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Abstract. Significant achievements have been made in the design and imple-
mentation of languages and tools for graph transformation systems. However,
many other competing approaches have been developed for model-driven soft-
ware development. We present a case study in which we applied different mod-
eling approaches in the construction of a tool for software process management.
We compare these approaches with respect to the respective levels of abstraction
on which models are defined, the language concepts offered, and the resulting
modeling effort. The case study identifies the benefits and shortcomings of the
selected modeling approaches, and suggests areas of future improvement.

1 Introduction

Model-driven software development promises to increase the productivity of software
developers significantly with the help of high-level, executable models. In many appli-
cation areas, the data maintained by the system to be developed may be represented as
graphs in a natural way. Furthermore, graph modifications may be described declara-
tively by graph transformation rules. Thus, model-driven software development can be
supported by generating executable code from graph transformation rules.

To date, several languages and tools for developing graph transformation systems
are available and have been applied in diverse application domains (e.g., PROGRES
[1], Fujaba [2], MOFLON [3], AGG [4], GenGed [5], DiaGen [6], VIATRA [7], and
GReAT [8]). Significant advances have been achieved in language and tool develop-
ment. Moreover, graph transformations have been applied successfully in various do-
mains [9,10]. On the other hand, dispersal of the graph transformation approach outside
the graph transformation community seems to have taken place only to a limited extent.

This paper presents a case study for the application of graph transformations. The
subject of our study is a software process management system based on dynamic task
nets (Sect. 2). We have realized this application with the help of three systems (Sect. 3):
(1) GMF/EMF, i.e., a combination of the Graphical Modeling Framework for graphical
editors and the Eclipse Modeling Framework, which both are not based on graph trans-
formations; (2) PROGRES, a system for specifying programmed graph transformation
systems; and (3) Fujaba, an object-oriented system where graph transformation rules
have been incorporated into the UML. These solutions are evaluated and compared
against each other in Sect. 4.
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Speaking in terms of the well-known model-view-controller design pattern, we fo-
cus exclusively on the model, i.e., the application logic. Furthermore, we study model-
driven software development from the perspective of the user of the respective modeling
language. Thus, we are interested in the language concepts, the levels of abstraction at
which models are defined, expressiveness of the modeling languages, model size, read-
ability, modeling effort, and efficiency of the code generated from the model.

An important issue addressed by our case study is the significance and role of graph
transformations: We consider GMF/EMF to be a framework of industrial relevance
which does not make use of graph transformations. Thus, it is fair to ask for the added
value of graph transformations. We hope that this case study contributes to answering
this question and thus to the mission of this workshop (applications of graph transfor-
mations with industrial relevance).

2 Dynamic Task Nets

Dynamic task nets represent software processes which evolve during execution. They
were described earlier, e.g. in [11]. For this case study, we considered a “light” ver-
sion of dynamic task nets which comprises only some of the core concepts. The case
study goes beyond previous work only inasmuch as inconsistencies with respect to the
underlying process meta model can be tolerated.

Figure 1, a screenshot taken from one of the prototypes which we constructed for
this case study, shows an example of a task net. Each task is represented by a box
containing its name (A . . . G) and its state of execution. States and transitions are defined

Fig. 1. Dynamic task net
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Fig. 2. State diagram

by the state diagram in Fig. 2. In Fig. 1, states are shown as icons (paper and pencil:
InDefinition, sand-glass: Waiting, gearwheels: Active, tick: Done). Tasks
are arranged in a hierarchy via composition relationships (dotted lines). Control flows
(solid lines), which resemble precedence relationships in project plans, constrain the
order of task execution. Finally, feedback flows (dashed lines) represent feedback to
earlier steps in the process. Further concepts of dynamic task nets, e.g., data flows and
task versions, are not covered here to keep the case study small.

The process meta model defines constraints for dynamic task nets which may be
classified in two orthogonal dimensions: (1) Static constraints are defined as invariants
which have to hold for each task net. Dynamic constraints are pre- and postconditions
of operations which cannot be expressed as invariants. (2) Structural constraints define
the rules which have to be followed when constructing task nets via edit operations. In
contrast, behavioral constraints are concerned with state restrictions which have to be
obeyed for the execution of tasks.

The following static structural constraints have to be satisfied1: (1) Each task must
have a globally unique name. (2) Composition relationships must be free of cycles
(likewise for control flows and feedback flows). (3) Each task may be contained in at
most one parent task. (4) Each control flow must be either local, i.e., source and target
must have the same parent, or balanced, i.e., the parents of source and target are different
and are connected by a control flow (likewise for feedback flows). (5) Each feedback
flow must be oriented in the opposite direction of a control flow, i.e., there must be a
path of control flows from the target of the feedback flow back to the source.

All static behavioral constraints can be expressed via compatibilities of states of ad-
jacent tasks. For each type of task relationship, a corresponding compatibility matrix
is defined (see [12], pp. 91). Here, we discuss only compatibilities of states of tasks
connected via a control flow. There are three types of control flows: If a control flow
is sequential, the successor may start only after termination of the predecessor. A stan-
dard control flow is used to express that the successor can be terminated only after
its predecessor. In the case of a simultaneous control flow, the successor may be acti-
vated only after its predecessor, and it may also be terminated only after its predecessor.
These rules can be translated into legal and illegal state combinations. For example, the
combination Active→ Done is illegal for all types of control flows.

The state diagram of Fig. 2 defines dynamic behavioral constraints for state transi-
tions: Each transition may be performed only in its source state and moves the task to
which it is applied into its target state. In addition, there are some state constraints on

1 There are no dynamic structural constraints.
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edit operations. In general, dynamic task nets allow for seamless interleaving of editing
and execution. However, tasks and their contexts (e.g., incoming control flows) must
not be modified after termination, i.e., the history must not be changed.

In the screenshot of Fig. 1, inconsistencies are marked in red color2. The tasks on the
left and on the right are marked as inconsistent because both have the same name (G).
The composition relationships ending at B (bottom middle) violate the task hierarchy.
The control flows connecting B, F, and G form a cycle (bottom right). The composi-
tion relationship from E (top) to D is behaviorally inconsistent: a child task must not
be activated before its parent. Similarly, the control flow from G to C (bottom left) is
inconsistent because the states of source and target are not compatible (C cannot termi-
nate before G). Finally, the feedback flow from B to C is structurally consistent (e.g., it
is balanced by the feedback flow from A to D), but behaviorally inconsistent: B cannot
raise feedback even before it has started execution3.

The following requirements have to be met by the process management tool to be
constructed: The user is supplied with a graphical view of the task net which signals all
inconsistencies. Edit operations are offered to build up and modify task nets by creat-
ing/deleting tasks and relationships and by changing task names. Execution operations
are used to perform state transitions (Start, Suspend, etc.). With respect to con-
straint checking, the tool has to provide two working modes: In enforcing mode, the
task net must not contain any inconsistency, and each command violating a static or
dynamic constraint is rejected. In permissive mode, constraint violations are tolerated
and marked (as shown in the screenshot above). The markings are updated after each
command to provide immediate feedback to the user. Dynamic constraints are simply
ignored in this mode.

In this case study, the commands for editing and execution perform rather simple
transformations (insertion/deletion of tasks and relationships, changes of attribute val-
ues). The main challenge lies in the validation of constraints, which can be realized in
different ways: In the case of global validation, constraints are checked on the whole
graph (representing a task net). Since the user has to be provided with feedback on each
command, global validation causes performance problems in the case of large graphs.
In contrast, incremental validation checks only those parts of the graph which are af-
fected by a change. The requirements of our case study call for incremental rather than
global validation.

3 Models

In this section, we present alternative models used for the development of a process
management tool based on dynamic task nets. Please recall that we are concerned with
the model only and ignore the view and controller part of the application. The models
are evaluated and compared against each other in Sect. 4.

2 In gray-scale reproduction, dark boxes indicate inconsistent tasks, but inconsistent relation-
ships are hard to identify.

3 Feedback flows are inserted only on demand.
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3.1 GMF/EMF

The Eclipse Graphical Modeling Framework (GMF [13]) supports the generation of a
graphical editor for a custom model. The model is defined with the help of the Eclipse
Modeling Framework (EMF). This way each model is based on the Ecore (EMOF) meta
model (a UML dialect and a variant of the OMG proposal for Essential Meta Object
Facility[14]). Various ways exist to define an Ecore model: UML class diagrams, Java
interfaces or directly via Ecore-XML (analogous to XMI). Please note that this paper
deals only with the semantic model and not with the notational model, which is also
required for building a graphical tool with GMF.

Figure 3 shows a UML diagram of the dynamic task net model. Each instance
of DTNDynamicTaskNet consist both of DTNConnection and DTNTask ob-
jects. Each DTNConnection has one source and one target DTNTask object.
DTNConnection is specialized to distinguish between the three types of connections
in our dynamic task net case study: DTNSubtaskFlow, DTNFeedbackFlow and
DTNControlFlow.

To deal with constraints, GMF supports audit rules which are based on OCL 2.0
[15]. Each static constraint of a task net (see Sect. 2) is defined by a corresponding
audit rule. Figure 4 shows the OCL statement of the audit rule for detecting control flow
cycles. First we select the targetTask of the connection for which the constraint is
evaluated (self). Then we select the set that is reached via transitive closure of all
tasks that can be reached via a connection (outgoingEdges) of type control flow
(oclIsTypeOf(DTNControlFlow)). This set must not contain the source task of
the connection (excludes(self.sourceTask)) – or the connection is part of a
cycle. The closure operator, which is not included in the OCL standard and has been
added in EMF as an extension, is indispensable for declaratively specifying some of the
constraints defined for dynamic task nets. Note that the rule is declared as invariant, i.e.
it is true iff the task net is cycle free.

In addition, GMF partially supports the specification of dynamic constraints. OCL
constraints may be defined as preconditions of commands for creating relationships;
thus, they are called link constraints in GMF. For example, there is a link constraint
which forbids the insertion of an incoming control flow of a terminated task. For other

Fig. 3. EMF class diagram of the DTN-Model
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self.targetTask
->closure(t|t.outgoingEdges
->select(e|e.oclIsTypeOf(DTNControlFlow)).targetTask)
->excludes(self.sourceTask)

Fig. 4. OCL expression for checking control flow cycles

types of commands, we wrote Java code for checking dynamic constraints (e.g., in order
to preserve the history of task executions, a terminated task must not be deleted).

GMF supports the following mechanisms for validation: Audit rules for static con-
straints may be declared for batch validation, which has to be invoked explicitly by the
user. All of these rules are checked on the complete model instance, and model elements
are marked with constraint violations. In between two batch validations, rules declared
for batch validation are not checked, and the markings are not updated.

Audit rules for static constraints may also be declared for live validation. These rules
are checked immediately after each command execution; when some constraint viola-
tion is detected, the command is rolled back. Please note that live validation operates
incrementally. Finally, link constraints are checked as preconditions before a command
is executed. When a link constraint is violated, the respective command cannot be exe-
cuted.

It is important to note that the validation mechanisms offered by GMF do not ade-
quately support the validation modes required for our case study (see end of Sect. 2).
We used batch validation for partially realizing the permissive mode. However, batch
validation does not provide immediate feedback, and if it did, it would not provide fast
responses when working on large model instances (due to global rather than incremen-
tal validation). Furthermore, live validation and link constraints cannot be used because
constraint violations are not tolerated.

Likewise, we realized the enforcing mode only partially with live validation and link
constraints. The audit rules for live validation were created by copying and modifying
the rules for batch validation (the modifications are necessary to ensure that the rules are
evaluated only when the enforcing mode is active). Unfortunately, live validation works
incrementally, but not correctly: We would have had to customize the live validation by
hand (by writing Java code) to make sure that all constraints on model elements affected
by a change are actually re-evaluated. Furthermore, we defined link constraints in OCL
for those commands which insert relationships, but we had to write Java code for those
dynamic constraints which apply to other kinds of commands.

To conclude this subsection, let us briefly discuss how we realized the state machine
of Fig. 2. Unfortunately, EMF does not provide modeling support for state machines.
To improve maintainability (design for change), we applied the state pattern [16] and
implemented state transitions in Java.

3.2 PROGRES

PROGRES [1], a specification language for programmed graph rewriting systems, sup-
ports a wide variety of language features for defining classes of attributed graphs,
consisting of typed and attributed nodes which are connected by directed, binary re-
lationships (edges) without attributes. Language features include multiple inheritance
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node class + CONTROL_FLOW is a TASK_RELATIONSHIP
...
derived
BalancedControlFlow : boolean

= card ( self.( ( -ToSource->
& <=Contains=
& <-ToSource-
& instance of CONTROL_FLOW )

and ( -ToTarget->
& <=Contains=
& <-ToTarget-
& instance of CONTROL_FLOW ) ) ) >= 1;

...
end;

Fig. 5. Textual specification of node class CONTROL_FLOW

on node classes, a stratified type system (nodes are instances of node types which are
in turn instances of node classes), definition of derived attributes and relationships (the
latter of which are called paths), graph transformation rules with flexible graph pat-
terns, and control structures supporting non-determinism and transactional behavior.
Some specification elements such as derived attributes and relationships may be speci-
fied both textually and graphically.

In our case study, constraint checking plays a crucial role. In the specifications we
prepared for the case study, constraint checking is realized with the help of derived at-
tributes. The user of the PROGRES language may define constraints in a declarative
way with the help of equations. The underlying runtime system, including the data-
base management system GRAS [17], provides for incremental evaluation of derived
attributes. Thus, the user of the PROGRES language does not have to take care of the
maintenance of the values of derived attributes.

The textual definition of derived attributes is illustrated in Fig. 5, which shows an
excerpt of the declaration of the node class CONTROL_FLOW. The derived attribute
BalancedControlFlow is used to check whether a control flow is balanced, and
is defined by a textual expression in a similar way as an OCL constraint. Starting from
the current flow, a navigation is performed to the source, the parent, and to its adja-
cent control flows on the next layer upward the task hierarchy; likewise for the target.
The resulting sets of control flows are intersected. The control flow is balanced if the
cardinality of the intersection is greater than 0, i.e., the intersection set is not empty.

Alternatively, constraints may be defined graphically rather than textually. In par-
ticular, a rule for a derived attribute may refer to a graphical restriction, i.e., a unary
relation on nodes of a certain class. A node meets the restriction if it is part of a graph
pattern defined in the body of the restriction. Figure 6 shows a graphical restriction for
the balancing of control flows. We consider the graphical restriction easier to read than
the corresponding textual expression shown in Fig. 5. Since textual and graphical no-
tations are both offered by PROGRES, the user may select the notation which is more
appropriate for the problem at hand.

In the specifications of the case study, we separated graph transformations from con-
straint checking. An example is given in Fig. 7. Tasks and their relationships form an
overall process which is represented by a node of class PROCESS. All elements of
some process are connected to the process node by Has edges (declared outside the
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restriction + BalancedControlFlowRestriction : CONTROL_FLOW =
‘1 in

‘3 : TASK‘2 : TASK

ToSource ToTarget

‘1 : CONTROL_FLOW

Contains Contains

‘5 : TASK
Precedes

‘4 : TASK

end;

Fig. 6. Graphical specification of control flow balancing

node class + PROCESS is a NODE
intrinsic
InconsistenciesAllowed : boolean := true;

redef derived
Consistent = for all element := self.Has ::

element.Consistent
end ;

methods
...
transformation + EditCreateControlFlow

( sourceTask, targetTask : TASK ;
controlFlowType : type in CONTROL_FLOW ;
out taskRelationship : controlFlowType)

=
self.CheckPreconditionOfEditOperation ( targetTask )

& self.AuxCreateTaskRelationship
( sourceTask, targetTask, controlFlowType,

out taskRelationship )
& (self.InconsistenciesAllowed or self.Consistent)

end
...

end

Fig. 7. Creation of a control flow

class PROCESS). The process node carries an intrinsic attribute for controlling whether
inconsistencies are allowed, and a derived attribute which evaluates to true when all
elements are consistent. The derived attributes attached to the process elements refer to
other derived attributes such as e.g. BalancedControlFlow (Fig. 5).

All operations for creating or deleting process elements are attached as methods
to the node class PROCESS. For example, when a control flow is created, the graph
transformation rule which actually inserts the control flow is embraced by actions dedi-
cated to checking constraints. The transformation EditCreateControlFlow is an
atomic transaction, i.e., either all of its steps succeed, or it fails and leaves the host graph
unchanged. CheckPreConditionOfEditOperation checks a dynamic precon-
dition: The target task of the control flow would be affected by this edit operation. If
inconsistencies are not allowed and the target task has already terminated, the check
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fails, and the transaction is rolled back. Please note that this check cannot be post-
poned: It cannot be recognized after the fact that the in-context of a terminated task
was modified after termination. In the next step, the control flow is created by a graph
transformation rule which simply creates the control flow node and its adjacent edges
without performing any further constraint checking. Finally, after the control flow has
been inserted, it is checked whether inconsistencies are allowed. If this is not the case,
it has to be checked whether any inconsistencies have been introduced into the process.
Please note that access to the derived attribute triggers all necessary re-evaluations at
runtime. If the overall process is no longer consistent, the check fails, and the transac-
tion is rolled back.

The PROGRES specification meets all of the requirements imposed by the case
study. In particular, it realizes both the permissive and the enforcing mode with incre-
mental validation. From the specification, executable code is generated which is hooked
into the UPGRADE framework [18] to produce a graphical tool for software process
management. The screen shot of Fig. 1 was taken from this tool.

So far, we have not discussed how we realized the state machine of Fig. 2. Unfor-
tunately, PROGRES does not provide modeling support for state machines. We simply
added a state attribute to the TASK and wrote methods for the state transitions which
check their preconditions (legal source state) and invariants (compatibility with states
of neighbor tasks).

3.3 Fujaba

Fujaba [19] is an environment for developing executable models with the help of class,
story, and state diagrams. It is being developed jointly at multiple sites and has been
used in numerous research projects. Fujaba strongly supports graphical modeling, while
PROGRES offers a mix of graphical and textual modeling elements. Fujaba’s most dis-
tinctive feature are the so called story diagrams, a combination of activity and com-
munication diagrams, from which Fujaba is able to generate executable code. We used
the CASE tool Fujaba in our case study to design and implement the application logic
of our process management tool. Fujaba has been integrated into various user interface
tool kits such as GEF, GMF, and UPGRADE, but user interface issues go beyond the
scope of this paper.

While Fujaba does not support OCL constraints, constraints may be expressed graph-
ically by story patterns with embedded path expressions. With the help of story patterns,
constraints may be written in an intuitive way; in some cases, they are much easier to
understand than OCL constraints. An important difference to the OCL constraints as sup-
ported in GMF/EMF consists in the use of story patterns: In Fujaba, story patterns are
embedded in story diagrams and thus belong to the dynamic rather than the static model.

In the case of Fujaba, we fully realized both the permissive and the enforcing mode
of operation required for the process management tool. We prepared two versions of
the Fujaba model: The first one performs incremental validation, the second one resorts
to global validation. In contrast to PROGRES, Fujaba does not support incremental re-
evaluation of derived data. Thus, the user of Fujaba must explicitly program incremental
validation. The additional modeling effort can be determined by comparing the model
versions with incremental and global validation, respectively.
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]success[

getRepo().startTransaction("add ControlFlow"):= transaction

controlFlow

null

]failure[

1: rollback()transaction

]success[

1: commit()transaction

]failure[

null}checkModifiability(target){

}checkPreconditionBeforeCreatingConnection(DTNConstants.DTNControlFlow, source, target){

}this.isAllowInconsistencies() || this.isConsistent(){

«create» hasElem

hasElem

hasElem

«create»

toTarget

«create»

toSource

«create»

type:=type

DTNControlFlow:controlFlow

target

source

this

1: validate()2: checkForUnbalancedControlFlows(controlFlow, true)

3: revalidateFeedbackFlows(source, target)

DTNDynamicTaskNet::createControlFlow (type: String, source: DTNTask, target: DTNTask): DTNControlFlow

Fig. 8. Story diagram for creating a control flow

Figure 8 shows the story diagram for creating a control flow in the case of incremen-
tal validation. The story diagram is structured in a similar way as the corresponding
PROGRES transaction (see Fig. 7). First, it is checked whether insertion of the con-
trol flow would result in a duplicate relationship and whether the dynamic constraint
of this operation is violated (the in-context of a terminated task must not be modified).
Next, a transaction is started, making use of the Coobra repository services (in PRO-
GRES, the compiler inserts this step automatically due to the transactional semantics
of programmed transformations). The story pattern following the start of the transac-
tion inserts the control flow and triggers the required re-validations. Subsequently, it is
checked whether inconsistencies have been introduced in enforcing mode. In this case,
the transaction is rolled back; otherwise, it is committed.

In the case of incremental validation, it has to be decided for each change which
constraints on which graph elements have to be re-evaluated. The story pattern for
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]failure[

false:=balanced
false:=local

this

]success[

false:=balanced
true:=local

this

]failure[

toSource

toSource

toTargettoSource

DTNTask:commonParent

toTarget
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]success[
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toTarget
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DTNControlFlow:parentCF DTNTask:targetParent
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true:=balanced
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DTNTask:sourceParent

source

]success[

«destroy» hasCycles

DTNCycle:cycles
true==cycleFree
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]failure[ «destroy» hasCycles

net «destroy

cycle

]end[

hasCycles

DTNControlFlow:aControlFlowcycle
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oSource

DTNTask:source
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asCycles

«create»

DTNCycle:cycle

DTNDynamicTaskNe:net

true:=cycleFree
true:=local

false:=balanced

this

«create» hasCycles

cycle

rojector/model/task/DTNControlFlow].target)*
Flow].target)*.outgoing[instanceof_de/ubt/ai1/projector/model/task/DTN

false:=cycleFree

DTNControlFlow:invalidConnection

source

DTNControlFlow::validateStructure (): Void

Fig. 9. Story diagram for validating a control flow

creating a control flow triggers validation of all constraints for the new control flow
(1). In addition, it has to be checked whether any previously unbalanced control flows
are balanced by the new control flow (2). Likewise, feedback flows which did not have
a path of opposite control flows have to be re-validated (3). This control logic makes the
model for incremental validation both larger (model size) and more difficult to program
(modeling effort) than the model for global validation.

For the case of incremental validation, Fig. 9 shows the story diagram for validating
static structural constraints for a control flow. The story patterns at the bottom check
whether the control flow is local or balanced; they are the same as for global valida-
tion. However, the check for cyclic control flows is more complicated than for global
validation since it requires the maintenance of auxiliary data structures for efficient re-
validation: Control flows which are part of a cycle are attached to a cycle object. When
a control flow is inserted, the cycle check is invoked on the new control flow. A cycle
object is created tentatively, and control flows on a cycle are attached to the new cycle



356 T. Buchmann et al.

object. If no cycle has been found, the cycle object is removed again. Otherwise, it per-
sists in the graph, and the cycleFree attributes of all control flows on the cycle are
set to false. When a control flow is deleted, the same check is invoked on all control
flows of all cycles to which the deleted control flow belongs. If a control flow turns out
to be cycle free, it is removed from all cycles it was attached to.

The Fujaba model for global validation is structured similarly, but it is smaller and
simpler to program. After each change, a global validation is trigged for all constraints
on all graph elements — independently of the type of the change and the elements to
which the change has been applied. Here, the cycle check does not require an auxiliary
data structure: Control flows located on a cycle are marked by setting their cycleFree
attribute to false. However, this brute force method of validation runs into perfor-
mance problems when applied to large graphs.

To conclude this subsection, let us briefly discuss the use of Fujaba‘s state diagrams,
which are not available in GMF/EMF and PROGRES. In a previous version of the Fu-
jaba model for dynamic task nets [20], we mapped the state diagram of Fig. 2 onto a
Fujaba statechart. However, Fujaba supports behavioral rather than protocol state ma-
chines. In dynamic task nets, state machines are used to define the life cycle of tasks
from creation to termination. Thus, state machines describe only in which state some
operation may be invoked and which target state is reached after the operation has com-
pleted. In contrast, behavioral state machines as supported by Fujaba describe which
events an object may receive in which state, which actions are performed in response to
an event, and which operations are performed while the object resides in a certain state.
The underlying programming model takes care of concurrency (an inherent feature of
statecharts) and deals with sending/receiving of events, event queues, etc. This stands
in contrast to ordinary sequential programming based on method invocations. Since the
Fujaba state machines did not match our intents, we stopped using them and decided to
implement the state machine ourselves using the state pattern as described in [16] in a
similar way as in the GMF/EMF solution.

4 Evaluation

Below, the modeling approaches applied in the case study are evaluated with respect
to the language features offered, expressiveness of the modeling language, model size,
readability, modeling effort, and efficiency. In the latter category, we are interested only
in the support for incremental validation — which is crucial for interactive tools with
immediate constraint checking. Please note that the evaluation is performed with respect
to the case study only. Thus, the findings can be applied only to applications of the same
profile as the case study.

Table 1 attempts to collect information on the model sizes in terms of the number
of model elements classified into different categories. The PROGRES column refers to
the specification where derived attributes are defined textually rather than graphically.
Furthermore, the Fujaba numbers refer to the models realizing incremental and global
validation, respectively (i/g). When a category is not applicable, the table contains the
entry “–”. Constraints refer to OCL constraints in GMF/EMF, and to evaluation rules for
derived attributes in PROGRES. For GMF/EMF, we counted the Java methods which
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Table 1. Model size (number of model elements)

GMF/EMF PROGRES Fujaba (i/g)

Classes 15 12 18/16
Attributes 7 5 21/19
Associations 5 6 19/16
Inheritance rel. 10 11 17/15
Constraints 24 15 –/–
Methods 8 34 31/28
Control structures 13 35 36/30
Graph transformation rules – 5 90/66

were required for implementing the model. For Fujaba, this category refers to story
diagrams. In PROGRES, we counted both transactions and functions. In the last row, we
counted graph transformation rules in PROGRES and story diagrams in Fujaba (even if
they merely describe a graph test rather than a graph transformation). Elementary story
patterns (containing one object only) were not included in the numbers.

4.1 GMF/EMF

Language features. GMF/EMF supports the rapid generation of graphical editors from
class diagrams and OCL constraints.

Expressiveness. Class diagrams and extended OCL constraints are powerful means for
the static model. The dynamic model is not supported at all. In the case study, this
restriction was not a severe problem, but it did require to write some Java code.

Model size. The model consists of two small class diagrams, and OCL constraints cov-
ering a few pages. In addition, we had to write 8 Java methods covering about 2 pages
of source code. Thus, the size of the model is pretty small.

Readability. Class diagrams are widely accepted for the static model. OCL constraints
tend to be hard to read and write as soon as complex structural conditions need to be
expressed.

Modeling effort. The modeling effort is low as far as it concerns the static model being
defined by class diagrams and OCL constraints.

Incremental validation. Basic support for incremental validation is provided, but the
set of elements to be re-evaluated is not determined correctly in some cases.

4.2 PROGRES

Language features. PROGRES offers a wide variety of language concepts, but the
language does not support state machines. In the case study, we made extensive use of
derived attributes and incremental attribute evaluation for checking constraints. Graph
transformation rules do not play a dominant role in the case study. Transactions are
primarily used for wrapping graph transformations with consistency checks.
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Expressiveness. As far as the static model is concerned, PROGRES and GMF/EMF are
comparable with respect to expressiveness. PROGRES provides comprehensive and
high-level support for specifying graph transformations, but the capabilities of PRO-
GRES have not been exploited fully in the case study (only five graph transformation
rules were required in the case study).

Model size. The model is larger than the GMF/EMF model, but moderate in size. The
variant of the specification where we used textual notation for constraints comprises 13
pages (printed in 10 pt font). The increase of model size compared to GMF/EMF is pri-
marily due to the fact that all operations (create/delete tasks and relationships, perform
state transitions, etc.) have to be specified explicitly (while basic operations are gener-
ated automatically in GMF/EMF). This explains the number of methods (transactions
and functions) plus graph transformation rules (about 40 altogether).

Readability. PROGRES specifications are rather difficult to read (and write) for two
reasons: First, PROGRES does not use standard notation the user may be familiar with
anyway. Second, the language is complex and offers lots of language constructs. Apart
from that, the readability depends on the style in which the specification is written.
In particular, we consider graphical notation for constraints easier to read than textual
notation in most cases.

Modeling effort. For an experienced user of PROGRES, the modeling effort is mod-
erate. It is possible to write specifications at a high level of abstraction without dealing
with operational issues such as pattern matching, consistency maintenance, and rollback
of failing transactions.

Incremental validation. PROGRES supports incremental evaluation of derived at-
tributes and relationships.

4.3 Fujaba

Language features. In Fujaba, models are defined in terms of class diagrams, state
diagrams, and story diagrams. Fujaba strongly supports graphical modeling and uses
textual notation only to a limited extent (e.g., in path expressions).

Expressiveness. By and large, class diagrams, story diagrams, and state diagrams are
powerful means for graphical modeling. However, the state diagrams provided by Fu-
jaba were not adequate for our case study. Furthermore, constraint checking has to
be performed in a procedural way. The Fujaba models are less declarative than their
counterparts.

Model size. The Fujaba model is much larger than the PROGRES model. As in the case
of PROGRES, all operations have to be modeled explicitly, while basic operations are
generated in GMF/EMF. Constraint checking requires a lot of story patterns, even in
the case of global validation.

Readability. Fujaba uses intuitive graphical notation. Therefore, Fujaba models are
quite easy to read — as long as they remain small enough. In particular, story diagrams
should be decomposed into methods of manageable size and complexity. Otherwise,
the reader may easily lose orientation.
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Modeling effort. Among the approaches investigated in the case study, Fujaba required
the highest effort of modeling. This is due to the size of the model and the handling of
algorithmic aspects (which in particular applies to the model for incremental validation).

Incremental validation. Since Fujaba does not support incremental evaluation of de-
rived data, the respective algorithms have to be designed by the Fujaba user for each
application anew.

5 Conclusion

In our case study, we have compared GMF/EMF against Fujaba and PROGRES, which
are both based on graph transformations, with respect to language features, expressive-
ness, model size, readability, modeling effort, and efficiency. Since the requirements im-
posed by our case study match fairly well the support offered by GMF/EMF, a process
management tool was developed with the help of GMF/EMF rapidly with small model-
ing effort. PROGRES is able to compete with GMF/EMF and adds incremental attribute
evaluation as a distinctive feature. Finally, the Fujaba model is larger and more proce-
dural than its competitors.

The modeling support by GMF/EMF is confined to graphical editors with basic com-
mands. Further extensions of the case study— e.g., process patterns or data flows—
would go beyond the modeling support of GMF/EMF. Please note that building a
full-fledged process management system considerably goes beyond building a simple
graphical editor. A modeling language like Fujaba provides much more comprehensive
modeling support in a single language, but requires further improvements, e.g. with re-
spect to constraint checking and state diagrams. We hope that this case study provides
some useful hints and suggestions for further improvements. Graph transformation rules
do not play a dominant role in this case study, but they constitute an important building
block of a language for model-driven development.
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