Skip to main content

A Modeling Approach Using Multiple Graphs for Semi-Supervised Learning

  • Conference paper
Discovery Science (DS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5255))

Included in the following conference series:

  • 878 Accesses

Abstract

Most graph-based semi-supervised learning methods model the structure of a dataset as a single k-NN graph. Although graph construction is an important task, many existing graph-based methods build a graph from a dataset directly and naively. While the resulting k-NN graph provides relatively a good representation of the dataset,it generally produces inappropriate shortcuts on cluster boundaries. In this paper, we propose a novel approach for modeling and combining multiple graphs with different edge weights to avoid such undesirable behavior. Using the combination of those graphs, we can systematically reduce the effect of noise in conceptually similar fashion to an ensemble approach. Experimental results demonstrate that our approach improves classification accuracy on both benchmark and artificial datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  2. Zhu, X., Ghahamani, Z.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proc. of the 20th ICML, pp. 912–919 (2003)

    Google Scholar 

  3. Joachims, T.: Transductive learning via spectral graph partitioning. In: Proc. of the 20th ICML, pp. 290–297 (2003)

    Google Scholar 

  4. Zhu, X.: Semi-supervised learning literature survey (2005), http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf

  5. Fagin, R., Karlin, A.R., Kleinberg, J., Raghavan, P., Rajagopalan, S., Rubinfeld, R., Sudan, M., Tomkins, A.: Random walks with back buttons. Annals of Applied Probability 11(3), 810–862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diestel, R.: Graph Theory. Springer, New York (2004)

    Google Scholar 

  7. Joachims, T.: Transductive inference for text classification using support vector machines. In: Proc. of the 16th ICML, pp. 200–209 (1999)

    Google Scholar 

  8. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)

    Google Scholar 

  9. García-Pedrajas, N., García-Osorio, C., Fyfe, C.: Nonlinear boosting projections for ensemble construction. J. Mach. Learn. Res. 8, 1–33 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Wang, F., Zhang, C.: Label popagation through linear neighborhoods. In: Proc. of the 23rd ICML, pp. 985–992 (2006)

    Google Scholar 

  11. Zhou, X., Li, C.: Combining smooth graphs with semi-supervised classification. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 400–409. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Shin, H., Hill, N.J., Rätsch, G.: Graph based semi-supervised learning with sharper edges. In: Proc. of 17th ECML, pp. 401–412 (2006)

    Google Scholar 

  13. Moss, F., Ward, L.M., Sannita, W.G.: Stochastic resonance and sensory information processing: a tutorial and review of application. Clinical Neurophysiology 115, 267–281 (2004)

    Article  Google Scholar 

  14. Nobori, T., Matsui, N.: Stochastic resonance neural network and its performance. In: Proc. of IJCNN 2000, vol. 2, p. 2013 (2000)

    Google Scholar 

  15. Nagao, T.: Random Matrices: An Introduction. University of Tokyo Press (2005)

    Google Scholar 

  16. Achlioptas, D.: Random matrices in data analysis. In: Proc. of the 8th PKDD, pp. 1–7 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this paper

Cite this paper

Izutani, A., Uehara, K. (2008). A Modeling Approach Using Multiple Graphs for Semi-Supervised Learning. In: Jean-Fran, JF., Berthold, M.R., Horváth, T. (eds) Discovery Science. DS 2008. Lecture Notes in Computer Science(), vol 5255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88411-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88411-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88410-1

  • Online ISBN: 978-3-540-88411-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics