Abstract
The discovery of invariants and ranking functions plays a central role in program verification. In our previous work, we investigated invariant generation and non-linear ranking function discovering of polynomial programs by reduction to semi-algebraic systems solving. In this paper we will first summarize our results on the two topics and then show how to generalize the approach to discovering more expressive invariants and ranking functions, and applying to more general programs.
This work is supported in part by NKBRPC-2002cb312200, NKBRPC-2004CB318003, NSFC-60493200, NSFC-60721061, NSFC-60573007, NSFC-90718041, and NSFC-60736017 and NKBRPC-2005CB321902.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006)
Besson, F., Jensen, T., Talpin, J.-P.: Polyhedral analysis of synchronous languages. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 51–69. Springer, Heidelberg (1999)
Bradley, A., Manna, Z., Sipma, H.: Terminaition of polynomial programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidelberg (2005)
Chen, Y., Xia, B., Yang, L., Zhan, N., Zhou, C.: Discovering non-linear ranking functions by solving semi-algebraic systems. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 34–49. Springer, Heidelberg (2007)
Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating polynomial invariants with DISCOVERER and QEPCAD. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 67–82. Springer, Heidelberg (2007)
Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. of Symbolic Computation 12, 299–328 (1991)
Colón, M., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)
Colón, M., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg (2001)
Cousot, P.: Proving program invariance and termination by parametric abstraction, Langrangian Relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the variables of a program. In: ACM POPL 1978, pp. 84–97 (1978)
Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of ranking functions. In: Workshop on Advances in Verification (WAVe 2000), pp. 1–8 (2000)
Davenport, J.H., Heintz, J.: Real Elimination is Doubly Exponential. J. of Symbolic Computation 5, 29–37 (1988)
Dolzman, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9
Kapur, D.: Automatically generating loop invariants using quantifier llimination. In: Proc. IMACS Intl. Conf. on Applications of Computer Algebra (ACA 2004), Beaumont, Texas (July 2004)
Müller-Olm, M., Seidl, H.: Polynomial constants are decidable. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg (2002)
Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: ACM SIGPLAN Principles of Programming Languages, POPL 2004, pp. 330–341 (2004)
Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)
Rodriguez-Carbonell, E., Kapur, D.: An abstract interpretation approach for automatic generation of polynomial invariants. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 280–295. Springer, Heidelberg (2004)
Rodriguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial loop invariants: algebraic foundations. In: Proc. Intl. Symp on Symbolic and Algebraic Computation (ISSAC 2004) (July 2004)
Rodriguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple loops. Journal of Symbolic Computation 42, 443–476 (2007)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant generation using Gröbner bases. In: ACM POPL 2004, pp. 318–329 (2004)
Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)
Xia, B.: DISCOVERER: A tool for solving semi-algebraic systems. In: Software Demo at ISSAC 2007, Waterloo, July 30 (2007); ACM SIGSAM Bulletin, 41(3), 102–103 (2007)
Xia, B., Yang, L.: An algorithm for isolating the real solutions of semi-algebraic systems. J. Symbolic Computation 34, 461–477 (2002)
Yang, L.: Recent advances on determining the number of real roots of parametric polynomials. J. Symbolic Computation 28, 225–242 (1999)
Yang, L., Hou, X., Zeng, Z.: A complete discrimination system for polynomials. Science in China (Ser. E) 39, 628–646 (1996)
Yang, L., Xia, B.: Real solution classifications of a class of parametric semi-algebraic systems. In: Proc. of Int’l Conf. on Algorithmic Algebra and Logic, pp. 281–289 (2005)
Yang, L., Zhan, N., Xia, B., Zhou, C.: Program verification by using DISCOVERER. In: Proc. VSTTE 2005. LNCS, vol. 4171, pp. 528–538. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xia, B., Yang, L., Zhan, N. (2008). Program Verification by Reduction to Semi-algebraic Systems Solving. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. ISoLA 2008. Communications in Computer and Information Science, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88479-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-88479-8_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88478-1
Online ISBN: 978-3-540-88479-8
eBook Packages: Computer ScienceComputer Science (R0)