Abstract
We evaluate an approach for mobile smart objects to cooperate with projector-camera systems to achieve interactive projected displays on their surfaces without changing their appearance or function. Smart objects describe their appearance directly to the projector-camera system, enabling vision-based detection based on their natural appearance. This detection is a significant challenge, as objects differ in appearance and appear at varying distances and orientations with respect to a tracking camera. We investigate four detection approaches representing different appearance cues and contribute three experimental studies analysing the impact on detection performance, firstly of scale and rotation, secondly the combination of multiple appearance cues and thirdly the use of context information from the smart object. We find that the training of appearance descriptions must coincide with the scale and orientations providing the best detection performance, that multiple cues provide a clear performance gain over a single cue and that context sensing masks distractions and clutter, further improving detection performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Strohbach, M., Gellersen, H.-W., Kortuem, G., Kray, C.: Cooperative Artefacts: Assessing Real World Situations with Embedded Technology. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 250–267. Springer, Heidelberg (2004)
Molyneaux, D., Gellersen, H., Kortuem, G., Schiele, B.: Cooperative Augmentation of Smart Objects with Projector-Camera Systems. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 501–518. Springer, Heidelberg (2007)
Ehnes, J., Hirota, K., Hirose, M.: Projected Augmentation - Augmented Reality using Rotatable Video Projectors. In: Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004), Arlington, VA, USA, September-October (2004)
Bandyopadhyay, D., Raskar, R., Fuchs, H.: Dynamic Shader Lamps: Painting on Movable Objects. In: Proc. of the IEEE and ACM International Symposium on Augmented Reality (ISAR 2001), New York (2001)
Borkowski, S., Riff, O., Crowley, J.L.: Projecting rectified images in an augmented environment. In: IEEE International Workshop on Projector-Camera Systems (PROCAMS 2003), Nice, France, October 12 (2003)
Pinhanez, C.S.: The Everywhere Displays Projector: A Device to Create Ubiquitous Graphical Interfaces. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201. Springer, Heidelberg (2001)
Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)
Jurie, F., Dhome, M.: Hyperplane Approximation for Template Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 996–1000 (2002)
Schiele, B., Crowley, J.L.: Recognition without Correspondence using Multidimensional Receptive Field Histograms. International Journal of Computer Vision (IJCV) 36(1), 31–50 (2000)
Murase, H., Nayar, S.K.: Visual Learning and Recognition of 3D Objects from Appearance. International Journal on Computer Vision 14(1), 5–24 (1995)
Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)
Mokhtarian, F.: Silhoutte based Isolated Object Recognition through Curvature Scale. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(5), 539–544 (1995)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A Comparison of Affine Region Detectors. International Journal on Computer Vision 65(1-2), 43–72 (2005)
Spengler, M., Schiele, B.: Towards Robust Multi-cue Integration for Visual Tracking. In: Proceedings of the Second International Workshop on Computer Vision Systems. Springer, Heidelberg (2001)
Li, P., Chaumette, F.: Image Cues Fusion for Object Tracking Based on Particle Filter. In: Perales, F.J., Draper, B.A. (eds.) AMDO 2004. LNCS, vol. 3179, pp. 99–107. Springer, Heidelberg (2004)
Brasnett, P., Mihaylova, L., Canagarajah, N., Bull, D.: Particle Filtering with Multiple Cues for Object Tracking in Video Sequences. In: SPIE’s 17th Annual Symposium on Electronic Imaging, Science and Technology, San Jose California, USA, pp. 430–441 (2005)
Giebel, J., Gavrila, D.M., Schnörr, C.: A Bayesian Framework for Multi-cue 3D Object Tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 241–252. Springer, Heidelberg (2004)
Lindeberg, T.: Scale-Space for Discrete Signals. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(3), 234–254 (1990)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Molyneaux, D., Gellersen, H., Schiele, B. (2008). Vision-Based Detection of Mobile Smart Objects. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G., Havinga, P. (eds) Smart Sensing and Context. EuroSSC 2008. Lecture Notes in Computer Science, vol 5279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88793-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-88793-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88792-8
Online ISBN: 978-3-540-88793-5
eBook Packages: Computer ScienceComputer Science (R0)