Skip to main content

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 1))

Abstract

Cognitive skills including the ability to plan ahead require internal representations of the subject itself and its environment. The perspective on internal representations and assumptions on the importance of internal representations have changed over the last years: While traditional Artificial Intelligence tried to built intelligent systems relying solely on internal representations and working on a Knowledge level, behaviourist approaches tended to reject internal representations. Both approaches produced considerable results in different but complementing fields (examples are higher level tasks as mathematical proofs, or simple tasks for robots respectively).

We believe that the most promising approach for more general tasks should connect both domains: For higher level and cognitive tasks internal representations are necessary or helpful. But these representations are not disconnected from the body and the lower-levels. The higher level is grounded in the lower levels and the robot is situated in an environment. While many projects today deal with the requirements of embodiment and situatedness, we focus on an approach like that of Verschure [55, 57, 58, 56]: The control system is built from the bottom up, growing towards higher levels and more complex tasks. The primitives of the different levels are constituted through the lower level and, as a main aspect, rely on neural networks. While Verschure only addressed the most relevant lower-level models in his work, we are constructing an architecture for cognitive control. The main idea for the cognitive control is the idea of mental simulation: Mental simulation sees planning as ”probehandeln”: This notion of trying a movement by mentally enacting it without performing the action physically relies strongly on the notion of an internal model. As a first step an internal model of the own body is constructed and used which later-on may be expanded to models of the environment. This body model is fully functional: it is constrained in the same way as the body itself. It can move and can be used in the same way as the body. Therefore, hypothetical movements can be tested on their consequences. For this purpose it must be possible to decouple the body itself from the action controlling modules to use the original controllers for control of the internal body model.

Our approach shall address in particular

(1) the structure and the construction of the mental models,

(2) the process of using learnt behaviours to control the body or to modulate these behaviours in controlling the body or the internal model,

(3) the decoupling of the body from the control structures to invoke the simulation,

(4) the invention of new situation models and the decision when to construct new ones.

An essential aspect of the approach proposed here is, apart from the idea that memory is composed of many individual situation models consisting of RNNs, that random selection of the connections is used, in this way introducing some kind of Darwinian aspect (see Edelmans Neural Darwinism).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib, M.A., Bonaiuto, J., Rosta, E.: The mirror system hypothesis: From a macaque-like mirror system to imitation. In: Proceedings of the 6th International Conference on the Evolution of Language, pp. 3–10 (2006)

    Google Scholar 

  2. Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4), 209–243 (2003)

    Article  Google Scholar 

  3. Bläsing, B.: Crossing large gaps: A simulation study of stick insect behavior. Adaptive Behavior 14(3), 265–285 (2006)

    Article  Google Scholar 

  4. Brooks, R.A.: Intelligence without reason. In: Myopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 569–595. Morgan Kaufmann publishers, San Mateo (1991)

    Google Scholar 

  5. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  6. Clancey, W.J.: The frame of reference problem in cognitive modeling. In: Proceedings of the Annual Conference of the Cognitive Science Society, pp. 107–114. Lawrence Erlbaum Associates, Mahwah (1989)

    Google Scholar 

  7. Collett, T., Cartwright, B., Smith, B.: Landmark learning and visuo-spatial memories in gerbils. J. Comp. Physiol. 158(6), 835–851 (1986)

    Article  Google Scholar 

  8. Cruse, H.: The evolution of cognition: A hypothesis. Cognitive Science 27, 135–155 (2003)

    Article  Google Scholar 

  9. Cruse, H.: A recurrent network for landmark-based navigation. Biological Cybernetics 88(6), 425–437 (2003)

    MATH  Google Scholar 

  10. Cruse, H., Hübner, D.: Selforganizing memory: active learning of landmarks used for navigation. Biological Cybernetics (submitted, 2007)

    Google Scholar 

  11. Feldman, J., Narayanan, S.: Embodied meaning in a neural theory of language. Brain and Language 89(2), 385–392 (2004)

    Article  Google Scholar 

  12. Fogassi, L., Ferrari, P.F., Gesierich, B., Rozzi, S., Chersi, F., Rizzolatti, G.: Parietal lobe: from action organization to intention understanding. Science 308(5722), 662–667 (2005)

    Article  Google Scholar 

  13. Freud, S.: Formulierung über die zwei prinzipien des psychischen geschehens. In: Gesammelte Werke, Bd. VIII, pp. 229–238 (1911)

    Google Scholar 

  14. Freud, S.: Die verneinung. In: Gesammelte Werke, Bd. XIV, pp. 9–15 (1925)

    Google Scholar 

  15. Fuster, J.M.: Memory in the cerebral cortex. MIT Press, Cambridge (1995)

    Google Scholar 

  16. Gallese, V.: Intentional attunement. The mirror neuron system and its role in interpersonal relations. Interdisciplines, http://www.interdisciplines.org/mirror/papers/1

  17. Gallese, V., Lakoff, G.: The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology 22(3-4), 455–479 (2005)

    Article  Google Scholar 

  18. Gibson, J.J.: The theory of affordances. In: Robert Shaw, J.B. (ed.) Perceiving, Acting, and Knowing, pp. 67–80. Lawrence Erlbaum Associates, Mahwah (1977)

    Google Scholar 

  19. Giurfa, M., Zhang, S., Jenett, A., Menzel, R., Srinivasan, M.: The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410(6831), 930–933 (2001)

    Article  Google Scholar 

  20. Glenberg, A.M.: What memory is for. Behavioral and Brain Sciences 20(1) (1997)

    Google Scholar 

  21. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  22. Heisenberg, M.: Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4(1471-003X (Print)), 266–275 (2003)

    Article  Google Scholar 

  23. Hochner, B., Shomrat, T., Fiorito, G.: The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol. Bull. 210(3), 308–317 (2006)

    Article  Google Scholar 

  24. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  25. Jeannerod, M.: To act or not to act: Perspectives on the representation of actions. Quarterly Journal of Experimental Psychology 52A, 1–29 (1999)

    Article  Google Scholar 

  26. Kühn, S., Beyn, W., Cruse, H.: Modelling Memory Functions with Recurrent Neural Networks consisting of Input Compensation Units. I. Static Situations. Biological Cybernetics 96(5), 455–470 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kühn, S., Cruse, H.: Modelling Memory Functions with Recurrent Neural Networks consisting of Input Compensation Units. I. Dynamic Situations. Biological Cybernetics 96(5), 471–486 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Makarov, V., Song, Y., Velarde, M., Hübner, D., Cruse, H.: Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biological Cybernetics (accepted, 2008)

    Google Scholar 

  29. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence, 26–45 (1987)

    Google Scholar 

  30. McFarland, D., Bösser, T.: Intelligent behavior in animals and robots. MIT Press, Cambridge (1993)

    Google Scholar 

  31. Metzinger, T.: Different conceptions of embodiment. Psyche 12(4) (2006)

    Google Scholar 

  32. Nauck, D., Klawonn, F., Kruse, R.: Neuronale Netze und Fuzzy-Systeme. Vieweg-Verlag, Wiesbaden (2003)

    Google Scholar 

  33. Newell, A.: The knowledge level. Artificial Intelligence 18(1), 87–127 (1982)

    Article  Google Scholar 

  34. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (2001)

    Google Scholar 

  35. Pinkas, G.: Symmetric neural networks and propositional logic satisfiability. Neural Comput. 3(2), 282–291 (1991)

    Article  Google Scholar 

  36. Quiroga, Q.R., Kreiman, G., Koch, C., Fried, I.: Sparse but not ‘grandmother-cell’ coding in the medial temporal lobe. Trends in Cognitive Sciences 12(3) (2008), http://dx.doi.org/10.1016%2Fj.tics.2007.12.003 doi: 10.1016/j.tics.2007.12.003

  37. Ritter, H., Kohonen, T.: Self-organizing semantic maps. Biol. Cybern. 61, 241–254 (1989)

    Article  Google Scholar 

  38. Rizzolatti, G.: The mirror neuron system and its function in humans. Anat. Embryol. 210(5–6), 419–421 (2005)

    Article  Google Scholar 

  39. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3(2), 131–141 (1996)

    Article  Google Scholar 

  40. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  41. Schilling, M., Cruse, H.: Hierarchical mmc networks as a manipulable body model. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2007), Orlando, FL (to appear, 2007)

    Google Scholar 

  42. Schilling, M., Cruse, H.: The evolution of cognition – from first order to second order embodiment. In: Wachsmuth, G.K.I. (ed.) Modeling Communication with Robots and Virtual Humans. Springer, Heidelberg (2008)

    Google Scholar 

  43. Schilling, M., Cruse, H., Arena, P.: Hexapod walking: an expansion to walknet dealing with leg amputations and force oscillations. Biological Cybernetics 96(3), 323–340 (2007)

    Article  MATH  Google Scholar 

  44. Schilling, M., Patanè, L., Arena, P., Schmitz, J., Schneider, A.: Different, biomimetic inspired walking machines controlled by a decentralised control approach relying on artificial neural networks. In: Proceedings of SAB 2006 Workshop on Bio-inspired cooperative and adaptive behaviours in robots, Rome, Italy (2006)

    Google Scholar 

  45. Shiffrar, M.: Movement and event perception. In: Goldstein, B. (ed.) The Blackwell Handbook of Perception, pp. 237–272. Blackwell Publishers, Oxford (2001)

    Google Scholar 

  46. Shiffrar, M., Pinto, J.: The visual analysis of bodily motion. In: Prinz, W., Hommel, B. (eds.) Common mechanisms in perception and action: Attention and Performance, pp. 381–399. Oxford University Press, Oxford (2002)

    Google Scholar 

  47. Sloman, A., Chrosley, R.: More things than are dreamt of in your biology: Information processing in biologically-inspired robots. Cognitive Systems Research 6(2), 145–174 (2005)

    Article  Google Scholar 

  48. Steels, L.: Intelligence—dynamics and representations. In: The Biology and Technology of Intelligent Autonomous Agents. Springer, Berlin (1995)

    Google Scholar 

  49. Steels, L.: Intelligence with representation. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 361(1811), 2381–2395 (2003)

    Article  MathSciNet  Google Scholar 

  50. Steels, L., Baillie, J.C.: Shared grounding of event descriptions by autonomous robots. Robotics and Autonomous Systems 43(2-3), 163–173 (2003)

    Article  Google Scholar 

  51. Steinkühler, U., Cruse, H.: A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biol. Cybernetics 79 (1998)

    Google Scholar 

  52. Strauss, R., Pichler, J.: Persistence of orientation toward a temporarily invisible landmark in drosophila melanogaster. Journal of Comparative Physiology A 182, 411–423 (1998)

    Article  Google Scholar 

  53. Suchman, L.A.: Plans and Situated Actions: The Problem of Human-Machine Communication (Learning in Doing: Social, Cognitive & Computational Perspectives). Cambridge University Press, Cambridge (1987)

    Google Scholar 

  54. Tang, S., Wolf, R., Xu, S., Heisenberg, M.: Visual pattern recognition in drosophila is invariant for retinal position. Science 305(5686), 1020–1022 (2004)

    Article  Google Scholar 

  55. Verschure, P., Voegtlin, T., Douglas, R.: Environmentally mediated synergy between perception and behaviour in mobile robots. Nature 425, 620–624 (2003)

    Article  Google Scholar 

  56. Verschure, P.F., Althaus, P.: The study of learning and problem solving using artificial devices: Synthetic epistemology. Bildung and Erziehung 52(3), 317–333 (1999)

    Google Scholar 

  57. Verschure, P.F.M.J., Althaus, P.: A real-world rational agent: unifying old and new AI. Cognitive Science 27(4), 561–590 (2003)

    Article  Google Scholar 

  58. Verschure, P.F.M.J., Voegtlin, T.: A bottom up approach towards the acquisition and expression of sequential representions applied to a behaving real-world device: Distributed adaptive control iii. Neural Netw. 11(7-8), 1531–1549 (1998)

    Article  Google Scholar 

  59. Wehner, R.: Desert ant navigation: how miniature brains solve complex tasks. Journal of Comparative Physiology A 189, 579–588 (2003)

    Article  Google Scholar 

  60. Wehner, R., Michel, B., Antonsen, P.: Visual navigation in insects: coupling of egocentric and geocentric information. The Journal of Experimental Biology 199, 129–140 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cruse, H., Dürr, V., Schilling, M., Schmitz, J. (2009). A Bottom-Up Approach for Cognitive Control. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots. Cognitive Systems Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88464-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88464-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88463-7

  • Online ISBN: 978-3-540-88464-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics