Skip to main content

Control of a Wheelchair by Motor Imagery in Real Time

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2008 (IDEAL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5326))

Abstract

This paper gives an outline of a non-invasive brain machine interface (BMI) implemented for controlling a motorized wheelchair online. Subjects were trained by using an effective feedback training method, and they could then control the wheelchair freely, similar to controlling it with a joystick.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choi, K., Hirose, H., Sakurai, Y., Iijima, T., Koike, Y.: Prediction of arm trajectory from the neural activities of the primary motor cortex using a modular artificial neural network model. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 987–996. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. PNAS 101, 17849–17854 (2004)

    Article  Google Scholar 

  3. Cichocki, A., Amari, S.: Adaptive blind signal and image processing, vol. 1. Wiley, Chichester (2002)

    Book  Google Scholar 

  4. Koike, Y., Kawato, M.: Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model. Biol. Cybernet 73, 291–300 (1995)

    Article  MATH  Google Scholar 

  5. Choi, K., Sato, M., Koike, Y.: Consideration of the Embodiment of a New, Human-centered Interface. IEICE Trans. Inf. Syst. E89-D(6) (June 2006)

    Google Scholar 

  6. Blankertz, B., Kawanabe, M., Tomioka, R., Hohlefeld, F., Nikulin, V., Müller, K.R.: Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing. In: Advances in Neural Information Processing Systems, vol. 20, MIT Press, Cambridge (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, K., Cichocki, A. (2008). Control of a Wheelchair by Motor Imagery in Real Time. In: Fyfe, C., Kim, D., Lee, SY., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2008. IDEAL 2008. Lecture Notes in Computer Science, vol 5326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88906-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88906-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88905-2

  • Online ISBN: 978-3-540-88906-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics