J.C. Cuevas, A. Levy Yeyati, A. Martín-Rodero, G. Rubio Bollinger, C. Untiedt, and N. Agraït, Phys. Rev. Lett. 81, 2990 (1998).

    Article  Google Scholar 

  43. J.L. Costa-Krämer, Phys. Rev. B 55, R4875, (1997).

    Article  Google Scholar 

  44. F. Ott et al., Phys. Rev. B 58, 4656 (1998).

    Article  MathSciNet  Google Scholar 

  45. T. Ono, Y. Ooka, H. Miyajima, Y. Otani, Appl. Phys. Lett. 75, 1622 (1999).

    Article  Google Scholar 

  46. M. Viret et al., Phys. Rev. B 66, 220401(R) (2002).

    Article  Google Scholar 

  47. F. Elhoussine et al., Appl. Phys. Lett. 81, 1681 (2002).

    Article  Google Scholar 

  48. V. Rodrigues, J. Bettini, P.C. Silva, D. Ugarte, Phys. Rev. Lett. 91, 96801 (2003).

    Article  Google Scholar 

  49. More generally, the half-integer conductance quantization could also arise from a perfectly polarized current, where the channel transmissions of the transmitted spin-component add up to 1.

    Google Scholar 

  50. C. Untiedt et al., Phys. Rev. B 69, 081401(R) (2004).

    Article  Google Scholar 

  51. A. Martín-Rodero, A. Levy Yeyati, J.C. Cuevas, Physica C 352, 67 (2001).

    Article  Google Scholar 

  52. A. Smogunov, A. Dal Corso, E. Tossati, Surf. Sci. 507, 609 (2002); 532, 549 (2003).

    Article  Google Scholar 

  53. A. Delin and E. Tosatti, Phys. Rev. B 68, 144434 (2003).

    Article  Google Scholar 

  54. J. Velev and W.H. Butler, Phys. Rev. B 69, 094425 (2004).

    Article  Google Scholar 

  55. A. Bagrets, N. Papanikolaou, and I. Mertig, Phys. Rev. B 70, 064410 (2004).

    Article  Google Scholar 

  56. A.R. Rocha and S. Sanvito, Phys. Rev. B 70, 094406 (2004).

    Article  Google Scholar 

  57. D. Jacob, J. Fernández-Rossier, J.J. Palacios, Phys. Rev. B71, 220403(R) (2005).

    Article  Google Scholar 

  58. M. Wierzbowska, A. Delin, and E. Tosatti, Phys. Rev. B 72, 035439 (2005).

    Article  Google Scholar 

  59. H. Dalgleish and G. Kirczenow, Phys. Rev. B 72, 155429 (2005).

    Article  Google Scholar 

  60. D. Jacob and J.J. Palacios, Phys. Rev. B 73, 075429 (2006).

    Article  Google Scholar 

  61. M. Häfner, J.K. Viljas, D. Frustaglia, F. Pauly, M. Dreher, P. Nielaba, and J.C. Cuevas, Phys. Rev. B 77, 104409 (2008).

    Article  Google Scholar 

  62. M. Dreher, Dissertation, U. Konstanz (2008).

    Google Scholar 

  63. M. Dreher, F. Pauly, J. Heurich, J.C. Cuevas, E. Scheer, and P. Nielaba, Phys. Rev. B 72, 075435 (2005).

    Article  Google Scholar 

  64. F. Pauly, M. Dreher, J.K. Viljas, M. Häfner, J.C. Cuevas, and P. Nielaba, Phys. Rev. B 74, 235106 (2006).

    Article  Google Scholar 

  65. W. Quester, Dissertation, U. Konstanz (2008).

    Google Scholar 

  66. F. von Gynz-Rekowski, W. Quester, R. Dietsche, Dong Chan Lim, N. Bertram, T. Fischer, G. Ganteför, M. Schach, P. Nielaba, Young Dok Kim, Eur. Phys. J. D45, 409 (2007).

    Google Scholar 

  67. M. Schach, Diplomarbeit, U. Konstanz (2007).

    Google Scholar 

  68. CPMD. Copyright IBM Corp 1990–2001, Copyright MPI für Festkörperforschung Stuttgart 1997–2004. http://www.cpmd.org/.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang E. Nagel Dietmar B. Kröner Michael M. Resch

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schieback, C. et al. (2009). Computer Simulations of Complex Many-Body Systems. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds) High Performance Computing in Science and Engineering '08. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88303-6_4

Download citation

Publish with us

Policies and ethics