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Abstract. We present a new approach to anomaly-based network intru-
sion detection for web applications. This approach is based on dividing
the input parameters of the monitored web application in two groups:
the “regular” and the “irregular” ones, and applying a new method
for anomaly detection on the “regular” ones based on the inference of
a regular language. We support our proposal by realizing Sphinx, an
anomaly-based intrusion detection system based on it. Thorough bench-
marks show that Sphinx performs better than current state-of-the-art
systems, both in terms of false positives/false negatives as well as need-
ing a shorter training period.
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1 Introduction

In the last decade, the Internet has quickly changed from a static repository of
information into a practically unlimited on-demand content generator and ser-
vice provider. This evolution is mainly due to the increasing success of so-called
web applications (later re-branded web services, to include a wider range of ser-
vices). Web applications made it possible for users to access diverse services from
a single web browser, thereby eliminating reliance on tailored client software.

Although ubiquitous, web applications often lack the protection level one ex-
pects to find in applications that deal with valuable data: as a result, attackers
intent on acquiring information such as credit card or bank details will often
target web applications. Web applications are affected by a number of security
issues, primarily due to a lack of expertise in the programming of secure applica-
tions. To make things worse, web applications are typically built upon multiple
technologies from different sources (such as the open-source community), mak-
ing it difficult to assess the resulting code quality. Other factors affecting the
(in)security of web applications are their size, complexity and extensibility. Even
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with high quality components, the security of a web application can be compro-
mised if the interactions between those components are not properly designed
and implemented, or an additional component is added at a later stage without
due consideration (e.g., a vulnerable web application could grant an attacker the
control of another system which communicates with it).

An analysis of the Common Vulnerabilities and Exposures (CVE) reposi-
tory [1] conducted by Robertson et al. [2] shows that web-related security flaws
account for more than 25% of the total number of reported vulnerabilities from
year 1999 to 2005 (this analysis cannot obviously take into account vulnerabil-
ities discovered in web applications developed internally by companies). More-
over, the Symantec 2007 Internet Security Threat Report [3] states that most of
the easily exploitable vulnerabilities (those requiring little knowledge and effort
on the attacker side) are related to web applications (e.g., SQL Injection and
Cross-site Scripting attacks). Most of the web application vulnerabilities are SQL
Injections and Cross-site Scripting. These statistics show that web applications
have become the Achilles’ heel in system and network security.

Intrusion detection systems (IDSs) are used to identify malicious activities
against a computer system or network. The growth of web applications (and
attacks targeting them) led to adaptations of existing IDSs, yelding systems
specifically tailored to the analysis of web traffic (sometimes called web applica-
tion firewalls [4]). There exist two kinds of intrusion detection systems: signature-
and anomaly-based. Here we focus on anomaly detection systems: as also argued
by Vigna [2], signature-based systems are less suitable to protect web-services;
among the reasons why anomaly-based systems are more suitable for protecting
web applications we should mention that (1) they do not require any a-priori
knowledge of the web application, (2) they can detect polymorphic attacks and
(3) they can protect custom-developed web applications. On the negative side,
anomaly-based systems are generally not easy to configure and use. As most
of them employ mathematical models, users usually have little control on the
way the system detects attacks. Often, system administrators prefer signature-
based IDSs over anomaly-based ones because they are – according to Kruegel
and Toth [5] – easier to implement and simpler to configure, despite the fact they
could miss a significant amount of real attacks. Finally, anomaly-based systems
usually show a high number of false positives [6], and – as we also argued in [7]
– a high number of false positives is often their real limiting factor. These issues
make the problem of protecting web servers particularly challenging.

Contribution. In this paper we present a new approach for anomaly detection
devised to detect data-flow attacks [8] to web applications (attacks to the work
flow are not taken into consideration) and we introduce Sphinx, an anomaly-
based IDS based on it. We exploit the fact that, usually, most of the parameters
in HTTP requests present some sort of regularities: by considering those reg-
ularities, we divide parameters into “regular” and “irregular” (whose content
is highly variable) ones; we argue that, for “regular” parameters, it is possi-
ble to exploit their regularities to devise more accurate detection models. We
substantiate this with a number of contributions:
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– We introduce the concept of “positive signatures”: to carry out anomaly-
detection on the “regular” parameters, we first infer human-readable regular
expressions by analyzing the parameter content, then we generate positive
signatures matching normal inputs.

– We build a system, Sphinx, that implements our algorithm to automatically
infer regular expressions and generate positive signatures; positive signa-
tures are later used by Sphinx to build automaton-based detection models
to detect anomalies in the corresponding “regular” parameters. For the pa-
rameters we call “irregular”, Sphinx analyzes their content using an adapted
version of our NIDS POSEIDON [9] (as it would not be “convenient” to
generate a positive signature).

– We extensively benchmark our system against state-of-the-art IDSs such as
WebAnomaly [10], Anagram [11] and POSEIDON.

We denote the generated signatures as “positive signatures”, following the
idea that they are as flexible as signatures but match positive inputs (in con-
trast with usual signatures used to match malicious inputs). Differently from
mathematical and statistical models, positive signatures do not rely on any data
frequency/presence observation or threshold. As shown by our benchmarks, pos-
itive signatures successfully detect attacks with a very low false positive rate for
“regular” parameters.

Our new approach merges the ability of detecting new attacks without prior
knowledge (common in anomaly-based IDSs) with the possibility of easily mod-
ifying/customizing the behaviour of part of the detection engine (common in
signature-based IDSs).

Sphinx works with any web application, making custom-developed (or close-
source) ones easily protected too. By working in an automatic way, Sphinx re-
quires little security knowledge from system administrators, however expert ones
can easily review regular expressions and make modifications.

We performed thorough benchmarks using three different data sets; bench-
marks show that Sphinx performs better than state-of-the-art anomaly-based
IDSs both in terms of false negatives and false positives rate as well as present-
ing a better learning curve than competing systems.

2 Preliminaries

In this section, we introduce the definitions and the concepts used in the rest of
the paper.

Anomaly-based systems. For the purpose of this paper, we assume the pres-
ence of an application A that exchanges information over a network (e.g., think
of a web server connected to the Internet running web applications). An input is
any finite string of characters and we say that S is the set of all possible inputs.

Anomaly-based IDSs are devised to recognize regular activity and make use
of a model MA ⊆ S of normal inputs: if an input i /∈ MA then the IDS raises
an alert. Typically, MA is defined implicitly by using an abstract model Mabs
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(built during a so-called training phase) and a similarity function φ(Mabs, i) →
{yes, no}, to discern normal inputs from anomalous. For instance, an example of
similarity function is the distance d having that {d(Mabs, i) is lower than a given
threshold t}.
Desiderata. The completeness and accuracy [12] of an anomaly detection sys-
tem lie in the quality of the model MA (i.e., the way it is defined and is built,
later, during the training phase). We call completeness the ratio TP/(TP +FN)
and accuracy the ratio TP/(TP+FP ), where TP is the number of true positives,
FN is the number of false negatives and FP is the number of false positives the
IDS raised. For MA we have the following set of desiderata:

– MA, to avoid false positives, should contain all foreseeable non-malicious
inputs;

– MA, to avoid false negatives, should be disjoint from the set of possible
attacks;

– MA should be simple to build, i.e., the shorter the training phase required
to build MA, the better it is.

The last point should not be underestimated: Training an anomaly detection
system often requires having to put together a representative training set, which
also has to be cleaned from malicious input (this is done off-line, e.g., using
signature-based systems). In addition, applications change on a regular base
(this is particularly true in the context of web applications, which are highly
dynamic), and each time a software change determines a noticeable change in the
input of the application, one needs to re-train the NIDS. The larger the training
set required, the higher is the required workload to maintain the system.

Automata. An automaton is a mapping from strings on a given alphabet to
the set {yes, no} such as α : Strings → {yes, no}; the language it accepts
corresponds to {s ∈ Strings | α(s) = yes}. Given a finite set of strings I it is
easy to construct αI , the automaton which recognizes exactly I.

3 Detecting Data-Flow Attacks to Web Applications

Let us describe how web applications handle user inputs. Web applications pro-
duce an output in response to a user request, which is a string containing a
number of parameter names and the respective parameter value (for the sake of
simplicity we can disregard parameterless HTTP requests, as attackers cannot
inject attack payloads). RFC 2616 [13] defines the structure and the syntax of a
request with parameters (see Figure 1).

Fig. 1. A typical HTTP (GET) request with parameters
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We can discard the request version and – for the sake of exposition – the
method. Of interest to us is the presence of a path, a number of parameter names
and of their respective values (in Figure 1 the parameter names are “name”, “file”
and “sid” and their respective values are “New”, “Article” and “25”). The set of
parameters is finite. A value can be any string (though, not all the strings will
be accepted by the web application). Since no type is defined, the semantic of
each parameter is implicitly defined within the context of the web application
and such parameters are usually used in a consistent manner (i.e., their syntax is
fixed). In the sequel, we refer to the natural projection function: Given an input
i path?p1 = v1&p2 = v2& . . .&pn = vn, we define pn(i) = vi as the function
extracting the value of parameter pn from input i.

Exploiting regularities. Intuitively, it is clear that the more “predictable”
the input of the application A is, the easier it is to build a model MA satisfying
the desiderata (1), (2) and (3). For instance, if we knew that A accepted only –
say – strings not containing any “special character” (a very predictable input),
then building MA as above would be trivial.

Our claim is that, in the context of web applications, it is possible to exploit
the regularities which are not present in other settings to define and build MA

based on the inference of regular automata, which leads to the definition of an
IDS that is more effective (yet simpler) than state-of-the-art systems.

Commonly, anomaly-based IDSs build (and use) a single model M to analyse
network traffic. Our proposal takes advantage of the fact that requests to web
applications present a fixed syntax, consisting of a sequence of parameter =
value, and instead of building a single model to analyse the input, it builds an
ad hoc model Mn for each parameter pn (in practice, we create a separate model
for many – not all – parameters). As already observed by Kruegel and Vigna
in [14], this allows it to create a more faithful model of the application input.
The idea is that of defining MA implicitly by electing that i ∈ Ma iff for each
parameter n we have that pn(i) ∈ Mn (or that pn(i) is empty).

Regular and irregular parameters. So we first divide the parameters in two
groups: the regular parameters and the irregular parameters. The core of our
idea is that for the regular parameters it is better to define Mn as a regular
language rather than using state-of-the-art anomaly-based systems. By “better”
we mean that this method yields (a) lower false positive rate, (b) same (or higher)
detection rate (c) a shorter learning phase. We support our thesis by presenting
an algorithm realizing this.

For each regular parameter, we build a model using a combination of abstrac-
tion and regular expression inference functions that we are going to explain in
the following section: We call this the regular-text methodology, following the
intuition it is devised to build the model for parameters which are usually filled
by data having a well-defined format (e.g., integer numbers, dates, user session
cookies etc.). For the irregular parameters we use classical anomaly-based tech-
niques, i.e., n-gram analysis: We call this the raw-data methodology, since it is
meant to be more suitable for building the model of parameters containing e.g.,
pieces of blogs or emails, images, binary data etc.
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Fig. 2. Sphinx’s internals

4 Sphinx’s Detection Engine

To substantiate our claims, we built Sphinx: An anomaly-based intrusion de-
tection systems specifically tailored to detect attacks in a web application data
flows. Let us see how it works: building the intrusion detection system involves
the following steps.

4.1 Building the Model

We first outline how we build the model MA of the application given a training
set DS; DS is a set of inputs (i.e., HTTP requests), which we assume does not
contain fragments of attacks. Typically, DS is obtained by making a dump of
the application input traffic during a given time interval, and it is cleaned (i.e.,
the malicious traffic is removed) off-line using a combination of signature-based
intrusion detection techniques and manual inspection.

During the first part of the training, we discover the set of parameters used by
the web application: DS is scanned a first time and the parameters {p1, . . . , pn}
are extracted and stored. We call DSn = {pn(i) | i ∈ DS} the training set for
the parameter pn (i.e., the projection of DS on the parameter pn).

In the second step we divide the parameters into two classes: the regular ones
(for which we use the new anomaly detection algorithms based on regular ex-
pressions) and the irregular ones. In practice, to decide which parameters are
the “regular” ones, in the sequel we use a simple a-priori syntactic check: If
at least the 10% of the samples in DSn contains occurrences of more than 5
distinct non-alphanumeric characters, we say that pn is an irregular parameter,
otherwise it is a regular one. This criterion for separating (or, better, defin-
ing) the regular parameters from the irregular ones is clearly arbitrary. Simply,
our benchmarks have shown that it gives good results. We impose a minimum
amount of samples (10%) to present more than 5 distinct non-alphanumeric
characters to prevent Sphinx’s engine from classifying a parameter as “irregu-
lar” because of few anoumalous samples. An attacker could in fact exploit this
to force the system to classify any parameter as “irregular”.
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In the last step of the training phase we build a model Mn for each of the
regular parameter pn, using the training set DSn. The irregular parameters, in
turn, are again grouped together and for them we build a unique model: We
could also build a single model per irregular parameter, but this would slow
down the learning phase, which is already one of the weak spots of classical
anomaly detection techniques.

4.2 The Regular-Text Methodology

This represents the most innovative aspect of our contribution. The regular-
text methodology is designed to build a simple model of the “normal” input
of the regular parameters. This model is represented by a regular expression
and anomalies are detected by the derived finite automaton. We illustrate this
methodology by presenting two algorithms realizing it: The first one is called
the simple regular expression generator (SREG) and it is meant to illustrate the
fundamental principles behind the construction of such regular language, the
second one is called complex regular expression generator (CREG), and can be
regarded as a further development of the first one. Here we should mention that
standard algorithms to infer regular expressions (see [15] for a detailed overview)
cannot be used for intrusion detection because they infer an expression matching
exactly the strings in the training data set only, while we need to match a
“reasonable” superset of it.

Simple regular expression generator. Here we introduce our first algorithm.
We have a training set DSn (the training set relative to parameter n) and we
want to build a model Mn of the parameter itself, and a decision procedure to
determine for a given input i whether pn(i) is contained in Mn or not.

Our first algorithm to generate Mn is based on applying two abstractions to
DSn. The first abstraction function, abs1, is devised to abstract all letters and
all digits (other symbols are left untouched), and works as follows:

abs1(c1 . . . cn) = abs1(c1), . . . , abs1(cn)

abs1(ci) =

⎧
⎨

⎩

“a”, ci ∈ {“a”, . . . , “Z”}
“1”, ci ∈ {“0”, . . . , “9”}
ci otherwise

Thus abs1 abstracts alphanumerical characters while leaving non-alphanu-
merical symbols untouched (for the reasons we clarified in Section 3). The rea-
son for this choice is that, in the context of web applications, the presence of
“unusual” symbols (or a concatenation of them) could indicate the presence of
attack payloads.

The second abstraction we use is actually a contraction:

abs2(c1 . . . cn) =

⎧
⎨

⎩

abs2(c2 . . . cn) if c1 = c2 = c3 = “a” or “1”
c1c1 abs2(c3 . . . cn) if c1 = c2 �= c3 and c1 = “a” or “1”
c1 · abs2(c2 . . . cn) if c1 �= c2 or c1 = c2 and c1 �= “a” and c1 �= “1”
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Table 1. Some examples of applying abstractions abs1 and abs2 on different inputs

Input abs1(i) abs2(i′)
11/12/2007 11/11/1111 11/11/11

addUser aaaaaaa aa
C794311F-FC92-47DE-9958 a111111a-aa11-11aa-1111 a11a-aa11-11aa-11

Intuitively, abs2 collapses all strings of letters (resp. digits) of length greater or
equal to two onto strings of letters (resp. digits) of length two. Again, symbols are
left untouched, as they may indicate the presence of an attack. Table 1 provides
some examples of application of abs1 and abs2 on different input strings.

These two abstraction algorithms are enough to define our first model, only
one detail is still missing. If the samples contained in DSn have maximum length
say l, then we want our model Mn to contain strings of maximum length 2l: an
input which is much longer than the samples observed in the training set is
considered anomalous (as an attacker could be attempting to inject some attack
payload).

Definition 1. Let DSn be a training set. Let l = max{|x| | x ∈ DSn}. We
define the simple regular-text model of DSn to be

M simple
n = {x | |x| ≤ 2l ∧ ∃y ∈ DSn abs2(abs1(x)) = abs2(abs1(y))}

During the detection phase, if pn(i) �∈ M simple
n then an alert is raised. The deci-

sion procedure for checking whether i ∈ M simple
n is given by the finite automaton

αMsimple
n

that recognizes M simple
n . Building αMsimple

n
is almost straightforward.

It is implemented using a (unbalanced) tree data-structure, therefore adding a
new node (i.e., a previously unseen character) costs O(l), where l is the length
of the longest observed input. The complexity of building the tree for n inputs is
therefore O(n·l). The decision procedure to check, given an input i, if pn(i) ∈ Mn

has complexity O(l). To simplify things, we can represent this automaton as a
regular expression.

Complex regular expression generator. The simple SREG algorithm is
effective for illustrating how regular expressions can be useful in the context
of anomaly detection and how they can be used to detect anomalies in regular
parameters. Nevertheless we can improve on SREG in terms of FPs and FNs
by using an (albeit more complex) algorithm, which generates a different, more
complex model.

The algorithm goes through two different phases. In the first phase each DSn

is partitioned in groups with common (shared) prefixes or suffixes (we require at
least 3 shared characters, to avoid the generation of useless regular expressions).

Table 2. Examples of how SREG works on different input sets

Training sets abs2(abs1(i)) SREG
01/01/1970

30/4/85
9/7/1946

11/11/11
11/1/11
1/1/11

1(1/1(1/11|/11)|/1/11)

41E44909-C86E-45EE-8DA1
0F786C5B-940B-4593-B96D
656E0AB4-B221-422F-92AC

11a11-a11a-11aa-1aa1
1a11a1a-11a-11-a11a

111a1aa1-a11-11a-11aa

1(1(a11-a11a-11aa-1aa1|
1a1aa1-a11-11a-11aa)|
a11a1a-11a-11-a11a)
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Table 3. Examples of pattern selection, generated regular expressions for samples and
the resulting one

Training set
Symbol
Pattern

Shared
Pattern

Intermediate
Regular Expressions

Resulting
Regular Expression

al.ias@atwork.com [. @ .]
[@ .]

(a+ [.])+@(a+).(a+)
((a|1)+ [. | ])+@(a+ [-])+.(a+)3l 1t3@hack.it [ @ .] ((a|1)+ [ ])+@(a+).(a+)

info@dom-ain.org [@ - .] (a+)@(a+ [-])+.(a+)

In the second phase, the algorithm generates a regular expression for each
group as follows. First, it applies abstractions abs1 and abs2 on each stored
body (we call the body the part of the input obtained by removing the common
prefix or suffix from it: prefixes and suffixes are handled later). Secondly, it starts
to search for common symbol patterns inside bodies. Given a string s, we define
the symbol pattern of s the string obtained by removing all alphanumerical
characters from s.

As bodies could contain different symbol patterns, non-trivial patterns (i.e.,
patterns of length greater than one) are collected and the pattern matching the
highest number of bodies is selected. If some bodies do not match the selected
pattern, then the same procedure is repeated on the remaining bodies set till no
more non-trivial patterns can be found.

For each non-trivial symbol pattern discovered during the previous step, the
algorithm splits each body into sub-strings according to the symbol pattern
(e.g., s = s′ − s′′ − s′′′ is split in {s′, s′′, s′′′} w.r.t. the pattern). Corresponding
sub-strings are grouped together (e.g., having strings s1,s2 and s3 the algorithm
creates g1 = {s′1, s′2, s′3}, g2 = {s′′1 , s′′2 , s′′3} and g3 = {s′′′1 , s′′′2 , s′′′3 }) and a regular
expression is generated for each group. This regular expression is the modified
according to some heuristics to match also similar strings. Regular expressions
are then merged with the corresponding symbol pattern, and any previously
found prefix or suffix is eventually added (e.g., re = (prefix)reg1 − reg2 − reg3).
Table 3 depicts an example of the different steps of CREG.

Finally, for bodies which do not share any non-trivial symbol pattern with the
other members of the group, a dedicated general regular expression is generated.
Table 4 shows some examples of generated regular expressions for different sets
of strings.

Given the resulting regular expression (i.e., the positive signature), we build
a finite automaton accepting the language it represents. The automaton is built
in such a way that it accepts (as in the case of SREG) only strings of length less

Table 4. Examples of how CREG works on different input sets

Training sets Pattern
Resulting

Regular Expression
01/01/1970

30/4/85
9/7/1946

[ / / / ] (1+/1+/1+)

addUser
deleteUser
viewUser

N/A (a+)User

41E44909 C86E 45EE 8DA1
0F786C5B-940B-4593-B96D
656E0AB4-B221 422F-92AC

Cannot find
non-trivial patterns ⇒

general regular expression
((a|1)+[-| ])+
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than 2l. In the detection phase, if an input is not accepted by the automaton,
an alert is raised.

Effectiveness of positive signatures. Because of the novelty of our approach,
let us see some concrete examples regarding the potential of positive signatures.

Think of a signature such as “id=1+”, accepting numeric values: the param-
eter id is virtually protected from any data-flow attack, since only digits are
accepted. When we consider more complex signatures, such as “email=((a|1)+ [.
| ])+@(a+ [-])+.(a+)” (extracted from Table 3), it is clear that common attack
payloads would be easily detected by the automaton derived from the regular
expression, as they require to inject different symbol sets and in different orders.

One could argue that it could be sufficient (and simpler) to detect the presence
of typical attack symbols (having them classified and categorized) or, better, the
presence of a symbol set specific to an attack (e.g., “ ’ ”,“ , ” and “ - ” for a SQL In-
jection). However, a certain symbol set is not said to be harmful per se, but it must
be somehow related to the context: In fact, the symbol “ , ” used in SQL Injec-
tion attacks, can also be found in some representations of real numbers. Positive
signatures, in contrast with usual state-of-the-art anomaly detection approaches,
provide a sort of context for symbols, thus enhancing the detection of anomalies.

For instance, by May 2008, CVE contains more than 3000 SQL Injection
and more than 4000 Cross-site Scripting attacks but only less than 250 path
traversal and less than 400 buffer overflow attacks (out of a total of more than
30000 entries). Most of the SQL Injections happen to exploit “regular” parame-
ters (integer-based), where the input is used inside a “SELECT” statement and
the attacker can easily add a crafted “UNION SELECT” statement to extract
additional information such as user names and their passwords. The same rea-
soning applies to Cross-site Scripting attacks. Sphinx’s positive signatures can
significantly enhance the detection of these attacks.

4.3 The Raw-Data Methodology

The raw-data methodology is used to handle the “irregular” parameters. For
them, using regular automata to detect anomalies is not a good idea: The in-
put is so heterogeneous that any automaton devised to recognize a “reasonable”
super set of the training set would probably accept any input. Indeed, for this
kind of heterogeneous parameters we can better use a classical anomaly detec-
tion engine, based on statistical content analysis (e.g., n-gram analysis). In the
present embodiment of Sphinx we use our own POSEIDON [9] (which performs
very well in our benchmarks), but we could have used any other anomaly-based
NIDS. POSEIDON is a 2-tier anomaly-based NIDS that combines a neural net-
work with n-gram analysis to detect anomalies. POSEIDON originally performs
a packet-based analysis: Every packet is classified by the neural network, then,
using the classification information given, the real detection phase takes place
based on statistical functions considering the byte frequencies and distributions
(the n-gram analysis). In the context of web applications, we are dealing with
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streams instead of packets, therefore we have adapted POSEIDON to the con-
text. POSEIDON requires setting a threshold value to detect anomalous inputs:
to this end, in our tests we have used the automatic heuristic provided in [7].

4.4 Using the Model

When the training phase is completed, Sphinx switches to detection mode. As
a new HTTP request comes, parameters are extracted applying the projections
p1, . . . , pn. Sphinx stores, for each parameter analyzed during the training phase,
information regarding the model to use to test its input. For a parameter that
was labelled as “regular”, the corresponding automaton is selected. If it does not
accept the input, then an alert is raised. If the parameter was labelled “irregular”,
the content is analyzed using the adapted version of POSEIDON (which uses
a single model for all the irregular parameters). If the content is considered to
deviate from the “normal” model, an alert is raised. Sphinx raises an alert also in
the case a parameter has never been analyzed before and suddenly materializes
in a HTTP request, since we consider this eventuality as an attempt to exploit
a vulnerability by an attacker.

Editing and customizing positive signatures. One of the most criticized
disadvantages of anomaly-based IDSs lies in their “black-box” approach. Being
most of anomaly-based IDS based on mathematical models (e.g., neural net-
works), users have little or no control over the detection engine internals. Also,
users have little influence on the false positive/negative rates, as they can usu-
ally adjust some threshold values only (the link between false positives/negatives
and threshold values is well-known [16]).

Signatures, as a general rule, provide more freedom to customize the detec-
tion engine behaviour. The use of positive signatures opens the new possibility
of performing a thorough tuning for anomaly-based IDSs, thereby modifying the
detection models of regular parameters. Classical anomaly-based detection sys-
tems do not offer this possibility as their models aggregate collected information,
making it difficult (if not impossible) to remove/add arbitrary portions of data.

Positive signatures allow IT specialists to easily (and quickly) modify or cus-
tomize the detection models when there is a need to do so (see Table 5), like
when (1) some malicious traffic, that was incorporated in the model during the
training phase, has to be purged (to decrease the false negative rate) and (2) a
new (previously unseen) input has to be added to the model (to decrease the
false positive rate).

Table 5. Some examples of signature customization

Positive Signature Problem Action

id=d+ | (a+ [’|,|-|;])+
The payload of a SQL
Injection attack was

included in the training set

The IT specialist manually
modifies the signature ⇒ id=d+

date=1+/1+/1+
A new input (“19-01-1981”)
is observed after the training
phase, thereby increasing the

false positive rate

The IT specialist re-train
the model for parameter
with the new input and
the positive signature ⇒

date=1+/1+/1+ | 1+-1+-1+

is automatically generated
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5 Benchmarks

The quality of the data used in benchmarks (and the way it was collected) greatly
influences the number of successfully detected attacks and false alerts: Test data
should be representative of the web server(s) to monitor, and the attack test bed
should reflect modern attack vectors. Presently the only (large) public data set
for testing intrusion detection systems is the DARPA data set [17], dated back to
1999. Although this data set is still widely used (since public data sets are scarce),
it presents significant shortcomings that make it unsuitable to test our system:
E.g., only four attacks related to web (and most of them target web server’s
vulnerabilities) are available and traffic typology is outdated (see [18,19] for
detailed explanations about its limitations). So, to carry out our experiments we
collected three different data sets from three different sources: Real production
web sites that strongly rely on user parameters to perform their normal activity.

The first data set is a deployment of the widely-known PostNuke (a content-
management system). The second comes from a (closed-source) user forum web
application, and it contains user messages sent to the forum, which present
a variable and heterogeneous content. The third data set has been collected
from the web server of our department, where PHP and CGI scripts are mainly
used. Each data set contains both GET and POST requests: Sphinx’s engine
can interpret the body of POST requests as well, since only the request syntax
changes from a GET request, but the content, in case of regular parameters, looks
similar. In case of encoded content (for instance, a white space is usually encoded
as the hexadecimal value “%20”), the content is first decoded by Sphinx’s engine
and then processed.

We collected a number of samples sufficient to perform extensive training and
testing (never less than two weeks of traffic and in one case a month, see also
Table 6). Data used for training have been made attack-free by using Snort to
remove well-known attacks and by manually inspecting them to purge remaining
noise.

Comparative benchmarks. To test the effectiveness of Sphinx, we compare it
to three state-of-the-art systems, which have been either developed specifically
to detect web attacks or have been extensively tested with web traffic.

First, WebAnomaly (Kruegel et al. [14]) combines five different detection
models, namely attribute length, character distribution, structural inference, at-
tribute presence and order of appearance, to analyze HTTP request parameters.
Second, Anagram (Wang et al. [11]) uses a Bloom filter to store any n-gram
(i.e., a sequence of bytes of a given length) observed during a training phase,

Table 6. Collected data sets: code name for tests, source and number of samples

Data set Web Application
# of samples

(HTTP requests)
DSA PostNuke ∼460000 (1 month)
DSB (Private) User forum ∼290000 (2 weeks)

DSC
CS department’s web

site (CGI & PHP scripts) ∼85000 (2 weeks)
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without counting the occurrences of n-grams. During the detection phase, Ana-
gram flags as anomalous a succession of previously unseen n-grams. Although
not specifically designed for web applications, Anagram has been extensively
tested with logs captured from HTTP servers, achieving excellent results. We
set the parameters accordingly to authors’ suggestions to achieve the best detec-
tion and false positive rates. Third, our own POSEIDON, the system we adapted
to handle raw-text parameters in Sphinx. POSEIDON, during our previous ex-
periments [9], showed a high detection rate combined with a low false positive
rate in tests related to web traffic, outperforming the leading competitor.

We divide tests into two phases. We compare the different engines first by con-
sidering only the “regular” parameters. Later, we consider full HTTP requests
(with both “regular” and “irregular” parameters).

The goal our tests is twofold. Next to the effectiveness of Sphinx, we are
also interested in testing its the learning rate: Any anomaly-based algorithm
needs to be trained with a certain amount of data before it is able to correctly
flag attacks without generating a massive flow of false alerts. Intuitively, the
longer the training phase is, the better the IDS should perform. But an anomaly
detection algorithm that requires a shorter training phase it is certainly easier
to deploy than an algorithm that requires a longer training phase.

Testing the regular-expression engine. In this first test, we compare our
CREG algorithm to WebAnomaly, Anagram and POSEIDON using training
sets of increasing size with “regular” requests only (requests where raw-data
parameters have been previously removed). This test aims to demonstrate the
effectiveness of our approach over previous methods when analyzing regular pa-
rameters. We use training sets of increasing size to measure the learning rate
and to simulate a training phase as it could take place in a real environment,
when a system is not always trained thoroughly. For the attack test bed, we se-
lected a set of real attacks which truly affected the web application we collected
the logs of and whose exploits have been publicly released. Attacks include path
traversal, buffer overflow, SQL Injection and Cross-site Scripting payloads. At-
tack mutations, generated using the Sploit framework [20], have been included
too, to reproduce the behaviour of an attacker attempting to evade signature-
based systems. The attack test bed contains then 20 attacks in total. Table 7
reports results for tests with “regular” requests.

Our tests show that with a rather small training set (20000 requests, originally
collected in less than two days), CREG generates 43 false positives (∼0,009%),
less than 2 alerts per day. The “sudden” decrease in FPs shown by CREG (and

Table 7. Results for CREG and comparative algorithms on “regular” requests only

#training samples CREG WebAnomaly Anagram POSEIDON

5000 Attacks 20/20 18/20 20/20 20/20
FPs 1062 1766 144783 1461

10000 Attacks 20/20 16/20 20/20 20/20
FPs 1045 1529 133023 1387

20000 Attacks 20/20 16/20 20/20 20/20
FPs 43 177 121484 1306

50000 Attacks 20/20 14/20 20/20 20/20
FPs 16 97 100705 1251
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Webanomaly) when we train it with at least 20000 requests is due to the fact
that, with less than 20000 training samples, some parameters are not analyzed
during training (i.e., some URLs have not been accessed), therefore no model is
created for them and by default this event is considered malicious. One surpris-
ing thing is the high number of false positives shown by Anagram [11,21]. We
believe that this is due to the fact that Anagram raises a high number of false
positives on specific fields whose content looks pseudo-random, which are com-
mon in web applications. Consider for example the following request parameter
sid=0c8026e78ef85806b67a963ce58ba823 (it is a user’s session ID automatically
added by PostNuke in each URL link), being this value randomly generated as
a new user comes: Such a string probably contains a number of n-grams which
were not observed during the training phase therefore, and Anagram is likely to
flag any session ID as anomalous. On the other hand, CREG exploits regularities
in inputs, by extracting the syntax of the parameter content (e.g., the regular
expression for sid is (a+|d+)+), and easily recognizes similar values in the future.
WebAnomaly shows (unexpectedly, at least in theory) a worse detection rate as
the training set samples increase. This is due to the fact that the content of new
samples is similar to some attack payloads, thus the system is not able to discern
malicious traffic.

Testing Sphinx on the complete input. We show the results of the second
test which uses the complete input of the web application (and not only the
regular parameters). We use the two data sets DSB and DSC : DSB contains 78
regular and 10 irregular parameters; DSC respectively 334 and 10. We proceed
as before, using different training sets with increasing numbers of samples. To
test our system, we have used the attack database presented in [21] which has
already been used to assess several intrusion-detection systems for web attacks.
We adapted the original attack database and added the same attack set used in
our previous test session. We found this necessary because [21] contains some at-
tacks to the platforms (e.g., a certain web server vulnerability in parsing inputs)
rather than to the web applications themselves (e.g., SQL Injection attacks are
missing). Furthermore, we had to exclude some attacks since they target web
server vulnerabilities by injecting the attack payload inside the HTTP headers:
Although Sphinx could be easily adapted to process header fields, our logs do not
always contain a HTTP header information. In total, our attack bed contains

Table 8. Results for Sphinx and comparative algorithms on full requests from DSB :
we report separate false positive rates for Sphinx (RT stands for “regular-text” models
and RD for “raw-data” model)

# training Sphinx WebAnomaly Anagram POSEIDON
samples FPs RT FPs RD

5000 Attacks 80/80 67/80 80/80 80/80
FPs 162 1955 2593 90301 3478

10000 Attacks 80/80 67/80 80/80 80/80
FPs 59 141 587 80302 643

20000 Attacks 80/80 53/80 80/80 80/80
FPs 43 136 451 71029 572

50000 Attacks 80/80 47/80 80/80 80/80
FPs 29 127 319 61130 433
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Table 9. Results for Sphinx and comparative algorithms on full requests from DSC :
we report detailed false positive rates for Sphinx (RT stands for “regular-text” models
and RD for “raw-data” model)

# training Sphinx WebAnomaly Anagram POSEIDON
samples FPs RT FPs RD

5000 Attacks 80/80 78/80 80/80 80/80
FPs 36 238 607 16779 998

10000 Attacks 80/80 77/80 80/80 80/80
FPs 24 109 515 13307 654

20000 Attacks 80/80 49/80 80/80 80/80
FPs 10 98 459 7417 593

50000 Attacks 80/80 46/80 80/80 80/80
FPs 3 47 338 4630 404

80 vectors, including the 20 attacks previously used to test DSA (adapted to
target the new data set).

The tests show that the presence of irregular parameters significantly influ-
ences the false positive rate of Sphinx. We need an extensive training to achieve
a rate of 10 false positives per day: this is not surprising, since we observed a
similar behaviour during previous tests (see [7,9]).

6 Related Work

Despite the fact that web applications have been widely developed only in the last
half-decade years, the detection of web-based attacks has immediately received
considerable attention.

Ingham et al. [22] use a deterministic finite automaton (DFA) to build a profile
of legal HTTP requests. It works by tokenizing HTTP request parameters, and
storing each token type and (optionally) its value. Pre-defined heuristic functions
are used to validate and generalize well-known input values (e.g., dates, file types,
IP addresses and session cookies). Each state in the DFA represents an unique
token, and the DFA has a transition between any two states that were seen
consecutively (from a chronological point of view) in the request. A similarity
function determines if a request has to be considered anomalous. It reflects the
changes (i.e., for each missed token a new transition would have to be added)
that would have to be made to the DFA for it to accept the request.

Despite its effectiveness, this approach relies on predefined functions which can
be used to analyse only certain (previously known) input types. Furthermore,
for some parameters (e.g., blog messages) it could be difficult to find a good
function to validate the content. Sphinx, on the other hand, is able to learn in
an automatic way the syntax of most of parameter values and uses a content-
based anomaly detector for parameters whose syntax cannot be extracted.

WebAnomaly (Kruegel et al. [10]) analyses HTTP requests and takes signifi-
cant advantage of the parameter-oriented URL format common in web applica-
tions. The system applies up to nine different models at the same time to detect
possible attacks, namely: attribute length and character distribution, structural
inference, token finder, attribute presence and order, access frequency, inter-
request time delay and invocation order. We have compared WebANomaly to
Sphinx in our benchmarks.
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Jovanovic et al. [23] present a static-analysis tool (called Pixy) for web appli-
cations. The tool detects data flow vulnerabilities by checking how inputs could
affect the (intended) behaviour of the web application, leading to an outflow of
information. This approach requires the sources code of the web application to
be available.

Finally, we should mention that Almgren et al. [24] and Almgren and Lindqvist
[25] present similar systems which are based on signature-based techniques and
either analyse web server logs ([24]) or are integrated inside the web server itself.

7 Conclusion

Sphinx is conceptually simple, and – as our benchmarks show – to detect attacks
to web applications it performs better than competing systems. Here we want to
stress that the system we have compared it to are really the best ones now avail-
able and that the set of benchmarks we have carried out (with 3 different data
sets) is very extensive. Another aspect we want to stress is that Sphinx presents
also a better learning curve than competitors (i.e., it needs a lower number
of samples to train itself). This is very important in the practical deployment
phase, when changes to the underlying application require that every now and
then the system be retrained (and retraining the system requires cleaning up
the training set from possible attacks, an additional operation which needs to
be done – accurately – off-line).

Sphinx, instead of using solely mathematical and statistical models, takes ad-
vantage of the regularities of HTTP request parameters and is able to automat-
ically generate, for most of the parameters, human-readable regular expressions
(we call them “positive signatures”). This also means that the IT specialist, if
needed, could easily inspect and modify/customize the signatures generated by
Sphinx, thereby modifying the behaviour of the detection engine. This aspect
should be seen in the light of the criticisms that is often addressed to anomaly-
based systems: That they are as black-boxes which cannot be tuned by the IT
specialists in ways other than modifying, e.g., the alert threshold [5]. Sphinx is
– to our knowledge – the first anomaly-detection system which relies heavily on
signatures which can be seen, interpreted, and customized by the IT specialists.
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