Skip to main content

Parallel Algorithm for Concurrent Computation of Connected Component Tree

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5259))

  • 1970 Accesses

Abstract

The paper proposes a new parallel connected-component-tree construction algorithm based on line independent building and progressive merging of partial 1-D trees. Two parallelization strategies were developed: the parallelism maximization strategy, which balances the workload of the processes, and the communication minimization strategy, which minimizes communication among the processes. The new algorithm is able to process any pixel data type, thanks to not using a hierarchical queue. The algorithm needs only the input and output buffers and a small stack. A speedup of 3.57 compared to the sequential algorithm was obtained on Opteron 4-core shared memory ccNUMA architecture. Performance comparison with existing state of the art is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. on Image Proc. 7(4), 555–570 (1998)

    Article  Google Scholar 

  2. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)

    Article  Google Scholar 

  3. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: ICIP 2007 (2007)

    Google Scholar 

  4. Menotti, D., Najman, L., de Albuquerque Araújo, A.: 1D Component Tree in Linear Time and Space and its Application to Gray-Level Image Multithresholding. In: Proceedings of the 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, October 10–13, MCT/INPE, vol. 1, pp. 437–448 (2007)

    Google Scholar 

  5. Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.-E., Meijster, A.: Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines. Transactions on Pattern Analysis and Machine Intelligence (submitted, 2007)

    Google Scholar 

  6. Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. Journal of Mathematical Imaging and Vision 22(2-3), 231–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ngan, N., Contou-Carrère, F., Marcon, B., Guérin, S., Dokládalová, E., Akil, M.: Efficient hardware implementation of connected component tree algorithm. In: Workshop on Design and Architectures for Signal and Image Processing, DASIP 2007, Grenoble, France (2007)

    Google Scholar 

  9. Berger, C., Widynsky, N.: Using connected operators to manipulate image components. Report, LRDE Seminar (July 2005)

    Google Scholar 

  10. Meijster, A.: Efficient Sequential and Parallel Algorithms for Morphological Image Processing. PhD thesis, Rijksuniversiteit Groningen

    Google Scholar 

  11. Berger, C., Geraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Image Processing. In: IEEE International Conference on ICIP 2007, September 16 -October 19, vol. 4, IV - 41– IV - 44 (2007)

    Google Scholar 

  12. Deloison, B.: Recherche et développement en traitement d’image: Utilisation de l’arbre des composantes pour la fusion d’images. Report from graduate project, ESIEE Paris (June 2007)

    Google Scholar 

  13. Chiang, Y.-J., Lenz, T., Lu, X., Rote, G.: Simple and optimal output sensitive construction of contour trees using monotone paths. Comp. Geometry: Theory and Applications 30(2), 165–195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mattes, J., Demongeot, J.: Efficient algorithms to implement the confinement tree. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 392–405. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matas, P. et al. (2008). Parallel Algorithm for Concurrent Computation of Connected Component Tree. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88458-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88457-6

  • Online ISBN: 978-3-540-88458-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics