Skip to main content

Qualitative Knowledge Discovery

  • Conference paper
Semantics in Data and Knowledge Bases (SDKB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4925))

Included in the following conference series:

Abstract

Knowledge discovery and data mining deal with the task of finding useful information and especially rules in unstructured data. Most knowledge discovery approaches associate conditional probabilities to discovered rules in order to specify their strength. In this paper, we propose a qualitative approach to knowledge discovery. We do so by abstracting from actual probabilities to qualitative information and in particular, by developing a method for the computation of an ordinal conditional function from a possibly noisy probability distribution. The link between structural and numerical knowledge is established by a powerful algebraic theory of conditionals. By applying this theory, we develop an algorithm that computes sets of default rules from the qualitative abstraction of the input distribution. In particular, we show how sparse information can be dealt with appropriately in our framework. By making use of the duality between inductive reasoning and knowledge discovery within the algebraic theory of conditionals, we can ensure that the discovered rules can be considered as being most informative in a strict, formal sense.

The research reported here was partially supported by the Deutsche Forschungsgemeinschaft (grants BE 1700/7-1 and KE 1413/2-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artificial Intelligence (1996)

    Google Scholar 

  2. Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artificial Intelligence (92), 259–276 (1997)

    Google Scholar 

  3. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kern-Isberner, G.: Solving the inverse representation problem. In: Proceedings 14th European Conference on Artificial Intelligence, ECAI 2000, Berlin, pp. 581–585. IOS Press, Amsterdam (2000)

    Google Scholar 

  5. Kern-Isberner, G., Fisseler, J.: Knowledge discovery by reversing inductive knowledge representation. In: Proceedings of the Ninth International Conference on the Principles of Knowledge Representation and Reasoning, KR 2004, pp. 34–44. AAAI Press, Menlo Park (2004)

    Google Scholar 

  6. Adams, E.: Probability and the logic of conditionals. In: Hintikka, J., Suppes, P. (eds.) Aspects of inductive logic, pp. 265–316. North-Holland, Amsterdam (1966)

    Chapter  Google Scholar 

  7. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, vol. 2, pp. 105–134. Kluwer Academic Publishers, Dordrecht (1988)

    Chapter  Google Scholar 

  8. Benferhat, S., Dubois, D., Lagrue, S., Prade, H.: A big-stepped probability approach for discovering default rules. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS) 11, 1–14 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Paris, J.: The uncertain reasoner’s companion – A mathematical perspective. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  10. Kern-Isberner, G.: Characterizing the principle of minimum cross-entropy within a conditional-logical framework. Artificial Intelligence 98, 169–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  12. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3) (1999)

    Google Scholar 

  13. Cooper, G., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  14. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. Lecture Notes in Statistics, vol. 81. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  15. Heckerman, D.: Bayesian networks for knowledge discovery. In: Fayyad, U., Piatsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in knowledge discovery and data mining. MIT Press, Cambridge (1996)

    Google Scholar 

  16. Buntine, W.: A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering 8(2), 195–210 (1996)

    Article  Google Scholar 

  17. Herskovits, E., Cooper, G.: Kutató: An entropy-driven system for construction of probabilistic expert systems from databases. Technical Report KSL-90-22, Knowledge Systems Laboratory (1990)

    Google Scholar 

  18. Geiger, D.: An entropy-based learning algorithm of bayesian conditional trees. In: Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, pp. 92–97 (1992)

    Google Scholar 

  19. Kern-Isberner, G.: Following conditional structures of knowledge. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 125–136. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Kern-Isberner, G.: Handling conditionals adequately in uncertain reasoning. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 604–615. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. DeFinetti, B.: Theory of Probability, vol. 1,2. John Wiley and Sons, New York (1974)

    Google Scholar 

  22. Calabrese, P.: Deduction and inference using conditional logic and probability. In: Goodman, I., Gupta, M., Nguyen, H., Rogers, G. (eds.) Conditional Logic in Expert Systems, pp. 71–100. Elsevier, North Holland (1991)

    Google Scholar 

  23. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preservation in belief revision. Annals of Mathematics and Artificial Intelligence 40(1-2), 127–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Beierle, C., Kern-Isberner, G.: Modelling conditional knowledge discovery and belief revision by abstract state machines. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp. 186–203. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kern-Isberner, G., Thimm, M., Finthammer, M. (2008). Qualitative Knowledge Discovery. In: Schewe, KD., Thalheim, B. (eds) Semantics in Data and Knowledge Bases. SDKB 2008. Lecture Notes in Computer Science, vol 4925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88594-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88594-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88593-1

  • Online ISBN: 978-3-540-88594-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics