Abstract
This paper gives algebraic definitions for obtaining the minimal transition and place flows of a modular Petri net from the minimal transition and place flows of its components. The notion of modularity employed is based on place sharing. It is shown that transition and place flows are not dual in a modular sense under place sharing alone, but that the duality arises when also considering transition sharing. As an application, the modular definitions are used to give compositional definitions of transition and place flows of models in a subset of the Calculus of Biochemical Systems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)
Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. PNAS 95(12), 6750–6755 (1998)
Peleg, M., et al.: Using Petri net tools to study properties and dynamics of biological systems. Journal of the American Medical Informatics Association 12(2), 181–199 (2005)
Hardy, S., Robillard, P.N.: Modeling and simulation of molecular biology systems using Petri nets: Modeling goals of various approaches. J. Bioinformatics and Computational Biology 2(4), 619–638 (2004)
Reddy, V.N., et al.: Petri net representation in metabolic pathways. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., pp. 328–336 (1993)
Zevedei-Oancea, Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. Silico. Biol. 3, 323–345 (2003)
Heiner, M., et al.: Analysis and simulation of steady states in metabolic pathways with Petri nets. In: Jensen, K. (ed.) Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, pp. 15–34 (2001)
Genrich, H., et al.: Executable Petri net models for the analysis of metabolic pathways. J. STTT 3(4), 394–404 (2001)
Voss, K., et al.: Steady state analysis of metabolic pathways using Petri nets. Silico. Biol. 3 (2003)
Heiner, M., Koch, I.: Petri net based model validation in systems biology. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237. Springer, Heidelberg (2004)
Sackmann, A., et al.: Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 7(482) (2006)
Lee, D.Y., et al.: Colored Petri net modeling and simulation of signal transduction pathways. Metab. Eng. 8(2), 112–122 (2005)
Heiner, M., et al.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)
Taubner, C., et al.: Modelling and simulation of the TLR4 pathway with coloured Petri nets. In: Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Engineering in Medicine and Biology Society, pp. 2009–2012 (2006)
Matsuno, H., et al.: Hybrid Petri net representation of gene regulatory network. In: Pacific Symposium on Biocomputing, vol. 5, pp. 341–352 (2000)
Steggles, L.J., et al.: Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23(3), 336–343 (2007)
Gilbert, D., et al.: A case study in model-driven synthetic biology. In: Biologically-inspired cooperative computing. IFIP International Federation for Information Processing, vol. 268, pp. 163–175. Springer, Heidelberg (2008)
Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1. Springer, Heidelberg (1992)
Pedersen, M., Plotkin, G.: A language for biochemical systems. In: Heiner, M., Uhrmacher, A.M. (eds.) Proc. CMSB. LNCS. Springer, Heidelberg (2008)
Kofahl, B., Klipp, E.: Modelling the dynamics of the yeast pheromone pathway. Yeast 21(10), 831–850 (2004)
Krückeberg, F., Jaxy, M.: Mathematical methods for calculating invariants in Petri nets. In: Advances in Petri Nets 1987, covers the 7th European Workshop on Applications and Theory of Petri Nets, London, UK, pp. 104–131. Springer, Heidelberg (1987)
Schuster, S., et al.: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnology 18, 326–332 (2000)
Plotkin, G.: A calculus of biochemical systems (in preparation)
Pedersen, M.: Compositional definitions of minimal flows in Petri nets. Technical report, University of Edinburgh (2008), http://www.inf.ed.ac.uk/publications/report/1269.html
Reisig, W.: Petri nets. EATCS Monograps on Theoretical Computer Science. Springer, Heidelberg (1982)
Memmi, G., Roucairol, G.: Linear algebra in net theory. In: Proc. Advanced Course on General Net Theory of Processes and Systems, pp. 213–223. Springer, Heidelberg (1980)
Jensen, K.: Coloured Petri Pets: Basic Concepts, Analysis Methods and Practical Use, vol. 2. Springer, Heidelberg (1995)
Bourjij, A., et al.: A decentralized approach for computing invariants in large scale and interconnected Petri nets. In: Proc. IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 1741–1746 (1997)
Rojar, M.I.C.: Compositional construction and analysis of Petri net systems. PhD thesis, School of Informatics, University of Edinburgh (1998)
Christensen, S., Petrucci, L.: Modular analysis of Petri nets. The Computer Journal 43(3), 224–242 (2000)
Zaitsev, D.A.: Decomposition-based calculation of Petri net invariants. In: Cortadella, Yakovlev (eds.) Proc. Workshop on Token based Computing (ToBaCo), Satellite Event of the 25-th International conference on application and theory of Petri nets, pp. 79–83 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pedersen, M. (2008). Compositional Definitions of Minimal Flows in Petri Nets. In: Heiner, M., Uhrmacher, A.M. (eds) Computational Methods in Systems Biology. CMSB 2008. Lecture Notes in Computer Science(), vol 5307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88562-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-88562-7_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88561-0
Online ISBN: 978-3-540-88562-7
eBook Packages: Computer ScienceComputer Science (R0)