Skip to main content

From Simulated to Real Scenarios: A Framework for Multi-UAVs

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2008)

Abstract

In this paper a framework for simulation of Unmanned Aerial Vehicles (UAVs), oriented to rotary wings aerial vehicles, is presented. It allows UAV simulations for stand-alone agents or multi-agents exchanging data in cooperative scenarios. The framework, based on modularity and stratification in different specialized layers, allows an easy switching from simulated to real environments, thus reducing testing and debugging times. CAD modelling supports the framework mainly with respect to extraction of geometrical parameters and virtualization. Useful applications of the framework include pilot training, testing and validation of UAVs control strategies, especially in an educational context, and simulation of complex missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanders, C.P., DeBitetto, P.A., Feron, E., Vuong, H.F., Leveson, N.: Hierarchical control of small autonomous helicopters. In: Proceedings of the 37th IEEE Conference on Decision and Control (December 1998)

    Google Scholar 

  2. Frontoni, E., Mancini, A., Caponetti, F., Zingaretti, P.: A framework for simulations and tests of mobile robotics tasks. In: Proceedings of 14th Mediterranean Conference on Control and Automation, MED 2006 (2006)

    Google Scholar 

  3. Collett, T.H.J., MacDonald, B.A., Gerkey, B.P.: Player 2.0: Toward a practical robot programming framework. In: Australasian Conf. on Robotics and Automation, ACRA 2005 (2005)

    Google Scholar 

  4. Carmen robot navigation tool kit (2008), http://carmen.sourceforge.net/

  5. Microsoft robotics studio (2008), http://msdn.microsoft.com/robotics/

  6. Usarsim (2008), http://sourceforge.net/projects/usarsim/

  7. Microsoft fs (2008), http://www.microsoft.com/games/flightsimulatorX/

  8. Fms project (2008), http://www.flying-model-simulator.com/

  9. Jsbsim home page (2008), http://jsbsim.sourceforge.net/

  10. Rotorlib home page (2008), http://www.rtdynamics.com/v1.0/

  11. Taamallah, S., de Reus, A.J.C., Boer, J.F.: Development of a rotorcraft mini-uav system demonstrator. In: The 24th Digital Avionics Systems Conference, DASC 2005 (2005)

    Google Scholar 

  12. Frontoni, E., Mancini, A., Caponetti, F., Zingaretti, P., Longhi, S.: Prototype uav helicopter working in cooperative environments. In: Proceedings of IEEE/ASME international conference on Advanced intelligent mechatronics, AIM 2007 (2007)

    Google Scholar 

  13. Aerosim toolbox (2008), http://www.u-dynamics.com/aerosim/

  14. Jetto, L., Longhi, S., Venturini, G.: Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots. IEEE Trans. on Robotics and Automation 15(2), 219–229 (1999)

    Article  Google Scholar 

  15. Koo, T.J., Sastry, S.: Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th IEEE Conference on Decision and Control (1998)

    Google Scholar 

  16. Flightgear project (2008), http://www.flightgear.org

  17. Wang, X., Yadav, V., Balakrishnan, S.N.: Cooperative uav formation flying with obstacle/collision avoidance. IEEE Transactions on Control Systems Technology 15, 672–679 (2007)

    Article  Google Scholar 

  18. Lechevin, N., Rabbath, C.A., Sicard, P.: Trajectory tracking of leader-follower formations characterized by constant line-of-sight angles. Automatica 42(12), 2131–2141 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Merino, L., Caballero, F., Martinez de Dios, J.R., Ollero, A.: Cooperative fire detection using unmanned aerial vehicles. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2005 (2005)

    Google Scholar 

  20. Beard, R.W., et al.: Decentralized cooperative aerial surveillance using fixed-wing miniature uav. Proceedings of the IEEE 94(7), 1306–1324 (2006)

    Article  Google Scholar 

  21. Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous helicopter. Int. Journal of Robust and Nonlinear Control 14(12), 1035–1059 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cesetti, A., Mancini, A., Frontoni, E., Zingaretti, P., Longhi, S. (2008). From Simulated to Real Scenarios: A Framework for Multi-UAVs. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2008. Lecture Notes in Computer Science(), vol 5325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89076-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89076-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89075-1

  • Online ISBN: 978-3-540-89076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics