Abstract
In this paper, we propose a new face detection model, which is developed by combining the conventional AdaBoost algorithm for human face detection with a biologically motivated face-color preferable selective attention. The biologically motivated face-color preferable selective attention model localizes face candidate regions in a natural scene, and then the Adaboost based face detection process only works for those localized face candidate areas to check whether the areas contain a human face. The proposed model not only improves the face detection performance by avoiding miss-localization of faces induced by complex background such as face-like non-face area, but can enhances a face detection speed by reducing region of interests through the face-color preferable selective attention model. The experimental results show that the proposed model shows plausible performance for localizing faces in real time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yang, M., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Patt. Anal. Mach. Intell. 24(1), 34–58 (2002)
Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)
Walther, D., Itti, L., Riesenhuber, M., Poggio, T., Koch, C.: Attentional selection for object recognition – a gentle way. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 472–479. Springer, Heidelberg (2002)
Serre, T., Riesenhuber, M., Louie, J., Poggio, T.: On the role of object-specific features for real world object recognition in biological vision. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 387–397. Springer, Heidelberg (2002)
Navalpakkam, V., Itti, L.: An integrated model of top-down and bottom-up attention for optimal object detection. In: CVPR, pp. 2049–2056 (2006)
Siagian, C., Itti, L.: Biologically-inspired face detection: Non-Brute-Force-Search approach, 2004. In: CVPRW 2004, Washington, DC, USA, vol. 5, pp. 62–69 (2004)
Ban, S.W., Lee, M., Yang, H.S.: A face detection using biologically motivated bottom-up saliency map model and top-down perception model. Neurocomputing 56, 475–480 (2004)
Schiller, P.H.: Area V4 of the primary visual cortex. American Psychological Society 3(3), 89–92 (1994)
Goldstein, E.B.: Sensation and perception, 4th edn. An international Thomson publishing company, USA (1996)
Park, S.J., An, K.H., Lee, M.: Saliency map model with adaptive masking based on independent component analysis. Neurocomputing 49, 417–422 (2002)
Kovač, J., Peer, P., Solina, F.: Human skin colour clustering for face detection. EUROCON 2, 144–148 (2003)
Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. System Man Cybernetics, 62–66 (1979)
UCD Valid Database, http://ee.ucd.ie/validdb/datasets.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, B., Ban, SW., Lee, M. (2008). Improving AdaBoost Based Face Detection Using Face-Color Preferable Selective Attention. In: Fyfe, C., Kim, D., Lee, SY., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2008. IDEAL 2008. Lecture Notes in Computer Science, vol 5326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88906-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-88906-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88905-2
Online ISBN: 978-3-540-88906-9
eBook Packages: Computer ScienceComputer Science (R0)