Skip to main content

A Generalized Appriou’s Model for Evidential Classification of Multispectral Images: A Case Study of Algiers City

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5259))

Abstract

In this paper, we shall describe an evidential supervised classifier of multispectral satellite images. The evidence theory of Dempster-Shafer (DST) is used to take into account the ignorance and the uncertainty related to data, and so, overcome the Bayesian classifier limits. Notice that application fields of DST are initially related on multisensor, multitemporal and multiscale data fusion. In this study, our contribution lies in developing an evidential classification process that can be seen as a multisource fusion process where each predefined thematic class is considered as one source of information. The evidential mass functions of the considered thematic hypotheses are estimated using Appriou’s transfer model whose we propose to generalize to a multi-class case. Developed DST-classifier has been tested on multispectral ETM+ image covering the urban north-eastern part of Algiers (Algeria). The spectral validation of obtained evidential classes allows us to confirm the accuracy of the resulting land cover map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appriou, A.: Probabilités et incertitude en fusion de données multi-senseurs. Revue Scientifique et Technique de la Défense 11, 27–40 (1991)

    Google Scholar 

  2. Appriou, A.: Multisensor signal processing in the framework of the theory of evidence. In: NATO/RTO, Application of Mathematical Signal Processing Techniques to Mission Systems. ONERA, Toulouse, France (1999)

    Google Scholar 

  3. Bendjabour, A., Pieczenski, W.: Unsupervised Image Segmentation Using Dempster-Shafer Fusion in a Markov Fields Context. In: First International Conference on Multisource-Multisensor Information Fusion, Las Vegas, Nevada, USA, pp. 595–600 (1998)

    Google Scholar 

  4. Bloch, I.: Information Combination Operators for Data Fusion: A comparative review with classification. IEEE, Trans. Sys. Man Cybern. A 26, 52–67 (1996)

    Article  Google Scholar 

  5. Bloch, I.: Fusion d’informations en traitement du signal et des images. Edition Hermès Science, Paris, France, p. 319 (2003)

    Google Scholar 

  6. Celleux, G., Diday, E., Govaert, G., Lechevallier, Y., Ralambondrainy, H.: Classification automatique des données. Editions Dunod Informatique, Paris, France (1989)

    Google Scholar 

  7. Chatalic, P.: Raisonnement déductif en présence de connaissances imprécises et incertaines: Un système basé sur la théorie de Dempster-Shafer. Thèse Phd, Université Paul Sabatier, Toulouse, France, p. 357 (1986)

    Google Scholar 

  8. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38(2), 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Denoeux, T.: Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recognition 30(7), 1095–1107 (1997)

    Article  Google Scholar 

  10. Dubois, D., Prade, H.: A Set-Theoretic View on Belief Functions: Logical Operations and Approximations by Fuzzy Sets. International Journal of General Systems 12, 193–226 (1986)

    Article  MathSciNet  Google Scholar 

  11. Dubois, D., Prade, H.: Possibility theory, an approach to the computerized processing of uncertainty. Plenum Press, New York (1988)

    MATH  Google Scholar 

  12. Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. J. Wiley & Sons, Chichester (1973)

    MATH  Google Scholar 

  13. Khedam, R., Bouakache, A., Mercier, G., Belhadj-Aissa, A.: Fusion multitemporelle par la théorie de Dempster-Shafer pour la détection et la cartographie des changements. Application au milieu urbain et périurbain de la région d’Alger. Revue Télédétection 6(4), 359–404 (2006)

    Google Scholar 

  14. Le Hégarat-Mascle, S., Bloch, I., Vidal-Madjar, D.: Application of Dempster Shafer evidence theory to unsupervised classification in multisource remote sensing. IEEE Transactions on Geosciences and Remote Sensing 35(4), 1018–1031 (1997)

    Article  Google Scholar 

  15. Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis. An Introduction, 3rd edn. Springer, Berlin (1998)

    Google Scholar 

  16. Shafer, G.: A Mathematical Theory of Evidence, p. 312. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  17. Smarandache, F., Dezert, J.: Advances and Application of DSmT for Information Fusion, p. 418. American Research Press (2004)

    Google Scholar 

  18. Smets, P.: Constructing the pignistic probability function in a context of uncertainty. In: Proceedings of the 5th Annual Conference on Uncertainty in Artificial Intelligence UAI 1989, Windsor, Ontario, pp. 319–326. North Holland Publishing Co., Amsterdam (1989)

    Google Scholar 

  19. Smets, P.: The Combination of Evidence in the Transferable Belief Model. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 447–458 (1990)

    Article  Google Scholar 

  20. Vannoorenberghe, P.: Un état de l’art sur les fonctions de croyance appliquées au traitement de l’information. Rapport technique, CNRS, Université de Rouen, UFR des Sciences. Revue 13 20(20) (2004)

    Google Scholar 

  21. Zadeh, L.A.: Fuzzy algorithm. Inform. Contr. 12, 94–102 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouakache, A., Khedam, R., Belhadj-Aissa, A., Mercier, G. (2008). A Generalized Appriou’s Model for Evidential Classification of Multispectral Images: A Case Study of Algiers City. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88458-3_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88457-6

  • Online ISBN: 978-3-540-88458-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics