Skip to main content

Vision-Based Detection of Mobile Smart Objects

  • Conference paper
Smart Sensing and Context (EuroSSC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5279))

Included in the following conference series:

  • 949 Accesses

Abstract

We evaluate an approach for mobile smart objects to cooperate with projector-camera systems to achieve interactive projected displays on their surfaces without changing their appearance or function. Smart objects describe their appearance directly to the projector-camera system, enabling vision-based detection based on their natural appearance. This detection is a significant challenge, as objects differ in appearance and appear at varying distances and orientations with respect to a tracking camera. We investigate four detection approaches representing different appearance cues and contribute three experimental studies analysing the impact on detection performance, firstly of scale and rotation, secondly the combination of multiple appearance cues and thirdly the use of context information from the smart object. We find that the training of appearance descriptions must coincide with the scale and orientations providing the best detection performance, that multiple cues provide a clear performance gain over a single cue and that context sensing masks distractions and clutter, further improving detection performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Strohbach, M., Gellersen, H.-W., Kortuem, G., Kray, C.: Cooperative Artefacts: Assessing Real World Situations with Embedded Technology. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 250–267. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Molyneaux, D., Gellersen, H., Kortuem, G., Schiele, B.: Cooperative Augmentation of Smart Objects with Projector-Camera Systems. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 501–518. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Ehnes, J., Hirota, K., Hirose, M.: Projected Augmentation - Augmented Reality using Rotatable Video Projectors. In: Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004), Arlington, VA, USA, September-October (2004)

    Google Scholar 

  4. Bandyopadhyay, D., Raskar, R., Fuchs, H.: Dynamic Shader Lamps: Painting on Movable Objects. In: Proc. of the IEEE and ACM International Symposium on Augmented Reality (ISAR 2001), New York (2001)

    Google Scholar 

  5. Borkowski, S., Riff, O., Crowley, J.L.: Projecting rectified images in an augmented environment. In: IEEE International Workshop on Projector-Camera Systems (PROCAMS 2003), Nice, France, October 12 (2003)

    Google Scholar 

  6. Pinhanez, C.S.: The Everywhere Displays Projector: A Device to Create Ubiquitous Graphical Interfaces. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201. Springer, Heidelberg (2001)

    Google Scholar 

  7. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)

    Article  Google Scholar 

  8. Jurie, F., Dhome, M.: Hyperplane Approximation for Template Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 996–1000 (2002)

    Article  Google Scholar 

  9. Schiele, B., Crowley, J.L.: Recognition without Correspondence using Multidimensional Receptive Field Histograms. International Journal of Computer Vision (IJCV) 36(1), 31–50 (2000)

    Article  Google Scholar 

  10. Murase, H., Nayar, S.K.: Visual Learning and Recognition of 3D Objects from Appearance. International Journal on Computer Vision 14(1), 5–24 (1995)

    Article  Google Scholar 

  11. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  12. Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  13. Mokhtarian, F.: Silhoutte based Isolated Object Recognition through Curvature Scale. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(5), 539–544 (1995)

    Article  Google Scholar 

  14. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  16. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A Comparison of Affine Region Detectors. International Journal on Computer Vision 65(1-2), 43–72 (2005)

    Article  Google Scholar 

  17. Spengler, M., Schiele, B.: Towards Robust Multi-cue Integration for Visual Tracking. In: Proceedings of the Second International Workshop on Computer Vision Systems. Springer, Heidelberg (2001)

    Google Scholar 

  18. Li, P., Chaumette, F.: Image Cues Fusion for Object Tracking Based on Particle Filter. In: Perales, F.J., Draper, B.A. (eds.) AMDO 2004. LNCS, vol. 3179, pp. 99–107. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Brasnett, P., Mihaylova, L., Canagarajah, N., Bull, D.: Particle Filtering with Multiple Cues for Object Tracking in Video Sequences. In: SPIE’s 17th Annual Symposium on Electronic Imaging, Science and Technology, San Jose California, USA, pp. 430–441 (2005)

    Google Scholar 

  20. Giebel, J., Gavrila, D.M., Schnörr, C.: A Bayesian Framework for Multi-cue 3D Object Tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 241–252. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Lindeberg, T.: Scale-Space for Discrete Signals. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(3), 234–254 (1990)

    Article  Google Scholar 

  22. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Molyneaux, D., Gellersen, H., Schiele, B. (2008). Vision-Based Detection of Mobile Smart Objects. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G., Havinga, P. (eds) Smart Sensing and Context. EuroSSC 2008. Lecture Notes in Computer Science, vol 5279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88793-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88793-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88792-8

  • Online ISBN: 978-3-540-88793-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics