Skip to main content

Strategies for RNA-Guided DNA Recombination

  • Chapter
  • First Online:
Algorithmic Bioprocesses

Part of the book series: Natural Computing Series ((NCS))

  • 1298 Accesses

Abstract

We present a model for homologous DNA recombination events guided by double-stranded RNA (dsRNA) templates, and apply this model to DNA rearrangements in some groups of ciliates, such as Stylonychia or Oxytricha. In these organisms, differentiation of a somatic macronucleus from a germline micronucleus involves extensive gene rearrangement, which can be modeled as topological braiding of the DNA, with the template-guided alignment proceeding through DNA branch migration. We show that a graph structure, which we refer to as an assembly graph, containing only 1- and 4-valent vertices can provide a physical representation of the DNA at the time of recombination. With this representation, 4-valent vertices correspond to the alignment of the recombination sites, and we model the actual recombination event as smoothing of these vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angeleska A, Jonoska N Saito M (2009) Discrete Appl Math (accepted)

    Google Scholar 

  2. Angeleska A, Jonoska N, Saito M, Landweber LF (2007) J Theor Biol 248(4):706–720

    Article  Google Scholar 

  3. Brijder R, Hoogeboom HJ, Rozenberg G (2007) From micro to macro: how the overlap graph determines the reduction graph in ciliates. In: Lecture notes in computer science, vol 4639. Springer, Berlin, pp 149–160

    Google Scholar 

  4. Cavalcanti ARO, Landweber LF (2006) Insights into a biological computer: detangling scrambled genes in ciliates. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation. Springer, Berlin

    Google Scholar 

  5. Chang WJ, Kuo S, Landweber LF (2006) Gene 368:72–77

    Article  Google Scholar 

  6. Ehrenfeucht A, Harju T, Petre I, Prescott DM, Rozenberg G (2005) Computing in living cells. Springer, Berlin

    Google Scholar 

  7. Ehrenfeucht A, Harju T, Rozenberg G (2002) Theor Comput Sci 281:325–349

    Article  MATH  MathSciNet  Google Scholar 

  8. Garnier O, Serrano V, Duharcourt S, Meyer E (2004) Mol Cell Biol 24:7370–7379

    Article  Google Scholar 

  9. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) Nature 442:199–202

    Google Scholar 

  10. Head T (1987) Bull Math Biol 49:737–759

    MATH  MathSciNet  Google Scholar 

  11. Jonoska N, Saito M (2004) Algebraic and topological models for DNA recombinant processes. In: Calude CS, Calude E, Dinneen MJ (eds) Developments in language theory. Lecture notes in computer science, vol 3340. Springer, Berlin, pp 49–62

    Google Scholar 

  12. Juranek SA, Rupprecht S, Postberg J, Lipps HJ (2005) Eukaryot Cell 4:1934–1941

    Article  Google Scholar 

  13. Kari L, Landweber LF (1999) Computational power of gene rearrangement. In: Winfree E, Gifford DK (eds) DNA based computers. AMS, Reading, pp 207–216

    Google Scholar 

  14. Kauffman LH (1991) Knots and physics. Series on knots and everything, vol 1. World Scientific, Singapore

    MATH  Google Scholar 

  15. Landweber LF (2007) Science 318:405–406

    Article  Google Scholar 

  16. Kuo S, Chang W-J, Landweber LF (2006) Mol Biol Evol 23(1):4–6

    Article  Google Scholar 

  17. Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA (2002) Cell 110:689–699

    Article  Google Scholar 

  18. Mollenbeck M, Zhou Y, Cavalcanti ARO, Jonsson F, Higgins BP, Chang WJ, Juranek S, Doak TG, Rozenberg G, Lipps HJ, Landweber LF (2008) PLoS ONE 3(6):e2330. http://www.plosone.org/article/info:doi/10.1371/journal.pone.0002330

    Article  Google Scholar 

  19. Nowacki M, Vijayan V, Zhou Y, Schotanus K, Doak TG, Landweber LF (2008) Nature 451:153–158

    Article  Google Scholar 

  20. Prescott DM, Greslin AF (1992) Dev Genet 13(1):66–74

    Article  Google Scholar 

  21. Prescott DM, Ehrenfeucht A, Rozenberg G (2003) J Theor Biol 222:323–330

    Article  MathSciNet  Google Scholar 

  22. Seeman NC (2003) Nature 421:427–431

    Article  MathSciNet  Google Scholar 

  23. Sumners DW (1995) Lifting the curtain: using topology to probe the hidden action of enzymes. Not 42(5):528–537

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Angeleska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angeleska, A., Jonoska, N., Saito, M., Landweber, L.F. (2009). Strategies for RNA-Guided DNA Recombination. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds) Algorithmic Bioprocesses. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88869-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88869-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88868-0

  • Online ISBN: 978-3-540-88869-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics