Abstract
In this Chapter the application of dynamical systems to model reactive and precognitive behaviours is discussed. We present an approach to navigation based on the control of a chaotic system that is enslaved, on the basis of sensory stimuli, into low order dynamics that are used as percepts of the environmental situations. Another aspect taken into consideration, is the introduction of correlation mechanisms, important for the emergence of anticipation. In this case a spiking network is used to control a simulated robot learning to anticipate sensory events. Finally the proposed approach has been applied to solve a landmark navigation problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, A.M.: A model for landmark learning in the honey-bee. Journal of Comparative Physiology A 114(335) (1977)
Arena, P., Basile, A., Bucolo, M., Fortuna, L.: An object oriented segmentation on analog CNN chip. IEEE Trans. CAS I 50(7), 837–846 (2003)
Arena, P., Crucitti, P., Fortuna, L., Frasca, M., Lombardo, D., Patané, L.: Turing patterns in RD-CNNs for the emergence of perceptual states in roving robots. International Journal of Bifurcation and Chaos 18(1), 107–127 (2007)
Arena, P., De Fiore, S., Fortuna, L., Frasca, M., Patané, L., Vagliasindi, G.: Weak Chaos Control for Action-Oriented Perception: Real Time Implementation via FPGA. In: Proc. International conference on Biomedical Robotics and Biomechatronics (Biorob), Pisa, Italy, February 20-22 (2006)
Arena, P., De Fiore, S., Frasca, M., Patané, L. (2006), http://www.scg.dees.unict.it/activities/biorobotics/perception.htm
Arena, P., Fortuna, L., Frasca, M., Lo Turco, G., Patané, L., Russo, R.: A new simulation tool for action oriented perception systems. In: Proc. 10th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Catania, Italy, September 19-22 (2005)
Arena, P., Fortuna, L., Frasca, M., Patané, L., Barbagallo, D., Alessandro, C.: Learning high-level sensors from reflexes via spiking networks in roving robots. In: Proceedings of 8th International IFAC Symposium on Robot Control (SYROCO), Bologna, Italy (2006)
Arkin, R.C.: Behaviour Based Robotics. MIT Press, Cambridge (1998)
Beard, R., McClain, T.: Motion Planning Using Potential Fields, BYU (2003)
Bingman, V.P., Gagliardo, A., Hough, G.E., Ioalé, P., Kahn, M.C., Siegel, J.J.: The Avian Hippocampus, Homing in Pigeons and the Memory Representation of Large-Scale Space. Integr. Comp. Biol. 45, 555–564 (2005)
Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The Control of Chaos: Theory and Applications. Physics Reports 329, 103–197 (2000)
Burgess, N., Becker, S., King, J.A., O’Keefe, J.: Memory for events and their spatial context: models and experiments. Phil. Trans. R. Soc. Lond. B 356, 1–11 (2001)
Burgess, N., O’Keefe, J.: Neuronal computations underlying the firing of place cells and their role in navigation. Hippocampus 6, 749–762 (1996)
Burgess, N., Recce, M., O’Keefe, J.: A model of hippocampal function. Neural Networks 7, 1065–1081 (1994)
Cartwright, B.A., Collett, T.S.: Landmark learning in bees. The Journal of Comparative Phisiology A 151(85) (1983)
Collett, T.S.: Insect navigation en route to the goal: Multiple strategies for the use of landmarks. The Journal of Experimental Biology 202, 1831–1838 (1999)
Cruse, H.: A recurrent network for landmark-based navigation. Biological Cybernetics 88, 425–437 (2003)
Floreano, D., Mattiussi, C.: Evolution of Spiking Neural Controllers for Autonomous Vision-based Robots. Evolutionary Robotics IV. Springer, Berlin (2001)
Franceschini, N., Blanes, C.: From insect vision to robot vision. Philosophical Transaction of the Royal Society of London B 337, 283–294 (1992)
Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)
Freeman, W.J.: Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol. Cybern. 56, 139–150 (1987)
Freeman, W.J.: The physiology of perception. Sci. Am. 264, 78–85 (1991)
Freeman, W.J.: Characteristics of the Synchronization of Brain Activity Imposed by Finite Conduction Velocities of Axons. International Journal of Bifurcation and Chaos 10(10) (1999)
Freeman, W.J.: A Neurobiological Theory of Meaning in Perception. Part I: Information and Meaning in Nonconvergent and Nonlocal Brain Dynamincs. International Journal of Bifurcation and Chaos 13(9) (2003)
Freeman, W.J.: How and Why Brains Create Meaning from Sensory Information. International Journal of Bifurcation and Chaos 14(2) (2004)
Fuster, J.M.: Cortex and Mind: Unifying Cognition. Oxford University Press, Oxford (2003)
Grossberg, S., Maass, W., Markram, H.: Introduction: Spiking Neurons in Neuroscience and Technology. Neural Networks, special issue on Spiking Neurons 14(6-7), 587 (2001)
Harter, D.: Evolving neurodynamics controllers for autonomous robots. In: International Joint Conference on Neural Networks, pp. 137–142 (2005)
Harter, D., Kozma, R.: Chaotic Neurodynamics for autonomous agents. IEEE Trans. on Neural Networks 16(3), 565–579 (2005)
Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)
Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks 15(5), 1063–1070 (2004)
Izhikevich, E.M.: Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex Advance (2007)
Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-Timing Dynamics of Neuronal Groups. Cerebral Cortex 14, 933–944 (2004)
Jensen, O., Lisman, J.E.: Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. TRENDS in Neurosciences 28(2) (2005)
Khatib, O.: Real-time Obstacle Avoidance for Manipulators and Mobile Robots. Intemational Journal of Robotics Research 5(1), 90–98 (1986)
Koene, R.A., Gorchetchnikov, A., Cannon, R.C., Hasselmo, M.E.: Modeling goal-directed spatial navigation in the rat based on physiological data from the hippocampal formation. Neural Networks 16, 577–584 (2003)
Kozma, R., Freeman, W.J.: Chaotic Resonance - Methods and Applications for Robust Classification of Noisy and Variable Patterns. International Journal of Bifurcation and Chaos 11(6) (2000)
LĂ¼, J., Chen, G., Yu, X., Leung, H.: Design and Analysis of Multiscroll Chaotic Attractors from Saturated Function Series. IEEE Trans. Circuits Syst., I: Regular Paper 51 (2004)
Manganaro, G., Arena, P., Fortuna, L.: Cellular Neural Networks: Chaos, Complexity, and VLSI Processing. Springer, Berlin (1999)
Nicholson, D.J., Judd, S.P.D., Cartwright, A., Collett, T.S.: View-based navigation in insects: how wood ants (Formica rufa L). The Journal of Experimental Biology 202, 1831–1838 (1999)
Pavlov, I.P.: Conditioned Reflexes. Oxford University Press, London (1927)
Pyragas, K.: Continuos Control of Chaos by Self-Controlling Feedback. Physical Letters A 170, 421–428 (1992)
Pyragas, K.: Predictable Chaos in Slightly Pertirbed Unpredictable Chaotic Systems. Physics Letters A 181, 203–210 (1993)
Restle, F.: Discrimination of cues in mazes: A resolution of the ‘place-vs-response’ question. Psychological Review 64(4), 217–228 (1957)
Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-Organizing Maps - An Introduction. Addison-Wesley, New York (1992)
Shepherd, G.M.: Neurobiology. Oxford University Press, Oxford (1994)
Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161–195 (1987)
Song, S., Abbott, L.F.: Cortical development and remapping through Spike Timing-Dependent Plasticity. Neuron 32, 339–350 (2001)
Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent plasticity. Nature Neurosci. 3, 919–926 (2000)
Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.A.: Biologically-based Artificial Navigation Systems: Review and prospects. Progress in Neurobiology 51, 483–544 (1997)
Uexku, J.V.: Theoretical Biology. Harcourt, Brace (1926)
Verschure, P.F.M.J., Kröse, B.J.A., Pfeifer, R.: Distributed adaptive control: The self-organization of structured behavior. Robotics and Autonomous Systems 9, 181–196 (1992)
Verschure, P.F.M.J., Pfeifer, R.: Categorization, Representations, and the Dynamics of System-Environment Interaction: a case study in autonomous systems. In: Meyer, J.A., Roitblat, H., Wilson, S. (eds.) From Animals to Animats: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, pp. 210–217. MIT Press, Cambridge (1992)
Webb, B., Consi, T.R.: Biorobotics. MIT Press, Cambridge (2001)
Webb, B., Scutt, T.: A simple latency dependent spiking neuron model of cricket phonotaxis. Biological Cybernetics 82(3), 247–269 (2000)
Weber, A.K., Venkatesh, S., Srinivasan, M.: Insect-inspired robotic homing. Adaptative behavior 7, 65–97 (1999)
Wehner, R., Michel, B., Antonsen, P.: Visual navigation in insects: Coupling of egocentric and geocentric. The Journal of Experimental Biology 199, 129–140 (1996)
Zampoglou, M., Szenher, M., Webb, B.: Adaptation of Controllers for Image-Based Homing. Adaptive Behaviour 14(4), 381–399 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Arena, P., De Fiore, S., Frasca, M., Lombardo, D., Patané, L. (2009). From Low to High Level Approach to Cognitive Control. In: Arena, P., Patanè, L. (eds) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots. Cognitive Systems Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88464-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-88464-4_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88463-7
Online ISBN: 978-3-540-88464-4
eBook Packages: EngineeringEngineering (R0)