Skip to main content

Parameter Design for a Central Pattern Generator Based Locomotion Controller

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5314))

Included in the following conference series:

Abstract

The paper addresses a novel parameter design method for a locomotion controller based on the Central Pattern Generator (CPG) to generate diverse locomotion behaviors for link-based fish robots. Since almost all mathematical models of the CPG represented by differential equations have many parameters, it is very intractable to design and modulate these quantities. To partly tackle this problem, an iterative technique centered parameter determination method is formulated, into which the relationship between fish-inspired body wave and the multi-link mechanical structure is fused. The formed algorithm is simple, easy to implement and suitable for engineering application. A simulation example of a three-link robotic fish is further illustrated. The results show the effectiveness of the approach which can be extended to control biomimetic robotic fish and other multi-link robots. Moreover, many related CPG mathematical models can be dealt with by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grillner, S.: Neurobiological bases of rythmic motor acts in vertebrates. Science 228, 143–149 (1985)

    Article  Google Scholar 

  2. Cohen, A., Rossignol, S., Grillner, S.: Neural Control of Rhythmic Movements in vertebrates, New York (1988)

    Google Scholar 

  3. Delcomyn, F.: Neural basis for rhythmic behavior in animals. Science 210, 492–498 (1980)

    Article  Google Scholar 

  4. Grillner, S.: Neural control of vertebrate locomtion - central mechanisms and reflex interaction with special reference to the cat. In: Barnes, W.J.P., Gladden, M.H. (eds.) Feedback and motor control in invertebrates and vertebrates, Croom Helm, pp. 35–56 (1985)

    Google Scholar 

  5. Morgansen, K.A., Trplett, B.I., Klein, D.J.: Geometric Methods for Modeling and Control of Free-Swimming Fin-Swimming Fin-Actuated Underwater Vehicles. IEEE Trans. on Robotics 23(6), 1184–1199 (2007)

    Article  Google Scholar 

  6. Grillner, S., Cangiano, L., Hu, G.Y., Thompson, R., Hill, R., Wallen, P.: The intrinsic function of a motor system-from ion channels to networks and behavior. Brain Research 886, 224–236 (2000)

    Article  Google Scholar 

  7. Hooper, S.L., Dicaprio, R.A.: Crustacean motor pattern generator networks. Neurosignals 13, 50–69 (2004)

    Article  Google Scholar 

  8. Ekeberg, Ö.: A combined neuronal and mechanical model of fish swimming. Biol. Cybern. 69, 363–374 (1993)

    MATH  Google Scholar 

  9. Ijspeert, A.J., Crespi, A.: Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. In: IEEE ICRA, pp. 262–268 (2007)

    Google Scholar 

  10. Crespi, A., Badertscher, A., Guignard, A., Ijspeert, A.J.: Swimming and crawling with an amphibious snake robot. In: IEEE ICRA, pp. 3035–3039 (2005)

    Google Scholar 

  11. Crespi, A., Badertscher, A., Guignard, A., Ijspeert, A.J.: AmphiBot I: an amphibious snake-like robot. Robotics and Autonomous Systems 50(4), 163–175 (2005)

    Article  Google Scholar 

  12. Zhao, W., Yu, J., Fang, Y., Wang, L.: Development of multi-mode biomimetic robotic fish based on central pattern generator. In: IEEE/RSJ Int. Con. on Intelligent and Systems, pp. 3891–3896 (2006)

    Google Scholar 

  13. Patel, L.N., Murray, A., Hallam, J.: Evolving multi-segment ‘super-lamprey’ CPG’s for increased swimming control. In: European Symposium on Artificial Neural Networks, pp. 461–466 (2006)

    Google Scholar 

  14. Wang, L., Wang, S., Cao, Z., Tan, M., Zhou, C., Sang, H., Shen, Z.: Motion control of a robot fish based on CPG. In: IEEE ICIT, pp. 1263–1268 (2005)

    Google Scholar 

  15. Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mechanics 9, 305–317 (1960)

    Article  MathSciNet  Google Scholar 

  16. Barrett, D., Grosenbaugh, M., Triantafyllou, M.: The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. In: IEEE AUV Symp., pp. 1–9 (1996)

    Google Scholar 

  17. Yu, J., Wang, L., Zhao, W., Tan, M.: Optimal design and motion control of biomimetic robotic fish. Science in China Series F: Information Sciences 51, 535–549 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, M., Yu, J., Tan, M. (2008). Parameter Design for a Central Pattern Generator Based Locomotion Controller. In: Xiong, C., Huang, Y., Xiong, Y., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2008. Lecture Notes in Computer Science(), vol 5314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88513-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88513-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88512-2

  • Online ISBN: 978-3-540-88513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics