Skip to main content

Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization

  • Chapter
Multiobjective Optimization

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5252))

Abstract

In this chapter, we present a new method for interactive multiobjective optimization, which is based on application of a logical preference model built using the Dominance-based Rough Set Approach (DRSA). The method is composed of two main stages that alternate in an interactive procedure. In the first stage, a sample of solutions from the Pareto optimal set (or from its approximation) is generated. In the second stage, the Decision Maker (DM) indicates relatively good solutions in the generated sample. From this information, a preference model expressed in terms of “if ..., then ...” decision rules is induced using DRSA. These rules define some new constraints which can be added to original constraints of the problem, cutting-off non-interesting solutions from the currently considered Pareto optimal set. A new sample of solutions is generated in the next iteration from the reduced Pareto optimal set. The interaction continues until the DM finds a satisfactory solution in the generated sample. This procedure permits a progressive exploration of the Pareto optimal set in zones which are interesting from the point of view of DM’s preferences. The “driving model” of this exploration is a set of user-friendly decision rules, such as “if the value of objective i 1 is not smaller than \(\alpha_{i_1}\) and the value of objective i 2 is not smaller than \(\alpha_{i_2}\), then the solution is good”. The sampling of the reduced Pareto optimal set becomes finer with the advancement of the procedure and, moreover, a return to previously abandoned zones is possible. Another feature of the method is the possibility of learning about relationships between values of objective functions in the currently considered zone of the Pareto optimal set. These relationships are expressed by DRSA association rules, such as “if objective j 1 is not greater than \(\alpha_{j_1}\) and objective j 2 is not greater than \(\alpha_{j_2}\), then objective j 3 is not smaller than \(\beta_{j_3}\) and objective j 4 is not smaller than \(\beta_{j_4}\)”.

Reviewed by: José Rui Figueira, Technical University of Lisbon, Portugal; Hisao Ishibuchi, Osaka Prefecture University, Japan; Kaisa Miettinen, University of Jyväskylä, Finland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brans, J.P., Mareschal, B.: PROMETHEE methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 163–195. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Chankong, V., Haimes, Y.Y.: The interactive surrogate worth trade-off (iswt) method for multiobjective decision-making. In: Zionts, S. (ed.) Multiple Criteria Problem Solving, pp. 42–67. Springer, Berlin (1978)

    Chapter  Google Scholar 

  • Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Methodology. Elsiever Science Publishing Co., New York (1983)

    MATH  Google Scholar 

  • Dyer, J.S.: MAUT-multiattribute utility theory. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 265–295. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Figueira, J., Mousseau, V., Roy, B.: ELECTRE methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 265–295. Springer, Berlin (2005a)

    Chapter  Google Scholar 

  • Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2005b)

    MATH  Google Scholar 

  • Fishburn, P.C.: Methods of estimating additive utilities. Management Science 13(7), 435–453 (1967)

    Article  Google Scholar 

  • Geoffrion, A., Dyer, J., Feinberg, A.: An interactive approach for multi-criterion optimization, with an application to the operation of an academic department. Management Science 19(4), 357–368 (1972)

    Article  MATH  Google Scholar 

  • Giove, S., Greco, S., Matarazzo, B., Słowiński, R.: Variable consistency monotonic decision trees. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 247–254. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R.: Rough approximation of a preference relation by dominance relations. European J. Operational Research 117, 63–83 (1999a)

    Article  MATH  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Stewart, T., Hanne, T. (eds.) Advances in Multiple Criteria Decision Making, pp. 14.1–14.59, Kluwer, Boston (1999b)

    Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: An algorithm for induction of decision rules consistent with the dominance principle. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 304–313. Springer, Heidelberg (2001a)

    Chapter  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European J. of Operational Research 129, 1–47 (2001b)

    Article  MathSciNet  MATH  Google Scholar 

  • Greco, S., Słowiński, R., Stefanowski, J.: Mining association rules in preference-ordered data. In: Hacid, M.-S., Raś, Z.W., Zighed, A.D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 442–450. Springer, Heidelberg (2002a)

    Chapter  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R.: Preference representation by means of conjoint measurement & decision rule model. In: Bouyssou, D., et al. (eds.) Aiding Decisions with Multiple Criteria–Essays in Honor of Bernard Roy, pp. 263–313. Kluwer Academic Publishers, Dordrecht (2002b)

    Chapter  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R.: Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. European J. of Operational Research 158, 271–292 (2004a)

    Article  MathSciNet  MATH  Google Scholar 

  • Greco, S., Pawlak, Z., Słowiński, R.: Can Bayesian confirmation measures be useful for rough set decision rules? Engineering Applications of Artificial Intelligence 17, 345–361 (2004b)

    Article  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach to knowledge discovery – (I) general perspective, (II) extensions and applications. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, pp. 513–612. Springer, Berlin (2004c)

    Chapter  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R.: Decision rule approach. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 507–563. Springer, Berlin (2005a)

    Chapter  Google Scholar 

  • Greco, S., Matarazzo, B., Słowiński, R.: Generalizing rough set theory through dominance-based rough set approach. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 1–11. Springer, Heidelberg (2005b)

    Chapter  Google Scholar 

  • Greco, S., Mousseau, V., Słowiński, R.: Ordinal regression revisted: Multiple criteria ranking with a set of additive value functions. European Journal of Operational Research 191, 415–435 (2008)

    Article  MATH  Google Scholar 

  • Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for multicriteria decision making: the UTA method. European J. of Operational Research 10, 151–164 (1982)

    Article  MATH  Google Scholar 

  • Jacquet-Lagrèze, E., Meziani, R., Słowiński, R.: MOLP with an interactive assessment of a piecewise linear utility function. European J. of Operational Research 31, 350–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Jaszkiewicz, A., Ferhat, A.B.: Solving multiple criteria choice problems by interactive trichotomy segementation. European Journal of Operational Research 113, 271–280 (1999)

    Article  MATH  Google Scholar 

  • Jaszkiewicz, A., Słowiński, R.: The ”Light Beam Search” approach - an overview of methodology and applications. European Journal of Operational Research 113, 300–314 (1999)

    Article  MATH  Google Scholar 

  • Keeney, R.L., Raiffa, H.: Decision with Multiple Objectives: Preference and Value Tradeoffs. John Wiley and Sons, New York (1976)

    MATH  Google Scholar 

  • March, J.G.: Bounded rationality, ambiguity and the engineering of choice. Bell Journal of Economics 9, 587–608 (1978)

    Article  Google Scholar 

  • Martel, J.M., Matarazzo, B.: Other outranking approaches. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 197–262. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Michalski, R.S., Bratko, I., Kubat, M. (eds.): Machine learning and datamining – Methods and applications. Wiley, New York (1998)

    Google Scholar 

  • Miller, G.A.: The magical number seven, plus or minus two: some limits in our capacity for processing information. The Psychological Review 63, 81–97 (1956)

    Article  Google Scholar 

  • Mousseau, V., Słowiński, R.: Inferring an ELECTRE TRI model from assignment examples. Journal of Global Optimization 12, 157–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Pawlak, Z.: Rough Sets. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  • Pawlak, Z., Słowiński, R.: Rough set approach to multi-attribute decision analysis. European J. of Operational Research 72, 443–459 (1994)

    Article  MATH  Google Scholar 

  • Roberts, F.: Measurement Theory, with Applications to Decision Making, Utility and the Social Sciences. Addison-Wesley, Boston (1979)

    Google Scholar 

  • Roy, B., Bouyssou, D.: Aide Multicritère à la Décision: Méthodes et Cas. Economica, Paris (1993)

    MATH  Google Scholar 

  • Słowiński, R.: Rough set learning of preferential attitude in multi-criteria decision making. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 642–651. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  • Słowiński, R., Greco, S., Matarazzo, B.: Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle. Control and Cybernetics 31, 1005–1035 (2002a)

    MATH  Google Scholar 

  • Słowiński, R., Greco, S., Matarazzo, B.: Rough set analysis of preference-ordered data. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 44–59. Springer, Heidelberg (2002b)

    Chapter  Google Scholar 

  • Słowiński, R., Greco, S., Matarazzo, B.: Rough set based decision support. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 475–527. Springer, New York (2005)

    Google Scholar 

  • Stefanowski, J.: On rough set based approaches to induction of decision rules. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Data Mining and Knowledge Discovery, vol. 1, pp. 500–529. Physica, Heidelberg (1998)

    Google Scholar 

  • Steuer, R.E., Choo, E.-U.: An interactive weighted tchebycheff procedure for multiple objective programming. Mathematical Programming 26, 326–344 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making, Theory and Applications. LNEMS, vol. 177, pp. 468–486. Springer, Berlin (1980)

    Chapter  Google Scholar 

  • Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Mathematical Modelling 3, 391–405 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spektrum 8, 73–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Zionts, S., Wallenius, J.: An interactive programming method for solving the multiple criteria problem. Management Science 22, 652–663 (1976)

    Article  MATH  Google Scholar 

  • Zionts, S., Wallenius, J.: An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science 29, 519–523 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greco, S., Matarazzo, B., Słowiński, R. (2008). Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds) Multiobjective Optimization. Lecture Notes in Computer Science, vol 5252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88908-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88908-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88907-6

  • Online ISBN: 978-3-540-88908-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics