Skip to main content

The Perils of Polynucleotides Revisited

  • Chapter
  • First Online:
Algorithmic Bioprocesses

Part of the book series: Natural Computing Series ((NCS))

  • 1245 Accesses

Abstract

DNA computing relies on the successful implementation of physical chemistry techniques involving oligonucleotides of prescribed sequence. Our laboratory has been involved in the assembly and manipulation of designed oligonucleotides in order to pursue studies in genetic recombination and nanofabrication. We have constructed a large number of unusual branched DNA motifs used to build a variety of DNA objects, lattices, and nanomechanical devices. Our experience with these systems has uncovered a large number of experimental pitfalls that may confront individuals working with DNA-based computation. A decade ago, we presented our experience in this area in the hope that we could help investigators to anticipate experimental problems that affect DNA computing schemes. Here, we review these points from the vantage point of further experience, indicating both modifications to the original criteria and new points as well.

...that to which we return with the greatest pleasure possesses the greatest power...

Samuel Taylor Coleridge

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  Google Scholar 

  2. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  Google Scholar 

  3. Seeman NC, Lukeman PS (2005) Nucleic acid nanostructures. Rep Prog Phys 68:237–270

    Article  Google Scholar 

  4. Fu T-J, Seeman NC (1993) DNA double crossover structures. Biochemistry 32:3211–3220

    Article  Google Scholar 

  5. He Y, Tian Y, Chen Y, Deng ZX, Ribbe AE, Mao CD (2005) Sequence symmetry as a tool for designing DNA nanostructures. Angew Chem Int Ed 44:6694–6696

    Article  Google Scholar 

  6. Lu Y, Ke YG, Yan H (2005) Self-assembly of symmetric finite-size DNA nanoarrays. J Am Chem Soc 127:17140–17141

    Article  Google Scholar 

  7. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  Google Scholar 

  8. Voet D, Rich A (1970) The crystal structures of purines, pyrimidines and their intermolecular complexes. Prog Nucl Acid Res Mol Biol 10:183–265

    Article  Google Scholar 

  9. Fahlman RP, Sen D (1999) Synapsable DNA double helices: self-selective modules for assembling DNA superstructures. J Am Chem Soc 121:11079–11085

    Article  Google Scholar 

  10. Wang WX, Liu HJ, Liu DS, Xu YR, Yang Y, Zhou DJ (2007) The use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Langmuir 23:11956–11959

    Article  Google Scholar 

  11. Chworos A, Jaeger L (2004) Building programmable jigsaw puzzles with RNA. Science 306:2068–2072

    Article  Google Scholar 

  12. Paukstelis P, Nowakowski J, Birktoft JJ, Seeman NC (2004) The crystal structure of a continuous three-dimensional DNA lattice. Chem Biol 11:1119–1126

    Article  Google Scholar 

  13. Sherman WB (2007) Disentangling kinetics and energetics in DNA nanostructure assembly: forming parallel double crossover molecules. In: Proceedings of the fourth conference on foundations of nanoscience, Snowbird, Utah, April 18–21, 2007. Science Technica Inc, pp 65–65

    Google Scholar 

  14. Birac JJ, Sherman WB, Kopatsch J, Constantinou PE, Seeman NC (2006) GIDEON, A program for design in structural DNA nanotechnology. J Mol Graph Model 25:470–480

    Article  Google Scholar 

  15. Sherman WB, Seeman NC (2006) Design of low-stress nucleic acid nanotubes. Biophys J 90:4546–4557

    Article  Google Scholar 

  16. Seeman NC (1985) The interactive manipulation and design of macromolecular architecture utilizing nucleic acid junctions. J Mol Graph 3:34–39

    Article  Google Scholar 

  17. Fu T-J, Tse-Dinh Y-C, Seeman NC (1994) Holliday junction crossover topology. J Mol Biol 236:91–105

    Article  Google Scholar 

  18. Park SH, Barish R, Li HY, Reif JH, Finkelstein G, Yan H, LaBean TH (2005) Three-helix bundle DNA tiles assemble into 2D lattice or 1D templates for silver nanowires. Nano Lett 5:693–696

    Article  Google Scholar 

  19. Liu D, Wang MS, Deng ZX, Walulu R, Mao CD (2004) Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J Am Chem Soc 126:2324–2325

    Article  Google Scholar 

  20. Churchill MEA, Tullius TD, Kallenbach NR, Seeman NC (1988) A Holliday recombination intermediate is twofold symmetric. Proc Natl Acad Sci (USA) 85:4653–4656

    Article  Google Scholar 

  21. Kim SH, Suddath FL, Quigley GJ, McPherson A, Sussman JL, Wang AH-J, Seeman NC, Rich A (1974) The three dimensional tertiary structure of transfer RNA. Science 185:435–440

    Article  Google Scholar 

  22. Hsieh P, Panyutin IG (1995) DNA branch migration. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol 9. Springer, Berlin, pp 42–65

    Google Scholar 

  23. Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65

    Article  Google Scholar 

  24. Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125

    Article  Google Scholar 

  25. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322

    Article  Google Scholar 

  26. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Newmann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  Google Scholar 

  27. Depew RE, Wang J (1975) Conformational fluctuations of DNA helix. Proc Natl Acad Sci (USA) 72:4275–4279

    Article  Google Scholar 

  28. Wu G, Jonoska N, Seeman NC (2008) Self-assembly of a DNA nano-object demonstrates natural computation (submitted for publication)

    Google Scholar 

  29. Wang H, Di Gate RJ, Seeman NC (1998) The construction of an RNA knot and its role in demonstrating that E. coli DNA topoisomerase III is an RNA topoisomerase. In: Sarma RH, Sarma MH (eds) Structure, motion, interaction and expression of biological macromolecules. Adenine Press, New York, pp 103–116

    Google Scholar 

  30. Shen Z, Yan H, Wang T, Seeman NC (2004) Paranemic crossover DNA: a generalized holliday structure with applications in nanotechnology. J Am Chem Soc 126:1666–1674

    Article  Google Scholar 

  31. Du SM, Zhang S, Seeman NC (1992) DNA junctions, antijunctions and mesojunctions. Biochemistry 31:10955–10963

    Article  Google Scholar 

  32. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  33. Constantinou PE, Wang T, Kopatsch J, Israel LB, Zhang X, Ding B, Sherman WB, Wang X, Zheng J, Sha R, Seeman NC (2006) Double cohesion in structural DNA nanotechnology. Org Biomol Chem 4:3414–3419

    Article  Google Scholar 

  34. Shih WM, Quispe JD, Joyce GF (2004) DNA that folds into a nanoscale octahedron. Nature 427:618–621

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadrian C. Seeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seeman, N.C. (2009). The Perils of Polynucleotides Revisited. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds) Algorithmic Bioprocesses. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88869-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88869-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88868-0

  • Online ISBN: 978-3-540-88869-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics