Abstract
We present an algorithm, called BioLab, for verifying temporal properties of rule-based models of cellular signalling networks.
BioLab models are encoded in the BioNetGen language, and properties are expressed as formulae in probabilistic bounded linear temporal logic. Temporal logic is a formalism for representing and reasoning about propositions qualified in terms of time. Properties are then verified using sequential hypothesis testing on executions generated using stochastic simulation. BioLab is optimal, in the sense that it generates the minimum number of executions necessary to verify the given property. BioLab also provides guarantees on the probability of it generating Type-I (i.e., false-positive) and Type-II (i.e., false-negative) errors. Moreover, these error bounds are pre-specified by the user. We demonstrate BioLab by verifying stochastic effects and bistability in the dynamics of the T-cell receptor signaling network.
This research was sponsored by the GSRC (University of California) under contract no. SA423679952, National Science Foundation under contracts no. CCF0429120, no. CNS0411152, and no. CCF0541245, Semiconductor Research Corporation under contract no. 2005TJ1366, Air Force (University of Vanderbilt) under contract no. 18727S3, International Collaboration for Advanced Security Technology of the National Science Council, Taiwan, under contract no. 1010717, the Belgian American Educational Foundation, the U.S. Department of Energy Career Award (DE-FG02-05ER25696), a Pittsburgh Life-Sciences Greenhouse Young Pioneer Award, National Institutes of Health grant GM76570 and a B.A.E.F grant.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barua, D., Faeder, J.R., Haugh, J.M.: Structure-based kinetic models of modular signaling protein function: Focus on Shp2. Biophys. J. 92, 2290–2300 (2007)
Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)
Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSyst. 83, 136–151 (2006)
Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph theory for rule-based modeling of biochemical networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 89–106. Springer, Heidelberg (2006)
Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)
Chabrier, N., Fages, F.: Symbolic Model Checking of Biochemical Networks. In: Proc. 1st Internl. Workshop on Computational Methods in Systems Biology, pp. 149–162 (2003)
Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004)
Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)
Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signalling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007)
Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Rule-based modeling of biochemical networks. Complexity 10, 22–41 (2005)
Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Graphical rule-based representation of signal-transduction networks. In: SAC 2005: Proceedings of the 2005 ACM symposium on Applied computing, pp. 133–140. ACM, New York (2005)
Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with BioNetGen. In: Maly, I.V. (ed.) Systems Biology. Methods in Molecular Biology. Humana Press, Totowa (2008)
Finkbeiner, B., Sipma, H.: Checking Finite Traces Using Alternating Automata. Formal Methods in System Design 24(2), 101–127 (2004)
Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)
Goldstein, B., Faeder, J.R., Hlavacek, W.S.: Mathematical and computational models of immune-receptor signaling. Nat. Rev. Immunol. 4, 445–456 (2004)
Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84, 783–794 (2003)
Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Science STKE 6 (2006)
Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O., Heath, J., Gaffney, E.: Simulation and verification for computational modelling of signalling pathways. In: WSC 2006: Proceedings of the 38th conference on Winter simulation, pp. 1666–1674 (2006)
Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: A tool for probabilistic model checking. In: QEST, pp. 322–323. IEEE, Los Alamitos (2004)
Langmead, C., Jha, S.K.: Predicting protein folding kinetics via model checking. In: The 7th Workshop on Algorithms in Bioinformatics. Lecture Notes in Bioinformatics, pp. 252–264 (2007)
Langmead, C., Jha, S.K.: Symbolic approaches to finding control strategies in boolean networks. In: Proceedings of The Sixth Asia-Pacific Bioinformatics Conference, pp. 307–319 (2008)
Lipniacki, T., Hat, B., Faeder, J.R., Hlavacek, W.S.: Stochastic effects and bistability in T cell receptor signaling. J. Theor. Biol. (in press, 2008)
Lok, L., Brent, R.: Automatic generation of cellular networks with Moleculizer 1.0. Nat. Biotechnol. 23, 131–136 (2005)
McKeithan, T.: Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. 92(11), 5042–5046 (1995)
Mu, F., Williams, R.F., Unkefer, C.J., Unkefer, P.J., Faeder, J.R., Hlavacek, W.S.: Carbon fate maps for metabolic reactions. Bioinformatics 23, 3193–3199 (2007)
Pawson, T., Nash, P.: Assembly of cell regulatory systems through protein interaction domains. Science 300(5618), 445–452 (2003)
Rabinowitz, J.D., Beeson, C., Lyonsdagger, D.S., Davisdagger, M.M., McConnell, H.M.: Kinetic discrimination in T-cell activation. Proc. Natl. Acad. Sci. 93(4), 1401–1405 (1996)
Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004)
Vardi, M.: Alternating automata and program verification. Computer Science Today, 471–485 (1995)
Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statistics 16(2), 117–186 (1945)
Yang, J., Monine, M.I., Faeder, J.R., Hlavacek, W.S.: Kinetic Monte Carlo method for rule-based modeling of biochemical networks (2007) arXiv:0712.3773
Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asynchronous Events. PhD thesis, Carnegie Mellon (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay, A. (2008). Statistical Model Checking in BioLab: Applications to the Automated Analysis of T-Cell Receptor Signaling Pathway. In: Heiner, M., Uhrmacher, A.M. (eds) Computational Methods in Systems Biology. CMSB 2008. Lecture Notes in Computer Science(), vol 5307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88562-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-88562-7_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88561-0
Online ISBN: 978-3-540-88562-7
eBook Packages: Computer ScienceComputer Science (R0)