Skip to main content

On the Improvement of the Mapping Trustworthiness and Continuity of a Manifold Learning Model

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2008 (IDEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5326))

Abstract

Manifold learning methods model high-dimensional data through low-dimensional manifolds embedded in the observed data space. This simplification implies that their are prone to trustworthiness and continuity errors. Generative Topographic Mapping (GTM) is one such manifold learning method for multivariate data clustering and visualization, defined within a probabilistic framework. In the original formulation, GTM is optimized by minimization of an error that is a function of Euclidean distances, making it vulnerable to the aforementioned errors, especially for datasets of convoluted geometry. Here, we modify GTM to penalize divergences between the Euclidean distances from the data points to the model prototypes and the corresponding geodesic distances along the manifold. Several experiments with artificial data show that this strategy improves the continuity and trustworthiness of the data representation generated by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3), 381–396 (2002)

    Article  Google Scholar 

  2. Bishop, C.M., Svensén, M., Williams, C.K.I.: The Generative Topographic Mapping. Neural Computation 10(1), 215–234 (1998)

    Article  MATH  Google Scholar 

  3. Vellido, A.: Missing data imputation through GTM as a mixture of t-distributions. Neural Networks 19(10), 1624–1635 (2006)

    Article  MATH  Google Scholar 

  4. Vellido, A., Lisboa, P.J.G., Vicente, D.: Robust analysis of MRS brain tumour data using t-GTM. Neurocomputing 69(7-9), 754–768 (2006)

    Article  Google Scholar 

  5. Archambeau, C., Verleysen, M.: Manifold constrained finite Gaussian mixtures. In: Cabestany, J., Gonzalez Prieto, A., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 820–828. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  7. Lee, J.A., Lendasse, A., Verleysen, M.: Curvilinear Distance Analysis versus Isomap. In: Proceedings of European Symposium on Artificial Neural Networks (ESANN), pp. 185–192 (2002)

    Google Scholar 

  8. Bernstein, M., de Silva, V., Langford, J., Tenenbaum, J.: Graph approximations to geodesics on embedded manifolds. Technical report, Stanford University, CA (2000)

    Google Scholar 

  9. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Venna, J., Kaski, S.: Neighborhood preservation in nonlinear projection methods: An experimental study. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 485–491. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cruz-Barbosa, R., Vellido, A. (2008). On the Improvement of the Mapping Trustworthiness and Continuity of a Manifold Learning Model. In: Fyfe, C., Kim, D., Lee, SY., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2008. IDEAL 2008. Lecture Notes in Computer Science, vol 5326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88906-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88906-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88905-2

  • Online ISBN: 978-3-540-88906-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics