Skip to main content

On Reducing Redundancy in Mining Relational Association Rules from the Semantic Web

  • Conference paper
Web Reasoning and Rule Systems (RR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5341))

Included in the following conference series:

  • 440 Accesses

Abstract

In this paper we discuss how to reduce redundancy in the process and in the results of mining the Semantic Web data. In particular, we argue that the availability of the domain knowledge should not be disregarded during data mining process. As the case study we show how to integrate the semantic redundancy reduction techniques into our approach to mining association rules from the hybrid knowledge bases represented in OWL with rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buntine, W.: Generalized subsumption and its applications to induction and redundancy. Artificial Intelligence 36(2), 149–176 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dehaspe, L., Toivonen, H.: Discovery of frequent Datalog patterns. Data Mining and Knowledge Discovery 3(1), 7–36 (1999)

    Article  Google Scholar 

  3. Józefowska, J., Ławrynowicz, A., Łukaszewski, T.: Towards discovery of frequent patterns in description logics with rules. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 84–97. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Józefowska, J., Ławrynowicz, A., Łukaszewski, T.: Frequent pattern discovery in OWL DLP knowledge bases. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 287–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Lisi, F.A., Esposito, F.: Efficient Evaluation of Candidate Hypotheses in \(\mathcal{AL}\)-log. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 216–233. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relation. Machine Learning Journal 55, 175–210 (2004)

    Article  MATH  Google Scholar 

  7. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 549–563. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Nijssen, S., Kok, J.N.: Faster Association Rules for Multiple Relations. In: Proceedings of the IJCAI 2001, pp. 891–897 (2001)

    Google Scholar 

  9. De Raedt, L., Ramon, J.: Condensed representations for Inductive Logic Programming. In: Proc. of the KR 2004, pp. 438–446 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Józefowska, J., Ławrynowicz, A., Łukaszewski, T. (2008). On Reducing Redundancy in Mining Relational Association Rules from the Semantic Web. In: Calvanese, D., Lausen, G. (eds) Web Reasoning and Rule Systems. RR 2008. Lecture Notes in Computer Science, vol 5341. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88737-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88737-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88736-2

  • Online ISBN: 978-3-540-88737-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics