Skip to main content

Mechanical Damage Evaluation of Living Tissue in Vascular Therapy

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5314))

Included in the following conference series:

Abstract

Cardiovascular system plays an important role in medical diagnosis and disease therapy, yet mechanical vascular injury in clinical treatment may cause serious medical accident. In present paper, stress-strain behavior of blood vessel and surrounding tissues is analyzed, and damage criterion based on equivalent strain and damage function is employed to evaluate the capacity of vessel wall subjected to external mechanical loads during the course of clinical treatment. The results illustrate the gradual experience and evolution process of vascular failure at damage stage, which are significantly different from nonlinear elastic simulation. It can thus be concluded that mechanical damage assessment need be considered for the vascular disease therapy to the scheme of treatment protocols and design of medical equipments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petersen, S., Peto, V., Rayner, M., Leal, J., Luengo-Fernandez, R., Gray, A.: European cardiovascular disease statistics. British Heart Foundation, London (2005)

    Google Scholar 

  2. Wells, P.N.T.: Ultrasound imaging. Physics in Medicine and Biology 51, R83–R98 (2006)

    Article  Google Scholar 

  3. Klibanov, A.L.: Microbubble contrast agents: Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Investigative Radiology 41(3), 354–362 (2006)

    Article  MathSciNet  Google Scholar 

  4. Paliwal, S.: Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opinion on Drug Delivery 3(6), 713–726 (2006)

    Article  Google Scholar 

  5. Ferrara, K., Pollard, R., Borden, M.: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annual Review of Biomedical Engineering 9, 415–447 (2007)

    Article  Google Scholar 

  6. Ahn, S.S., Wieslander, C.K., Fleming, J.M.: Minimally invasive vascular surgery. Asian Journal of Surgery 23(3), 218–232 (2000)

    Article  Google Scholar 

  7. Kronzon, I., Matros, T.G.: Intraoperative echocardiography in minimally invasive cardiac surgery and novel cardiovascular surgical techniques. American Heart Hospital Journal 2(4), 198–204 (2004)

    Article  Google Scholar 

  8. Lam, R.C., Rhee, S.J., Morrissey, N.J., McKinsey, J.F., Faries, P.L., Kent, K.C.: Minimally invasive retrieval of a dislodged Wallstent endoprosthesis after an endovascular abdominal aortic aneurysm repair. Journal of Vascular Surgery 47(2), 450–453 (2008)

    Article  Google Scholar 

  9. Allen, J.S., Kruse, D.E., Ferrara, K.W.: Shell waves and acoustic scattering from ultrasound contrast agents. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 48(2), 409–418 (2001)

    Article  Google Scholar 

  10. Rapoport, N.: Stabilization and activation of Pluronic micelles for tumor-targeted drug delivery. Colloids and Surfaces B-Biointerfaces 16(1-4), 93–111 (1999)

    Article  Google Scholar 

  11. Marin, A., Muniruzzaman, M., Rapoport, N.: Mechanism of the ultrasonic activation of micellar drug delivery. Journal of Controlled Release 75(1-2), 69–81 (2001)

    Article  Google Scholar 

  12. Misra, J.C., Singh, S.I.: A large deformation analysis for aortic walls under a physiological loading. International Journal of Engineering Science 21(10), 1193–1202 (1983)

    Article  MATH  Google Scholar 

  13. Belardinelli, E., Cavalcanti, S.: Theoretical analysis of pressure pulse propagation in arterial vessels. Journal of Biomechanics 25(11), 1337–1349 (1992)

    Article  Google Scholar 

  14. Vito, R.P., Dixon, S.A.: Blood vessel constitutive models-1995-2002. Annual Review of Biomedical Engineering 5, 413–439 (2003)

    Article  Google Scholar 

  15. Qin, S.P., Hu, Y.T., Jiang, Q.: Oscillatory interaction between bubbles and confining microvessels and its implications on clinical vascular injuries of shock-wave lithotripsy. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 53(7), 1322–1329 (2006)

    Article  Google Scholar 

  16. Gao, F.R., Hu, Y.T., Hu, H.P.: Asymmetrical oscillation of a bubble confined inside a micro pseudoelastic blood vessel and the corresponding vessel wall stresses. International Journal of Solids and Structures 44(22-23), 7197–7212 (2007)

    Article  MATH  Google Scholar 

  17. Hu, Y.T., Gao, F.R., Hu, H.P., Chen, C.Y.: Interactions inside a coupled oscillation system of bubble-viscous liquid-vessel and the induced stresses and strains within the vessel wall. Journal of Mechanics 24(1), 55–61 (2008)

    Article  Google Scholar 

  18. Chuong, C.J., Fung, Y.C.: Three-dimensional stress distribution in arteries. ASME, Journal of Biomechanical Engineering 105(3), 268–274 (1983)

    Article  Google Scholar 

  19. Fung, Y.C.: Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  20. Humphrey, J.D., Na, S.: Elastodynamics and arterial wall stress. Annals of Biomedical Engineering 30(4), 509–523 (2002)

    Article  Google Scholar 

  21. Hokanson, J., Yazdani, S.: A constitutive model of the artery with damage. Mechanics Research Communications 24(2), 151–159 (1997)

    Article  MATH  Google Scholar 

  22. Alastrue, V., Rodriguez, J.F., Calvo, B., Doblare, M.: Structural damage models for fibrous biological soft tissues. International Journal of Solids and Structures 44(18-19), 5894–5911 (2007)

    Article  MATH  Google Scholar 

  23. Volokh, K.Y.: Prediction of arterial failure based on a microstructural bi-layer fiber–matrix model with softening. Journal of Biomechanics 41(2), 447–453 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, F., Xiong, C., Xiong, Y. (2008). Mechanical Damage Evaluation of Living Tissue in Vascular Therapy. In: Xiong, C., Huang, Y., Xiong, Y., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2008. Lecture Notes in Computer Science(), vol 5314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88513-9_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88513-9_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88512-2

  • Online ISBN: 978-3-540-88513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics