Skip to main content

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 1))

Abstract

Walking animals can deal with large range of difficult terrain and can use their legs for other purposes as sensing or object manipulation. This is possible although the underlying control system is based on neurons which are considered to be quite sloppy and slow computational elements. Important aspects of this control system are error tolerance and the capability of self-organization. This chapter concentrates on insect walking behaviour. Apart from some references to relevant morphology it addresses behavioural investigations which are paralleled by software simulations to allow a better understanding of the underlying principles. Furthermore, hints to neurophysiology and to hardware simulations are given. Characteristic properties of the control system are its decentralized architecture that relies heavily on internal feedback as well as on sensory feedback, and that exploits the physics of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akay, T., Bässler, U., Gerharz, P., Büschges, A.: The role of sensory signals from the insect coxa-trochanteral joint in contolling motor activity of the femur-tibia joint. J. Neurophysiol. 85, 594–604 (2001)

    Google Scholar 

  2. Akay, T., Haehn, S., Schmitz, J., Büschges, A.: Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J. Neurophysiol. 92, 42–51 (2004)

    Google Scholar 

  3. Akay, T., Ludwar, B., Göritz, M., Schmitz, J., Büschges, A.: Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. Journal of Neuroscience 27, 3285–3294 (2007)

    Google Scholar 

  4. Ayers, J.: A conservative biomimetic control architecture for autonomous underwater robots. In: Ayers, J., Davis, J.L., Rudolph, A. (eds.) Neurotechnology for biomimetic robots. MIT Press, Cambridge (2002)

    Google Scholar 

  5. Baldi, P., Heiligenberg, W.: How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers. Biol. Cybern. 59, 313–318 (1988)

    MATH  MathSciNet  Google Scholar 

  6. Bartling, C., Schmitz, J.: Reaction to disturbances of a walking leg during stance. J. Exp. Biol. 203, 1211–1233 (2000)

    Google Scholar 

  7. Bässler, U.: Das Stabheuschreckenpraktikum. Franckh, Stuttgart (1965)

    Google Scholar 

  8. Bässler, U.: Proprioreceptoren am Subcoxal- und Femur-Tibia-Gelenk der Stabheuschrecke und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung. Kybernetik 2, 168–193 (1965)

    Google Scholar 

  9. Bässler, U.: Zur Bedeutung der Antennen für die Wahrnehmung der Schwerkraftrichtung bei der Stabheuschrecke Carausius morosus. Kybernetik 9, 31–34 (1971)

    Google Scholar 

  10. Bässler, U.: Zur Beeinflussung der Bewegungsweise eines Beines von Carausius morosus durch Amputation anderer Beine. Kybernetik 10, 110–114 (1972)

    Google Scholar 

  11. Bässler, U.: Reversal of a reflex to a single motoneuron in the stick insect Carausius morosus. Biol. Cybern. 24, 47–49 (1976)

    Google Scholar 

  12. Bässler, U.: Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia-joint. J. Comp. Physiol. 121, 99–113 (1977a)

    Google Scholar 

  13. Bässler, U.: Sensory control of leg movement in the stick insect Carausius morosus. Biol. Cybern. 25, 61–72 (1977b)

    Google Scholar 

  14. Bässler, U.: Neural basis of elementary behavior in stick insects. Springer, Heidelberg (1983)

    Google Scholar 

  15. Bässler, U.: Afferent control of walking movements in the stick insect Cuniculina impigra. i. decerebrated animals on a treadband. J. Comp. Physiol. A 158, 345–349 (1986)

    Google Scholar 

  16. Bässler, U.: Functional principles of pattern generation for walking movements of stick insect forelegs: The role of the femoral chordotonal organ afferences. J. Exp. Biol. 136, 125–147 (1988)

    Google Scholar 

  17. Bässler, U., Büschges, A.: Pattern generation for stick insect walking movements - multisensory control of a locomotor program. Brain Res. Rev. 27, 65–88 (1998)

    Google Scholar 

  18. Bässler, U., Rohrbacher, J., Karg, G., Breutel, G.: Interruption of searching movements of partly restrained front legs of stick insects, a model situation for the start of the stance phase? Biol. Cybern. 65, 507–514 (1991)

    Google Scholar 

  19. Bell, W.J., Kramer, E.: Search and anemotactic orientation of cockroaches. J. Insect Physiol. 25, 631–640 (1979)

    Google Scholar 

  20. Berns, K., Albiez, J., Kepplin, V., Hillenbrand, C.: Airbug-insect like machine actuated by fluidic muscle. In: Berns, K., Dillmann, R. (eds.) Proc. 4th Int.Conf.Climbing and Walking Robots, CLAWAR 2001, pp. 237–244. Professional Engineering Publishers, London (2001)

    Google Scholar 

  21. Biewener, A.A.: Animal locomotion. Oxford University Press, Oxford (2003)

    Google Scholar 

  22. Bizzi, E., Giszter, S.F., Loeb, E., Mussa-Ivaldi, F.A., Saltiel, P.: Modular organization of motor behavior in the frog’s spinal cord. Trends Neurosci. 18, 442–446 (1995)

    Google Scholar 

  23. Bläsing, B.: Adaptive locomotion in a complex environment: simulation of stick insect gap crossing behaviour. From animals to animats 8, 173–182 (2004)

    Google Scholar 

  24. Bläsing, B., Cruse, H.: Mechanisms of stick insect locomotion in a gap crossing paradigm. J. Comp. Physiol. A 190, 173–183 (2004)

    Google Scholar 

  25. Blickhan, R., Full, R.J.: Similarity in multilegged locomotion: Bouncing like a monopode. J. Comp. Physiol. A 173, 509–517 (1993)

    Google Scholar 

  26. Böhm, H., Heinzel, H.G., Scharstein, H., Wendler, G.: The course-control system of beetles walking in an air-current field. J. Comp. Physiol. A 169, 671–683 (1991)

    Google Scholar 

  27. Bräunig, P., Hustert, R., Pflüger, H.J.: Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. i. morphology, location and innervation of internal proprioceptors of pro-and metathorax and their central projections. Cell Tissue Res. 216, 57–77 (1981)

    Google Scholar 

  28. Brooks, R.A.: A robot that walks: Emergent behaviors from a carefully evolved network. Neural computat. 1, 253–262 (1989)

    Google Scholar 

  29. Brooks, R.A.: Intelligence without reason. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), Sydney, pp. 569–595 (1991)

    Google Scholar 

  30. Brown, I.E., Loeb, G.E.: A reductionist approach to creating and using neuromusculoskeletal movement. In: Winters, M.J., Crago, E.P. (eds.) Biomechanics and neural control of movement, pp. 148–163. Springer, Heidelberg (2000)

    Google Scholar 

  31. Brunn, D.E., Dean, J.: Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position. J. Neurophysiol. 72, 1208–1219 (1994)

    Google Scholar 

  32. Bucher, D., Akay, T., Dicaprio, R.A., Büschges, A.: Interjoint coordination in the stick insect leg-control system: The role of positional signaling. J. Neurophysiol. 89, 1245–1255 (2003)

    Google Scholar 

  33. Burrows, M.: The Neurobiology of an Insect Brain. Oxford University Press, Oxford (1996)

    Google Scholar 

  34. Büschges, A., Schmitz, J., Bässler, U.: Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J. Exp. Biol. 198, 435–456 (1995)

    Google Scholar 

  35. Camhi, J.M., Johnson, E.N.: High-frequency steering maneuvers mediated by tactile cues: Antennal wall-following in the cockroach. J. Exp. Biol. 202, 631–643 (1999)

    Google Scholar 

  36. Chasserat, C., Clarac, F.: Interlimb coordinating factors during driven walking in crustacea. A comparative study of absolute and relative coordination. J. Comp. Physiol. 139, 293–306 (1980)

    Google Scholar 

  37. Cocatre-Zilgien, J.H., Delcomyn, F.: Modeling stress and strain in an insect leg for simulation of campaniform sensilla responsses to external forces. Biol. Cybern. 81, 149–160 (1999)

    Google Scholar 

  38. Comer, C.M., Parks, L., Halvorsen, M.B., Breese-Terteling, A.: The antennal system and cockroach evasive behavior ii. Stimulus identification and localization are separable antennal functions. J. Comp. Physiol. A 189, 97–103 (2003)

    Google Scholar 

  39. Copp, N., Jamon, M.: Kinematics of rotation in place during defense turning in the crayfish Procambarus clarkii. J. Exp. Biol. 204, 471–486 (2001)

    Google Scholar 

  40. Cowan, N.J., Ma, E.J., Cutkosky, M., Full, R.J.: A biologically inspired passive antenna for steering control of a running robot. In: Dario, P., Chatila, R. (eds.) Robotics Research. The Eleventh International Symposium. Springer, Wien (2003)

    Google Scholar 

  41. Cruse, H.: On the function of the legs in the free walking stick insect Carausius morosus. J. Comp. Physiol. 112, 235–262 (1976a)

    Google Scholar 

  42. Cruse, H.: The control of body position in the stick insect (Carausius morosus), when walking over uneven surfaces. Biol. Cybern. 24, 25–33 (1976b)

    Google Scholar 

  43. Cruse, H.: The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus. Physiol. Entomol. 4, 121–124 (1979)

    Google Scholar 

  44. Cruse, H.: The influence of load, position and velocity on the control of leg movement of a walking insect. In: Gewecke, M., Wendler, G. (eds.) Insect Locomotion, pp. 19–26. Parey, Hamburg (1985a)

    Google Scholar 

  45. Cruse, H.: Which parameters control the leg movement of a walking insect? i. velocity control during the stance phase. J. Exp. Biol. 116, 343–355 (1985b)

    Google Scholar 

  46. Cruse, H.: Which parameters control the leg movement of a walking insect? ii. the start of the swing phase. J. Exp. Biol. 116, 357–362 (1985c)

    Google Scholar 

  47. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci. 13, 15–21 (1990)

    Google Scholar 

  48. Cruse, H.: The functional sense of central oscillations in walking. Biol. Cybern. 86, 271–280 (2002)

    MATH  Google Scholar 

  49. Cruse, H., Bartling, C.: Movement of joint angles in the legs of a walking insect, Carausius morosus. J. Insect Physiol. 41, 761–771 (1995)

    Google Scholar 

  50. Cruse, H., Bartling, C., Dean, J., Kindermann, T., Schmitz, J., Schumm, M., Wagner, H.: Coordination in a six-legged walking system. simple solutions to complex problems by exploitation of physical properties. In: Maes, P., et al. (eds.) From Animals to Animats, vol. 4, pp. 84–93. The MIT Press/Bradford Books, Cambridge (1996)

    Google Scholar 

  51. Cruse, H., Bartling, C., Dreifert, M., Schmitz, J., Brunn, D.E., Dean, J., Kindermann, T.: Walking: a complex behaviour controlled by simple networks. Adapt. Behav. 3, 385–418 (1995)

    Google Scholar 

  52. Cruse, H., Kindermann, T., Schumm, M., Dean, J., Schmitz, J.: Walknet - a biologically inspired network to control six-legged walking. Neural Networks 11, 1435–1447 (1998)

    Google Scholar 

  53. Cruse, H., Kühn, S., Park, S., Schmitz, J.: Adaptive control for insect leg position: controller properties depend on substrate compliance. J. Comp. Physiol. A 190, 983–991 (2004)

    Google Scholar 

  54. Cruse, H., Müller, U.: A new method measuring leg position of walking crustaceans shows that motor output during return stroke depends upon load. J. Exp. Biol. 110, 319–322 (1984)

    Google Scholar 

  55. Cruse, H., Müller-Wilm, U., Dean, J.: Artificial neural nets for controlling a 6-legged walking system. In: Meyer, J.A., Roitblat, H., Wilson, S. (eds.) From animals to animats, pp. 52–60. MIT Press, Cambridge (1993a)

    Google Scholar 

  56. Cruse, H., Riemenschneider, D., Stammer, W.: Control of body position of a stick insect standing on uneven surfaces. Biol. Cybern. 61, 71–77 (1989)

    Google Scholar 

  57. Cruse, H., Saxler, G.: Oscillations of force in the standing legs of a walking insect (Carausius morosus). Biol. Cybern. 36, 159–163 (1980)

    Google Scholar 

  58. Cruse, H., Schmitz, J., Braun, U., Schweins, A.: Control of body height in a stick insect walking on a treadwheel. J. Exp. Biol. 181, 141–155 (1993b)

    Google Scholar 

  59. Cruse, H., Silva Saavedra, M.G.: Curve walking in crayfish. J. Exp. Biol. 199, 1477–1482 (1996)

    Google Scholar 

  60. Cruse, H., Warnecke, H.: Coordination of the legs of a slow-walking cat. Exp. Brain Res. 89, 147–156 (1992)

    Google Scholar 

  61. Cuénot, L.: Regeneration de pattes á la place d’antennes sectionnées chez un phasme. Comptes Rendus Acad. Sci. Paris 172, 949–952 (1921)

    Google Scholar 

  62. Dean, J.: Coding proprioceptive information to control movement to a target: simulation with a simple neural network. Biol. Cybern. 63, 115–120 (1990)

    Google Scholar 

  63. Dean, J.: A model of leg coordination in the stick insect, Carausius morosus. i. a geometrical consideration of contralateral and ipsilateral coordination mechanisms between two adjacent legs. Biol. Cybern. 64, 393–402 (1991a)

    Google Scholar 

  64. Dean, J.: A model of leg coordination in the stick insect, Carausius morosus. ii. description of the kinematic model and simulation of normal step patterns. Biol. Cybern. 64, 403–411 (1991b)

    Google Scholar 

  65. Dean, J.: Effect of load on leg movement and step coordination of the stick insect Carausius morosus. J. Exp. Biol. 159, 449–471 (1991c)

    Google Scholar 

  66. Dean, J.: A model of leg coordination in the stick insect, Carausius morosus. iii. responses to perturbations of normal coordination. Biol. Cybern. 66, 335–343 (1992a)

    Google Scholar 

  67. Dean, J.: A model of leg coordination in the stick insect, Carausius morosus. iv. comparisons of different forms of coordinating mechanisms. Biol. Cybern. 66, 345–355 (1992b)

    Google Scholar 

  68. Dean, J., Cruse, H.: Evidence for the control of velocity as well as position in leg protraction and retraction by the stick insect. In: Heuer, H., Fromm, C. (eds.) Generation and modulation of action patterns, vol. 15, pp. 263–274. Springer, Heidelberg (1986)

    Google Scholar 

  69. Dean, J., Cruse, H.: Motor pattern generation. In: Arbib, M. (ed.) Handbook for Brain Theory and Neural Network, pp. 696–701. Bradford Book/MIT Press, Cambridge (2003)

    Google Scholar 

  70. Dean, J., Wendler, G.: Stick insects walking on a wheel: Perturbations induced by obstruction of leg protraction. J. Comp. Physiol. 148, 195–207 (1982)

    Google Scholar 

  71. Dean, J., Wendler, G.: Stick insect locomotion on a walking wheel: interleg coordination of leg position. J. Exp. Biol. 103, 75–94 (1983)

    Google Scholar 

  72. Degtyarenko, A.M., Simon, E.S., Norden-Krichmar, T., Burke, R.E.: Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat. J. Neurophysiol. 79, 447–463 (1998)

    Google Scholar 

  73. Delcomyn, F.: Insect locomotion on land. In: Herreid, C.F., Fourtner, C.R. (eds.) Locomotion and Energetics in Arthropods, pp. 103–125. Plenum, New York (1981)

    Google Scholar 

  74. Delcomyn, F.: Acitvity and structure of movement-signalling (corollary discharge) interneurons in a cockroach. J. Comp. Physiol. 150, 185–193 (1983)

    Google Scholar 

  75. Delcomyn, F.: Motor activity during searching and walking movemets of cockroach legs. J. Exp. Biol. 133, 111–120 (1987)

    Google Scholar 

  76. Delcomyn, F.: Walking in the american coackroach: the timing of motor activity in the legs during straight walking. Biol. Cybern. 60, 373–384 (1989)

    Google Scholar 

  77. Delcomyn, F.: Activity and directional sensitivity of leg campaniform sensilla in a stick insect. J. Comp. Physiol. A 168, 113–119 (1991)

    Google Scholar 

  78. Dicaprio, R.A., Clarac, F.: Reversal of a walking leg reflex elicited by a muscle receptor. J. Exp. Biol. 90, 197–203 (1981)

    Google Scholar 

  79. Dreller, C., Kirchner, W.H.: Hearing in honeybees: localization of the auditory sense organ. J. Comp. Physiol. A 173, 275–279 (1993)

    Google Scholar 

  80. Dürr, V.: Stereotypic leg searching-movements in the stick insect: Kinematic analysis, behavioural context and simulation. J. Exp. Biol. 204, 1589–1604 (2001)

    Google Scholar 

  81. Dürr, V.: Context-dependent changes in strength and efficacy of leg coordination mechanisms. J. Exp. Biol. 208, 2253–2267 (2005)

    Google Scholar 

  82. Dürr, V.: Context-dependent changes in strength and efficacy of leg coordination mechanisms. J. Exp. Biol. 208, 2253–2267 (2005a)

    Google Scholar 

  83. Dürr, V., Ebeling, W.: The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. J. Exp. Biol. 208, 2237–2252 (2005)

    Google Scholar 

  84. Dürr, V., König, Y., Kittmann, R.: The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking. J. Comp. Physiol. A 187, 131–144 (2001)

    Google Scholar 

  85. Dürr, V., Krause, A.: The stick insect antenna as a biological paragon for an actively moved tactile probe for obstacle detection. In: Berns, K., Dillmann, R. (eds.) Climbing and Walking Robots - From Biology to Industrial Applications. Proc. 4th Int. Conf. Climbing and Walking Robots (CLAWAR 2001), Karlsruhe, pp. 87–96. Professional Engineering Publishing, Bury St. Edmunds (2001)

    Google Scholar 

  86. Dürr, V., Krause, A., Schmitz, J., Cruse, H.: Neuroethological concepts and their transfer to walking machines. Int. J. Robotics Res. 22, 151–167 (2003)

    Google Scholar 

  87. Duysens, J., Clarac, F., Cruse, H.: Load-regulating mechanisms in gait and posture: Comparative aspects. Physiol. Rev. 80, 83–133 (2000)

    Google Scholar 

  88. Ebeling, W., Dürr, V.: Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes. Journal of Experimental Biology 209, 2199–2214 (2006)

    Google Scholar 

  89. Ekeberg, O., Blümel, M., Büschges, A.: Dynamic simulation of insect walking. Arthropod Structure & Development 33, 287–300 (2004)

    Google Scholar 

  90. Espenschied, K.S., Quinn, R.D., Beer, R.D., Chiel, H.J.: Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robot. Autonom. Sys. 18, 59–64 (1996)

    Google Scholar 

  91. Fielding, M.R., Dunlop, R.: Exponential fields to establish inter-leg influences for omni-directional hexapod gait. In: Berns, K., Dillmann, R. (eds.) Proc. 4th Int. Conf. Climbing and Walking Robots (CLAWAR 2001), pp. 587–594. Professional Engineering Publishers, London (2001)

    Google Scholar 

  92. Fischer, H., Schmidt, J., Haas, R., Büschges, A.: Pattern generation for walking and searching movements of a stick insect leg. i. coordination of motor activity. J. Neurophysiol. 85, 341–353 (2001)

    Google Scholar 

  93. Franklin, R., Bell, W.J., Jander, R.: Rotational locomotion by the cockroach Blattella germanica. J. Insect Physiol. 27, 249–255 (1981)

    Google Scholar 

  94. Frantsevich, L., Cruse, H.: Leg coordination during turning on an extremely narrow substrate in a bug, Mesocerus marginatus (heteroptera, coreidae). J. Insect Physiol. 51, 1092–1104 (2005)

    Google Scholar 

  95. Frazier, S.F., Larsen, G.S., Neff, D., Quimby, L., Carney, M., Dicaprio, R.A., Zill, S.N.: Elasticity and movements of the cockroach tarsus in walking. J. Comp. Physiol. A 185, 157–172 (1999)

    Google Scholar 

  96. Full, R.J.: Integration of individual leg dynamics with whole body movement in arthropod locomotion. In: Beer, R., Ritzmann, R.E., McKenna, T. (eds.) Biological Neural Networks in Invertebrate Neuroethology and Robotics, pp. 3–20. Academic Press, San Diego (1993)

    Google Scholar 

  97. Full, R.J., Blickhan, R.: Locomotion wnergetics of the ghost crab. J. Exp. Biol. 130, 155–175 (1987)

    Google Scholar 

  98. Full, R.J., Koditschek, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202, 3325–3332 (1999)

    Google Scholar 

  99. Full, R.J., Kubow, T.M., Schmitt, J., Holmes, P., Koditscheck, D.E.: Quantifying dynamic stability and maneuverbility in legged locomotion. Integ. and Comp. Biol. 42, 149–157 (2002)

    Google Scholar 

  100. Full, R.J., Tu, M.S.: Mechanics of six-legged runners. J. Exp. Biol. 148, 129–146 (1990)

    Google Scholar 

  101. Full, R.J., Tu, M.S.: Mechanics of a rapid running insect: two-, four- and six-legged locomotion. J. Exp. Biol. 156, 215–231 (1991)

    Google Scholar 

  102. Gienger, M., Löffler, K., Pfeiffer, F.: A biped robot that jogs. In: Proc. IEEE Int. Conf. Robotics Automation, vol. 4, pp. 3334–3339 (2000)

    Google Scholar 

  103. Gnatzy, W., Heußlein, R.: Digger wasp against crickets. i. receptors involved in the antipredator strategies of the prey. Naturwiss. 73, 212–215 (1986)

    Google Scholar 

  104. Göpfert, M.C., Briegel, H., Robert, D.: Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. J. Exp. Biol. 202, 2727–2738 (1999)

    Google Scholar 

  105. Göpfert, M.C., Robert, D.: The mechanical basis of Drosophila audition. J. Exp. Biol. 205, 1199–1208 (2002)

    Google Scholar 

  106. Gorb, S.N., Jiao, Y., Scherge, M.: Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (orthoptera, tettigoniidae). J. Comp. Physiol. A 186, 821–831 (2000)

    Google Scholar 

  107. Graham, D.: A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). J. Comp. Physiol. 81, 23–52 (1972)

    Google Scholar 

  108. Graham, D.: Pattern and control of walking in insects. Adv. Insect Physiol. 81, 31–140 (1985)

    Google Scholar 

  109. Gregory, G.: Neuroanatomy of the mesothoracic ganglion of the cockroach periplaneta americana (l.). ii. median neuron cell body groups. Phil. Trans. R. Soc. Lond. B 306, 191–218 (1984)

    Google Scholar 

  110. Guthrie, D.M.: Multipolar stretch receptors and the insect leg reflex. J. Insect Physiol. 13, 1637–1644 (1967)

    Google Scholar 

  111. Hess, D., Büschges, A.: Role of propriosceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. J. Neurophysiol. 81, 1856–1865 (1999)

    Google Scholar 

  112. Hofmann, T., Bässler, U.: Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, cuniculina impigra. Physiol. Entomol. 7, 413–426 (1982)

    Google Scholar 

  113. Hofmann, T., Koch, U.T., Bässler, U.: Physiology of the femoral chordotonal organ in the stick insect, Cuniculina impigra. J. Exp. Biol. 114, 207–223 (1985)

    Google Scholar 

  114. Holst, E.v.: Die relative koordination als phänomen und als methode zentralnervöser funktionsanalyse. Erg. Physiol. 42, 228–306 (1939)

    Google Scholar 

  115. Holst, E.v.: Über relative koordination bei arthropoden. Pflügers Arch. 246, 847–865 (1943)

    Google Scholar 

  116. Höltje, M., Hustert, R.: Rapid mechano-sensory pathways code leg impact and elicit very rapid reflexes in insects. J. Exp. Biol. 206, 2715–2724 (2003)

    Google Scholar 

  117. Honegger, H.W.: A preliminary note on a new optomotor response in crickets: Antennal tracking of moving targets. J. Comp. Physiol. A 142, 419–421 (1981)

    Google Scholar 

  118. Horn, E., Bischof, H.J.: Gravity reception in crickets: the influence of cercal and antennal afferents on the head position. J. Comp. Physiol. A 150, 93–98 (1983)

    Google Scholar 

  119. Horseman, B.G., Gebhardt, M.J., Honegger, H.W.: Involvement of the suboesophageal and thoracic ganglia in the control of antennal movements in crickets. J. Comp. Physiol. A 181, 195–204 (1997)

    Google Scholar 

  120. Hu, J., Pratt, J., Chew, C., Herr, H., Pratt, G.: Adaptive virtual model control of a bipedal walking robot. In: Proc. IEEE Int. Symp. Intel. Sys., pp. 245–251 (1998)

    Google Scholar 

  121. Hustert, R.: Proprioceptor responses and convergence of proprioceptive influence on motorneurones in the mesothoracic thoraco-coxal joint of locusts. J. Comp. Physiol. 150, 77–86 (1983)

    Google Scholar 

  122. Hustert, R., Pflüger, H.J., Bräunig, P.: Distribution and specific central projections in the thorax and proximal leg joints of locusts. iii. the external mechanoreceptors: The campaniform sensille. Cell Tissue Res. 216, 97–111 (1981)

    Google Scholar 

  123. Imms, A.D.: On the antennal musculature in insects and other arthropods. Quart. J. Microsc. Sci. 81, 273–320 (1939)

    Google Scholar 

  124. Inman, V.T., Ralston, H.J., Todd, F.: Human walking. Williams & Wilkins, Baltimore (1981)

    Google Scholar 

  125. Jander, J.P.: Untersuchungen zum mechanismus und zur zentralnervösen steuerung des kurvenlaufs bei stabheuschrecken (Carausius morosus). Ph.D. thesis, University of Köln, Germany (1982)

    Google Scholar 

  126. Jander, J.P.: Mechanical stability in stick insects when walking straight and around curves. In: Gewecke, M., Wendler, G. (eds.) Insect Locomotion, pp. 33–42. Paul Parey, Hamburg (1985)

    Google Scholar 

  127. Jindrich, D.L., Full, R.J.: Many-legged maneuverability: Dynamics of turning in hexapods. J. Exp. Biol. 202, 1603–1623 (1999)

    Google Scholar 

  128. Jindrich, D.L., Full, R.J.: Dynamic stabilization of rapid hexapedal locomotion. J. Exp. Biol. 205, 2803–2823 (2002)

    Google Scholar 

  129. Kaliyamoorthy, S., Zill, S.N., Quinn, R.D., Ritzmann, R.: Finite element analysis of strains in the Blaberus cockroach leg segment while climbing. In: Intelligent Robots and Systems IEEE/RSJ Proceedings, vol. 2, pp. 833–838 (2001)

    Google Scholar 

  130. Kaneko, M., Kanayma, N., Tsuji, T.: Active antenna for contact sensing. IEEE Trans. Robot. Autom. 14, 278–291 (1998)

    Google Scholar 

  131. Karg, G., Breutel, G., Bässler, U.: Sensory influences on the coordination of two leg joints during searching movements of stick insects. Biol. Cybern. 64, 329–335 (1991)

    Google Scholar 

  132. Kawato, M., Gomi, H.: The cerebellum and vor/okr learning-models. Trends Neurosci. 15, 445–453 (1992)

    Google Scholar 

  133. Kemmerling, S., Varju, D.: Regulation of the body-substrate-distance in the stick insect: Step responses and modelling the control system. Biol. Cybern. 44, 59–66 (1982)

    Google Scholar 

  134. Kendall, M.D.: The anatomy of the tarsi of Schistocerca gregoria forskål. Z. Zellforsch. 109, 112–137 (1970)

    Google Scholar 

  135. Kindermann, T.: Behavior and adaptability of a six-legged walking system with highly distributed control. Adapt. Behav. 9, 16–41 (2002)

    Google Scholar 

  136. Kittmann, R., Dean, J., Schmitz, J.: An atlas of the thoracic ganglia of the stick insect, carausius morosus. Phil. Trans. R. Soc. Lond. B 331, 101–121 (1991)

    Google Scholar 

  137. Knop, G., Denzer, L., Buschges, A.: A central pattern-generating network contributes to “reflex-reversal”-like leg motoneuron activity in the locust. J. Neurophysiol. 86, 3065–3068 (2001)

    Google Scholar 

  138. Krause, A.F., Dürr, V.: Tactile efficiency of insect antennae with two hinge joints. Biol. Cybern. 91, 168–181 (2004)

    MATH  Google Scholar 

  139. Land, M.F.: Stepping movements made by jumping spiders during turns mediated by the lateral eyes. J. Exp. Biol. 57, 15–40 (1972)

    Google Scholar 

  140. Lange, O., Reimann, B., Saenz, J., Dürr, V., Elkmann, N.: Insectoid obstacle detection based on an active tactile approach. In: Witte, H. (ed.) Proc. Int. Symp. Adapt. Motion Anim. Mach. (2005)

    Google Scholar 

  141. Lewinger, W.A., Harley, C.M., Ritzmann, R.E., Branicky, M.S., Quinn, R.D.: Insect-like antennal sensing for climbing and tunneling behavior in a biologically-inspired mobile robot. In: Procceedings of the IEEE International Conference on Robotics and Automation (ICRA 2005), Barcelona, April 18-22 (2005)

    Google Scholar 

  142. Linder, C.: Self-organization in a simple task of motor control based on spatial encoding. Adaptive Behavior (2005)

    Google Scholar 

  143. Linder, C.R.: Self organisation in a simple task of motor control. In: Hallam, B., et al. (eds.) From animals to animats, vol. 7, pp. 185–194. MIT Press, Cambridge (2002)

    Google Scholar 

  144. Linsenmair, K.E.: Die windorientierung laufender insekten. Fortschr. Zool. 21, 59–79 (1973)

    Google Scholar 

  145. Manning, A.: Antennae and sexual receptivity in Drosophila melanogaster females. Science 158, 136–137 (1967)

    Google Scholar 

  146. Marchand, A.R., Leibrock, C.S., Auriac, M.C., Barnes, W.J.P., Clarac, F.: Morphology, physiology and in vivo activity of cuticular stress detector afferents in crayfish. J. Comp. Physiol. A. 176, 409–424 (1995)

    Google Scholar 

  147. Matheson, T.: Range fractionation in the locust metathoracic femoral chordotonal organ. J. Comp. Physiol. A 170, 509–520 (1992)

    Google Scholar 

  148. Matheson, T., Field, L.H.: An elaborate tension receptor system highlights sensory complexity in the hind leg of the locust. J. Exp. Biol. 198, 1673–1689 (1995)

    Google Scholar 

  149. Müller-Wilm, U., Dean, J., Cruse, H., Weidemann, H.J., Eltze, J., Pfeiffer, F.: Kinematic model of stick insect as an example of a 6-legged walking system. Adapt. Behav. 1, 155–169 (1992)

    Google Scholar 

  150. Newland, P.L.: Morphology and somatotopic organisation of the central projections of afferents from tactile hairs on the hind leg of the locust. J. Comp. Neurol. 312, 493–508 (1991)

    Google Scholar 

  151. Newland, P.L., Emptage, N.J.: The central connections and actions during walking of tibial campaniform sensilla in the locust. J. Comp. Physiol. A 178, 749–762 (1996)

    Google Scholar 

  152. Noah, J.A., Quimby, L., Frazier, S.F., Zill, S.N.: Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered. J. Comp. Physiol. A 187, 769–784 (2001)

    Google Scholar 

  153. Noah, J.A., Quimby, L., Frazier, S.F., Zill, S.N.: Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches. J. Comp. Physiol. A 190, 201–215 (2004)

    Google Scholar 

  154. Okada, J., Toh, Y.: The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana). J. Comp. Physiol. A (2000)

    Google Scholar 

  155. Pearson, K.G.: Central programming and reflex control of walking in the cockroach. J. Exp. Biol. 56, 173–193 (1972)

    Google Scholar 

  156. Pearson, K.G.: Common principles of motor control in vertebrates and invertebrates. Ann. Rev. Neurosci. 16, 265–297 (1993)

    Google Scholar 

  157. Pearson, K.G., Franklin, R.: Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain. Int. J. Robotics Res. 3, 101–112 (1984)

    Google Scholar 

  158. Pearson, K.G., Iles, F.J.: Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. J. Exp. Biol. 58, 725–744 (1973)

    Google Scholar 

  159. Pelletier, Y., McLeod, C.D.: Obstacle perception by insect antennae during terrestrial locomotion. Physiol. Entomol. 19, 360–362 (1994)

    Google Scholar 

  160. Petryszak, A., Fudalewicz-Niemczyk, W.: External proprioceptors on the legs of insects of higher orders. Acta Biologica Cracoviensia 36, 13–22 (1994)

    Google Scholar 

  161. Pflüger, H.J., Braeunig, P., Hustert, R.: The organization of mechanosensory neuropiles in locust thoracic ganglia. Phil. Trans. R. Soc. Lond. B 321, 1–26 (1988)

    Google Scholar 

  162. Porta, J.M., Celaya, E.: Efficient gait generation using reinforcement learning. In: Berns, K., Dillmann, R. (eds.) Proc. 4th Int. Conf. Climbing and Walking Robots (CLAWAR 2001), pp. 411–418. Professional Engineering Publishing, London (2001)

    Google Scholar 

  163. Pringle, J.W.S.: Proprioception in insects. ii. the action of the campaniform sensilla on the legs. J. Exp. Biol. 15, 114–131 (1938)

    Google Scholar 

  164. Prochazka, A., Gillard, D., Bennett, D.J.: Implications of positive feedback in the control of movement. J. Neurophysiol. 77, 3237–3251 (1997a)

    Google Scholar 

  165. Prochazka, A., Gillard, D., Bennett, D.J.: Positive force feedback control of muscles. J. Neurophysiol. 77, 3226–3236 (1997b)

    Google Scholar 

  166. Quinn, R.D., Nelson, G.M., Bachmann, R.J., Ritzmann, R.E.: Toward mission capable legged robots through biological inspiration. Autonomous Robots 11, 215–220 (2001)

    MATH  Google Scholar 

  167. Radnikow, G., Bässler, U.: Function of a muscle whose apodeme travels through a joint moved by other muscles: why the retractor unguis muscle in stick insects is tripartite and has no antagonist. J. Exp. Biol. 157, 87–99 (1991)

    Google Scholar 

  168. Ridgel, A.L., Frazier, S.F., Dicaprio, R.A., Zill, S.N.: Active signaling of leg loading and unloading in the cockroach. J. Neurophysiol. 81, 1432–1437 (1999)

    Google Scholar 

  169. Ridgel, A.L., Frazier, S.F., Dicaprio, R.A., Zill, S.N.: Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion. J. Comp. Physiol. A 186, 359–374 (2000)

    Google Scholar 

  170. Ridgel, A.L., Frazier, S.F., Zill, S.N.: Dynamic responses of tibial campaniform sensilla studied by substrate displacement in freely moving cockroaches. J. Comp. Physiol. A 187, 405–420 (2001)

    Google Scholar 

  171. Ritzmann, R.E., Pollack, A.J., Archinal, J., Ridgel, A.L., Quinn, R.D.: Descending control of body attitude in the cockroach blaberus discoidalis and its role in incline climbing. J. Comp. Physiol. A 191, 253–264 (2005)

    Google Scholar 

  172. Roeder, K.D.: The control of tonus and locomotor activity in the praying mantis (Mantis religiosa l). J. exp. Zool. 76, 353–374 (1937)

    Google Scholar 

  173. Roggendorf, T.: Comparing different controllers for the coordination of a six-legged walker. Biol. Cybern. 92, 261–274 (2005)

    MATH  Google Scholar 

  174. Schilling, M., Cruse, H., Arena, P.: Hexapod walking: an expansion to walknet dealing with leg amputations and force oscillations. Biological Cybernetics 96(3), 323–340 (2007)

    MATH  Google Scholar 

  175. Schmitt, J., Garcia, M., Razo, R.C., Holmes, P., Full, R.J.: Dynamics and stability of legged locomotion in the horizontal plane: a test case using insects. Biol. Cybern. 86, 343–353 (2002)

    MATH  Google Scholar 

  176. Schmitz, J.: Load-compensating reactions in the proximal leg joints of stick insects during standing and walking. J. Exp. Biol. 183, 15–33 (1993)

    Google Scholar 

  177. Schmitz, J., Bartling, C., Brunn, D.E., Cruse, H., Dean, J., Kindermann, T., Schumm, M., Wagner, H.: Adaptive properties of “hard-wired” neuronal systems. Verh. Dt. Zool. Ges. 88, 165–179 (1995)

    Google Scholar 

  178. Schmitz, J., Dean, J., Kindermann, T., Schumm, M., Cruse, H.: A biologically inspired controller for hexapod walking: simple solutions by exploiting physical properties. Biol. Bull. 200, 195–200 (2001)

    Google Scholar 

  179. Schmitz, J., Dean, J., Kittmann, R.: Central projections of leg sense organs in Carausius morosus (insecta, phasmida). Zoomorphol. 111, 19–33 (1991)

    Google Scholar 

  180. Schmitz, J., Kamp, A., Kindermann, T., Cruse, H.: Adaptations to increased load in a control system governing movements of biological and artificial walking machines. In: Blickhan, R., Nachtigall, W. (eds.) BIONA reports 13: Motor System (2000)

    Google Scholar 

  181. Schmitz, J., Schumann, K., Kamp, A.v.: Mechanisms for self-adaptation of posture and movement to increased load. Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington (CD-ROM, 2000, Program No. 368.7) (2000)

    Google Scholar 

  182. Schmitz, J., Stein, W.: Convergence of load and movement information onto leg motoneurons in insects. J. Neurobiol. 42, 424–436 (2000)

    Google Scholar 

  183. Schneider, A., Cruse, H., Schmitz, J.: A biologically inspired active compliant joint using local positive velocity feedback. lpvf. IEEE Trans. Systems Man Cybern. Part B: Cybernetics 35, 1120–1130 (2005a)

    Google Scholar 

  184. Schneider, A., Cruse, H., Schmitz, J.: Switched local positive velocity feedback controllers: Local generation of retraction forces and inter-joint coordination during walking. In: Witte, H. (ed.) 3rd International Symposium on Adaptive Motion in Animals and Machines (AMAM 2005), Ilmenau, September 25-30 (2005b)

    Google Scholar 

  185. Schumm, M., Cruse, H.: Control of swing movement: influences of differently shaped substrate. J. Comp. Physiol. A 192 (2006)

    Google Scholar 

  186. Seifert, G.: Entomologisches Praktikum, 2nd edn. Thieme, Stuttgart (1975)

    Google Scholar 

  187. Seipel, J.E., Holmes, P., Full, R.J.: Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions. Biol. Cybern. 91, 76–90 (2004)

    MATH  Google Scholar 

  188. Sillar, K.T., Skorupski, P., Elson, R.C., Bush, B.M.H.: Two identified afferent neurones entrain a central locomotor rhythm generator. Nature 323, 440–443 (1986)

    Google Scholar 

  189. Spinola, S.M., Chapman, K.M.: Proprioceptive indentation of the campaniform sensilla of cockroach legs. J. Comp. Physiol. 96, 257–272 (1975)

    Google Scholar 

  190. Staudacher, E., Gebhardt, M.J., Dürr, V.: Antennal movements and mechanoreception: neurobiology of active tactile sensors. Adv. Insect Physiol. 32, 49–205 (2005)

    Google Scholar 

  191. Stein, W., Schmitz, J.: Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors. J. Neurophysiol. 82, 512–514 (1999)

    Google Scholar 

  192. Stierle, I.E., Getman, M., Comer, C.M.: Multisensory control of escape in the cockroach Periplaneta americana i. Initial evidence from patterns of wind-evoked behavior. J. Comp. Physiol. A 174, 1–11 (1994)

    Google Scholar 

  193. Strauss, R., Heisenberg, M.: Coordination of legs during straight walking and turning in Drosophila melanogaster. J. Comp. Physiol. A 167, 403–412 (1990)

    Google Scholar 

  194. Ting, L.H., Blickhan, R., Full, R.J.: Dynamic and static stability in hexapedal runners. J. Exp. Biol. 197, 251–269 (1994)

    Google Scholar 

  195. Tryba, A.K., Ritzmann, R.E.: Multi-joint coordination during walking and foothold searching in the Blaberus cockroach i. Kinematics and electromyograms. J. Neurophysiol. 83, 3323–3336 (2000)

    Google Scholar 

  196. Tsujimura, T., Yabuta, T.: A tactile sensing method employing force/torque information through insensitive probes. In: Proc. IEEE Int. Conf. Robotics Automation 1992, pp. 1315–1320 (1992)

    Google Scholar 

  197. Tyrer, N., Gregory, G.: A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Phil. Trans. R. Soc. Lond. B 297, 91–123 (1982)

    Google Scholar 

  198. Ueno, N., Svinin, M.M., Kaneko, M.: Dynamic contact sensing by flexible beam. IEEE-ASME Trans. Mechatronics 3, 254–264 (1998)

    Google Scholar 

  199. Watson, J.T., Ritzmann, R.E.: Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. slow running. J. Comp. Physiol. A 182, 11–22 (1998)

    Google Scholar 

  200. Watson, J.T., Ritzmann, R.E., Zill, S.N., Pollack, A.J.: Control of obstacle climbing in the cockroach, Blaberus discoidalis. i. kinematics. J. Comp. Physiol. A 188, 39–53 (2002)

    Google Scholar 

  201. Wendler, G.: Laufen und stehen der stabheuschrecke Carausius morosus: Sinnesborstenfelder in den beingelenken von regelkreisen. Z. vergl. Physiol. 48, 198–250 (1964)

    Google Scholar 

  202. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomed. Eng. 17, 359–411 (1989)

    Google Scholar 

  203. Zeil, J., Sandeman, R., Sandeman, D.C.: Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor. J. Comp. Physiol. A 157, 607–617 (1985)

    Google Scholar 

  204. Zill, S., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Structure & Development 33, 273–286 (2004)

    Google Scholar 

  205. Zill, S.N.: Load compensatory reactions in insects: Swaying and stepping strategies in posture and locomotion. In: Beer, R.D., Ritzmann, R.E., McKenna, T. (eds.) Biological Neural Networks in Insect Neuroethology and Robotics, pp. 43–68. Academic Press, New York (1993)

    Google Scholar 

  206. Zill, S.N., Moran, D.T.: The exoskeleton and insect proprioception. iii. activity of tibial campaniform sensilla during walking in the american cockroach, periplaneta americana. J. Exp. Biol. 94, 57–75 (1981a)

    Google Scholar 

  207. Zill, S.N., Moran, D.T.: The exoskeleton and insect propriocetion. i. responses of tibial campaniform sensilla to external and muscle-generated forces in the american cockroach periplaneta americana. J. Exp. Biol. 91, 1–24 (1981b)

    Google Scholar 

  208. Zill, S.N., Moran, D.T., Varela, F.G.: The exoskeleton and insect proprioception. ii. reflex effects of tibial campaniform sensilla in the american cockroach, periplaneta americana. J. Exp. Biol. 94, 43–55 (1981)

    Google Scholar 

  209. Zill, S.N., Underwood, M.A., Rowley, J.C., Moran, D.T.: A somatotopic organization of groups of afferents in insect peripheral nerves. Brain Res. 198, 253–269 (1980)

    Google Scholar 

  210. Zollikofer, C.P.E.: Stepping patterns in ants i. influence of speed and curvature. J. Exp. Biol. 192, 95–106 (1994)

    Google Scholar 

  211. Zolotov, V., Frantsevich, L., Falk, E.M.: Kinematik der phototaktischen drehung bei der honigbiene Apis mellifera. J. Comp. Physiol. A 97, 339–353 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cruse, H., Dürr, V., Schilling, M., Schmitz, J. (2009). Principles of Insect Locomotion. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots. Cognitive Systems Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88464-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88464-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88463-7

  • Online ISBN: 978-3-540-88464-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics