Skip to main content

Comparing Three Simulated Strategies for Cancer Monitoring with Nanorobots

  • Conference paper
MICAI 2008: Advances in Artificial Intelligence (MICAI 2008)

Abstract

The use of nanorobots in medical applications, specifically cancer treatment, is a serious alternative to prevent this disease. Locating chemical sources and tracking them over time, are tasks where nanorobotics is an ideal candidate to accomplish them. We present a multiagent simulation of three bio-inspired strategies to find targets in fluid environments; including diverse conditions for example: noisy sensors, interference between agents and obstacles generated by the environment itself. Besides, we present a comparative analysis among the three strategies. The results show that nanorobotics used in cancer therapy needs to explore an extensive range of blind searching techniques without communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cavalcanti, A., Shirinzadeh, B., Zhang, M., Kretly, L.C.: Nanorobot Hardware Architecture for Medical Defense. Sensors (2008) ISSN 1424-8220

    Google Scholar 

  2. Cavalcanti, A., Shirinzadeh, B., Hogg, T., Smith, J.A.: Hardware Architecture for Nanorobot Application in Cancer Therapy. In: IEEE-RAS ICAR Intl. Conf. on Advanced Robotics, Jeju, Korea, pp. 200–205 (August 2007)

    Google Scholar 

  3. Cavalcanti, A., Shirinzadeh, B., Fukuda, T., Ikeda, S.: Hardware Architecture for Nanorobot Application in Cerebral Aneurysm. In: IEEE - Nano 2007 Intl. Conf. on Nanotechnology

    Google Scholar 

  4. Cavalcanti, A., Shirinzadeh, B., Freitas Jr., R.A., Kretly, L.C.: Medical Nanorobot Architecture Based on Nanobioelectronics. Recent Patents on Nanotechnology 1, 1–10 (2007)

    Article  Google Scholar 

  5. Cavalcanti, A., Shirinzadeh, B., Murphy, D., Smith, J.A.: Nanorobots for Laparoscopic Cancer Surgery. In: IEEE ICIS 2007 International Conference on Computer and Information Science

    Google Scholar 

  6. Piña-García, Adolfo, C., Garcia-Vega, V.A.: A Hybrid Methodology for Robotic Architectures with a Cellular Approach. E-Learning in Industrial Electronics. In: 2006 1ST IEEE International Conference on (ICELIE), pp. 156–160 (December 2006)

    Google Scholar 

  7. Piña-García, C.A., Rechy-Ramírez, E.J., García-Vega, V.A.: Using an Alternative Model in a Complex Environment for Nanorobotics Navigation. In: 16th International Conference on Computing (CIC) (November 2007)

    Google Scholar 

  8. Cavalcanti, A., Hogg, T., Shirinzadeh, B., Liaw, H.C.: Nanorobot Communication Techniques: A Comprehensive Tutorial. In: IEEE ICARCV 2006 International Conference on Control, Automation, Robotics and Vision (2006)

    Google Scholar 

  9. Cavalcanti, A., Rosen, L., Shirinzadeh, B., Rosenfeld, M.: Nanorobot for Treatment of Patients with Artery Occlusion. In: Proceedings of Virtual Concept 2006, Cancun, Mexico (2006)

    Google Scholar 

  10. Cavalcanti, A.: Robots in Surgery. In: Euro Nano Forum 2005, Nanotechnology and the Health of the EU Citizen in 2020 (2005)

    Google Scholar 

  11. Cavalcanti, A., Freitas Jr., R.A.: Nanosystem Design with Dynamic Collision Detection for Autonomous Nanorobot Motion Control using Neural Networks. Computer Graphics and Geometry Journal 5(1), 50–74 (2003)

    Google Scholar 

  12. Hogg, T.: Coordinating Microscopic Robots in Viscous Fluids. HP Labs Palo Alto, CA. October 9 (2006)

    Google Scholar 

  13. Pecina-Slaus, N. (checar) Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell International 3, 17 (2003)

    Article  Google Scholar 

  14. Ummat, A., Sharma, G., Mavroidis, C., Dubey, A.: Bio-Nanorobotics: State of the Art and Future Challenges. Northeastern University (2005)

    Google Scholar 

  15. Dhariwal, A., Sukhatme, G.S., Requicha, A.A.G.: Bacterium-inspired Robots for Environmental Monitoring. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA (April 2004)

    Google Scholar 

  16. Drexler, E.K.: Engines of Creation. Anchor Press (1986)

    Google Scholar 

  17. Berg, H.C.: Random walks in biology. Princeton University Press, Princeton (1993)

    Google Scholar 

  18. Arkin, R.C.: Cooperation without communication: Multiagent schemes-based robot navigation. Journal of Robotic Systems 9(3), 351–364

    Google Scholar 

  19. Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative Mobile Robotics: Antecedents and Directions. Autonomous Robots 4, 123 (1997)

    Article  Google Scholar 

  20. Defago, X.: Distributed computing on the move: From mobile computing to cooperative robotics and nanorobotics. In: Proc. 1st ACM Int’l Workshop on Principles of Mobile Computing (POMC 2001), Newport, RI, USA, pp. 49–55 (August 2001)

    Google Scholar 

  21. Dorigo, M.: Swarm-Bot: An Experiment in Swarm robotics. IEEE, Los Alamitos (2005)

    Google Scholar 

  22. Kube, C.R., Zhang, H.: Collective robotics: from social insects to robots. Adaptive Behavior 2, 189218 (1994)

    Google Scholar 

  23. Millington, I.: Artificial Intelligence for games, 1st edn. Morgan Kaufmann, San Francisco (2006)

    Google Scholar 

  24. Miller, M.B., Bassler, B.L.: Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 16599 (2001)

    Article  Google Scholar 

  25. Murphy, R.R.: Introduction to AI robotics. The MIT Press, Cambridge (2000)

    Google Scholar 

  26. Palmer, G.: Physics for Game Programmers. Apress (2005) ISBN10: 1-59059-472-X

    Google Scholar 

  27. Siciliano, B., Khatib, O.: Handbook of robotics. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  28. Listak, M., Martin, G., Pugal, D., Aabloo, A., Kruusmaa, M.: Design of a Semiautonomous Biomimetic Underwater Vehicle for Environmental Monitoring. In: 6th IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA 2005), Espoo, Finland, 27.06.-30.06.2005, pp. 9–14. IEEE, New York (2005)

    Google Scholar 

  29. Novak, M., Wilensky, U.: NetLogo Bug Hunt Coevolution model. Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL, http://ccl.northwestern.edu/netlogo/models/BugHuntCoevolution

  30. Ghose, K., Horiuchi, T.K., Krishnaprasad, P.S., Mos, C.F.: Echolocating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey. PLoS Biology 4(5), 108 (2006)

    Article  Google Scholar 

  31. Ghose, K., Horiuchi, T.K., Krishnaprasad, P.S., Moss, C.F.: The echolocating bats pursuit strategy is optimal for unpredictably maneuvering prey. NACS 79.1

    Google Scholar 

  32. Bénichou, O., Coppey, M., Moreau, M., Suet, P.-H., Voituriez, R.: Optimal Search Strategies for Hidden Targets. The American Physical Society (2005)

    Google Scholar 

  33. Wilensky, U.: Netlogo, center for connected learning and computer-based modeling (1999), http://ccl.northwestern.edu/netlogo

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piña-García, C.A., Rechy-Ramírez, EJ., García-Vega, V.A. (2008). Comparing Three Simulated Strategies for Cancer Monitoring with Nanorobots. In: Gelbukh, A., Morales, E.F. (eds) MICAI 2008: Advances in Artificial Intelligence. MICAI 2008. Lecture Notes in Computer Science(), vol 5317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88636-5_96

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88636-5_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88635-8

  • Online ISBN: 978-3-540-88636-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics