Abstract
In this paper, we propose a new approach to determine the head pose which is a very important issue in several new applications. Our method consists of building a synthetic image database for a dense set of pose parameter values. This can be done with only one real image of the face using the Candide-3 model. To determine the pose, we compare each synthesized face image to the current image using an Hausdorff-like distance applied to gradient orientation features. Experimental results show the efficiency of our approach on real images. The improvement is also proved through a comparison with other technique presented in literature.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aanæs, H., Kahl, F.: Estimation of deformable structure and motion. In: VMDS (2002)
Ahlberg, J.: Candide-3 – an updated parameterized face. Technical report, Linköping University (2001)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH (1999)
Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3d shape from image streams. In: CVPR (2000)
Chaumont, M., Beaumesnil, B.: Robust and real-time 3d-face model extraction. In: ICIP (3) (2005)
Chen, Y., Davoine, F.: Simultaneous tracking of rigid head motion and non-rigid facial animation by analyzing local features statistically. In: BMVC (2006)
Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models. their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)
Cootes, T., Taylor, C.: On representing edge structure for model matching. In: CVPR (2001)
Bue, A.D., Smeraldi, F., Agapito, L.: Non-rigid structure from motion using non-parametric tracking and non-linear optimization. In: CVPR Workshop, Washington, DC, USA, p. 8 (2004)
Dementhon, D.F., Davis, L.S.: Model-based object pose in 25 lines of code. IJCV 15(1-2), 123–141 (1995)
Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of salient facial features. In: ICPR Workshop (2004)
Huang, J., Shao, X., Wechsler, H.: Face pose discrimination using support vector machines. In: ICPR (1998)
Koo, H.-S., Lam, K.-M.: Recovering the 3d shape and poses of face images based on the similarity transform. PRL 29(6), 712–723 (2008)
Matthews, I., Baker, S.: Active Appearance Models Revisited. IJCV 60(2), 135–164 (2004)
Negri, P., Clady, X., Milgram, M., Poulenard, R.: An oriented-contour point based voting algorithm for vehicle type classification. In: ICPR (2006)
Ojala, T., Pietikäinen, M., Nisula, J.: Determining composition of grain mixtures by texture classification based on feature distributions. IJPRAI 10(1), 73–82 (1996)
Paterson, J., Fitzgibbon A.: 3d head tracking using non-linear optimization. In: BMVC (2003)
Petrovic, V.S., Cootes, T.F.: Analysis of features for rigid structure vehicle type recognition. In: BMVC (2004)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007)
Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factorization method. IJCV 9(2), 137–154 (1992)
Wei, Y., Fradet, L., Tan, T.: Head pose estimation using gabor eigenspace modeling. In: ICIP (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bailly, K., Milgram, M. (2008). Head Pose Determination Using Synthetic Images. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2008. Lecture Notes in Computer Science, vol 5259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88458-3_97
Download citation
DOI: https://doi.org/10.1007/978-3-540-88458-3_97
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88457-6
Online ISBN: 978-3-540-88458-3
eBook Packages: Computer ScienceComputer Science (R0)