Skip to main content

The Limits of Turning Control in Flying Insects

  • Chapter
  • First Online:
Flying Insects and Robots

Abstract

This chapter provides insights into the turning flight of insects, considering this specific behavior from experimental and numerical perspectives. The presented analyses emphasize the need for a comparative approach to flight control that links an insect’s maneuverability with the physical properties of its body, the properties and response delays of the sensory organs, and the precision with which the muscular system controls the movements of the wings.

In particular, the chapter focuses on the trade-off between lift production and the requirement to produce lateral forces during turning flight. Such information will be useful not only for a better understanding of the evolution and mechanics of insect flight but also for engineers who aim to improve the performance of the future generation of biomimetic micro-air vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, D.E. : Wind tunnel studies of turns by flying dragonflies. The Journal of Experimental Biology 122, 81–98 (1986)

    Google Scholar 

  2. Ennos, A.R.: The kinematics and aerodynamics of the free flight of some Diptera. The Journal of Experimental Biology 142, 49–85 (1989)

    Google Scholar 

  3. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495–498 (2003)

    Article  Google Scholar 

  4. Marden, J.H., Wolf, M.R., Weber, K.E.: Aerial performance of Drosophila melanogaster from populations selected for upwind flight ability. The Journal of Experimental Biology 200, 2747–2755 (1997)

    Google Scholar 

  5. Mronz, M., Lehmann, F.-O.: The free flight response of Drosophila to motion of the visual environment. The Journal of Experimental Biology 211, 2026–2045 (2008)

    Article  Google Scholar 

  6. Rüppell, G.: Kinematic analysis of symmetrical flight manoeuvres of odonata. The Journal of Experimental Biology 144, 13–42 (1989)

    Google Scholar 

  7. Wagner, H.: Flight performance and visual control of flight of the free-flying housefly (Musca domesticaL) II Pursuit of targets. Philosophical Transactions of the Royal Society of London. Series B 312, 553–579 (1986)

    Article  Google Scholar 

  8. Wang, H., Zeng, L., Liu, H., Chunyong, Y.: Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. The Journal of Experimental Biology 206, 745–757 (2003)

    Article  Google Scholar 

  9. Zbikowski, R.: Red admiral agility. Nature 420, 615–618 (2002)

    Article  Google Scholar 

  10. Nalbach, G.: The halteres of the blowfly Calliphora I kinematics and dynamics. Journal Comparative Physiology A 173, 293–300 (1993)

    Article  Google Scholar 

  11. Nalbach, G.: Extremely non-orthogonal axes in a sense organ for rotation: Behavioral analysis of the dipteran haltere system. Neuroscience 61, 149–163 (1994)

    Article  Google Scholar 

  12. Pringle, J.W.S.: The gyroscopic mechanism of the halteres of Diptera. Philosophical Transactions of the Royal Society of London. Series B 233, 347–384 (1948)

    Article  Google Scholar 

  13. Balint, C.N., Dickinson, M.H.: Neuromuscular control of aerodynamic forces and moments in the blowfly, Calliphora vivina. The Journal of Experimental Biology 207, 3813–3838 (2004)

    Article  Google Scholar 

  14. Dickinson, M.H., Lehmann, F.-O., Götz, K.G.: The active control of wing rotation by Drosophila. The Journal of Experimental Biology 182, 173–189 (1993)

    Google Scholar 

  15. Dickinson, M.H., Lehmann, F.-O., Sane, S.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)

    Article  Google Scholar 

  16. Götz, K.G., Hengstenberg, B., Biesinger, R.: Optomotor control of wing beat and body posture in Drosophila. Biol Cybernetics 35, 101–112 (1979)

    Article  Google Scholar 

  17. Heide, G.: Flugsteuerung durch nicht-fibrilläre Flugmuskeln bei der Schmeißfliege Calliphora. Z Vergl Physiologie 59, 456–460 (1968)

    Article  Google Scholar 

  18. Lehmann, F.-O., Dickinson, M.H.: The control of wing kinematics and flight forces in fruit flies (Drosophila spp). The Journal of Experimental Biology 201, 385–401 (1998)

    Google Scholar 

  19. Casey, T.M., Ellington, C.P.: Energetics of insect flight. In: W. Wieser, E. Gnaiger (eds.) In Energy Transformations in Cells and Organisms, pp. 200–210. Stuttgart, Thieme (1989)

    Google Scholar 

  20. Harrison, J.F., Roberts, S.P.: Flight respiration and energetics. Annual Review of Physiology 62, 179–205 (2000)

    Article  Google Scholar 

  21. Lehmann, F.-O.: The constraints of body size on aerodynamics and energetics in flying fruit flies: an integrative view. Zoology 105, 287–295 (2002)

    Article  Google Scholar 

  22. Lehmann, F.-O., Dickinson, M.H.: The changes in power requirements and muscle efficiency during elevated force production in the fruit fly, Drosophila melanogaster. The Journal of Experimental Biology 200, 1133–1143 (1997)

    Google Scholar 

  23. Borst, A., Egelhaaf, M.: Principles of visual motion detection. Trends in Neurosciences 12, 297–306 (1989)

    Article  Google Scholar 

  24. Dill, M., Wolf, R., Heisenberg, M.: Visual pattern recognition in Drosophila involves retinotopic matching. Nature 365, 751–753 (1993)

    Article  Google Scholar 

  25. Egelhaaf, M., Borst, A.: Motion computation and visual orientation in flies. Comparative Biochemistry and Physiology 104A, 659–673 (1993)

    Google Scholar 

  26. Franceschini, N., Riehle, A., Nestour, A.: Directionally selective motion detection by insect neurons. In: Stavenga, Hardie (eds.) In Facets of vision, pp. 361–390. Berlin Heidelberg, Springer (1989)

    Google Scholar 

  27. Kirschfeld, K.: Automatic gain control in movement detection of the fly. Naturwissenschaften 76, 378–380 (1989)

    Article  Google Scholar 

  28. Krapp, H.G., Hengstenberg, B., Hengstenberg, R.: Dentritic structure and receptive-field organization of optic flow processing interneurons in the fly. American Physiological Society. Journal of Neurophysiology 79 1902–1917 (1998)

    Google Scholar 

  29. O’Carroll, D.: Feature-detecting neurons in dragonflies. Nature 362 541–543 (1993)

    Article  Google Scholar 

  30. Reichardt, W.: Evaluation of optical motion information by movement detectors. Journal of Comparative Physiology A 161, 533–547 (1987)

    Article  Google Scholar 

  31. Tammero, L.F., Dickinson, M.H.: Spatial organization of visuomotor reflexes in Drosophila. The Journal of Experimental Biology 207, 113–122 (2004)

    Article  Google Scholar 

  32. Blondeau, J., Heisenberg, M.: The three dimensional optomotor torque system of Drosophila melanogaster. Journal of Comparative Physiology A 145, 321–329 (1982)

    Article  Google Scholar 

  33. Borst, A., Bahde, S.: Comparison between the movement detection systems underlying the optomotor and the landing response in the housefly. Biological Cybernetics 56, 217–224 (1987)

    Article  Google Scholar 

  34. Duistermars, B.J., Chow, D.M., Condro, M., Frye, M.A.: The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila. The Journal of Experimental Biology 210, 3218–3227 (2007)

    Article  Google Scholar 

  35. Egelhaaf, M.: Visual afferences to flight steering muscles controlling optomotor responses of the fly. Journal of Comparative Physiology A 165, 719–730 (1989)

    Article  Google Scholar 

  36. Götz, K.G., Wandel, U.: Optomotor control of the force of flight in Drosophila and Musca II Covariance of lift and thrust in still air. Biological Cybernetics 51, 135–139 (1984)

    Article  Google Scholar 

  37. Heide, G., Götz, K.G.: Optomotor control of course and altitude in Drosophila is achieved by at least three pairs of flight steering muscles. The Journal of Experimental Biology 199, 1711–1726 (1996)

    Google Scholar 

  38. Heisenberg, M., Wolf, R.: Reafferent control of optomotor yaw torque in Drosophila melanogaster. Journal of Comparative Physiology A 163, 373–388 (1988)

    Article  Google Scholar 

  39. Kaiser, W., Liske, E.: Die optomotorischen Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. Journal of Comparative Physiology 80, 391–408 (1974)

    Article  Google Scholar 

  40. Hesselberg, T., Lehmann, F.-O.: Turning behaviour depends on frictional damping in the fruit fly Drosophila. The Journal of Experimental Biology 210, 4319–4334 (2007)

    Article  Google Scholar 

  41. Schilstra, C., van Hateren, J.H.: Blowfly flight and optic flow I. Thorax kinematics and flight dynamics. The Journal of Experimental Biology 202, 1481–1490 (1999)

    Google Scholar 

  42. Egelhaaf, M., Borst, A.: Is there a separate control system mediating a “centering response” in honeybees. Naturwissenschaften 79, 221–223 (1992)

    Article  Google Scholar 

  43. Srinivasan, M.V., Lehrer, M., Kirchner, W.H., Zhang, S.W.: Range perception through apparent image speed in freely flying honey bees. Visual Neuroscience 6, 519–535 (1991)

    Article  Google Scholar 

  44. Ennos, A.R.: The kinematics and aerodynamics of the free flight of some Diptera. The Journal of Experimental Biology 142, 49–85 (1989)

    Google Scholar 

  45. Hedrick, T.L., Usherwood, J.R., Biewener, A.A.: Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus) II Inertial and aerodynamic reorientation. The Journal of Experimental Biology 210, 1912–1924 (2007)

    Article  Google Scholar 

  46. Ellington, C.P.: The aerodynamics of insect flight VI Lift and power requirements. Philosophical Transactions of the Royal Society of London. Series B 305, 145–181 (1984)

    Article  Google Scholar 

  47. Ramamurti, R., Sandberg, W.C.: A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. The Journal of Experimental Biology 210, 881–896 (2007)

    Article  Google Scholar 

  48. Heisenberg, M., Wolf, R.: Vision in Drosophila. Springer-Verlag, Berlin (1984)

    Google Scholar 

  49. Ramamurti, R., Sandberg, W.C.: Computational study of 3-D flapping foil flows 39th Aerospace Sciences Meeting and Exhibit, 605 (2001)

    Google Scholar 

  50. David, C.T.: The relationship between body angle and flight speed in free flying Drosophila. Physiological Entomology 3, 191–195 (1978)

    Article  Google Scholar 

  51. Marden, J.H.: Maximum lift production during take-off in flying animals. The Journal of Experimental Biology 130, 235–258 (1987)

    Google Scholar 

  52. Roeder, K.D., Treat, A.E.: The detection and evasion of bats by moths. Am Sci 49, 135–148 (1961)

    Google Scholar 

  53. Almbro, M., Kullberg, C.: Impaired escape flight ability in butterflies due to low flight muscle ratio prior to hibernation. The Journal of Experimental Biology 211, 24–28 (2008)

    Article  Google Scholar 

  54. Marden, J.H., Fitzhugh, G.H., Wolf, M.R.: From molecules to mating success: Integrative biology of muscle maturation in a dragonfly. American Scientist 38, 528–544 (1998)

    Google Scholar 

  55. Barton, B., Ayer, G., Heymann, N., Maughan, D.W., Lehmann, F.-O., Vigoreaux, J.O.: Flight muscle properties and aerodynamic performance of Drosophila expressing a flightin gene. The Journal of Experimental Biology 208, 549–560 (2005)

    Article  Google Scholar 

  56. Norberg, R.A.: Hovering flight of the dragonfly Aeshna juncea L. In: T.Y.-T. Wu, C.J. Brokaw, C. Brennen (eds.) Kinematics and Aerodynamics, vol. 2, pp. 763–781. NY, Plenum Press (1975)

    Google Scholar 

  57. Reavis, M.A., Luttges, M.W.: Aerodynamic forces produced by a dragonfly. AIAA Journal 88:0330, 1–13 (1988)

    Google Scholar 

  58. Wakeling, J.M., Ellington, C.P.: Dragonfly Flight II. Velocities, accelerations, and kinematics of flapping flight. The Journal of Experimental Biology 200, 557–582 (1997)

    Google Scholar 

  59. Usherwood, J.R., Lehmann, F.-O.: Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Journal of the Royal Society, Interface 5, 1303–1307 (2008)

    Article  Google Scholar 

  60. Thomas, A.L.R, Taylor, G.K., Srygley, R.B., Nudds, R.L., Bomphrey, R.J.: Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. The Journal of Experimental Biology 207, 4299–4323 (2004)

    Article  Google Scholar 

  61. Götz, K.G.: Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: W. Nachtigall (ed.) BIONA-report 2 Fischer, Stuttgart (1983)

    Google Scholar 

  62. Lehmann, F.-O., Dickinson, M.H.: The production of elevated flight force compromises flight stability in the fruit fly Drosophila. The Journal of Experimental Biology 204, 627–635 (2001)

    Google Scholar 

  63. Tu, M.S., Dickinson, M.H.: Modulation of negative work output from a steering muscle of the blowfly Calliphora vicina. The Journal of Experimental Biology 192, 207–224 (1994)

    Google Scholar 

  64. Lehmann, F.-O., Götz, K.G.: Activation phase ensures kinematic efficacy in flight-steering muscles of Drosophila melanogaster. Journal Comparative Physiology 179, 311–322 (1996)

    Google Scholar 

  65. Nalbach, G., Hengstenberg, R.: The halteres of the blowfly Calliphora II Three-dimensional organization of compensatory reactions to real and simulated rotations. Journal Comparative Physiology A 174, 695–708 (1994)

    Google Scholar 

  66. Fayyazuddin, A., Dickinson, M.H.: Haltere afferents provide direct, electronic input to a steering motor neuron of the blowfly, Calliphora. Journal of Neuroscience 16, 5225–5232 (1996)

    Google Scholar 

  67. Sherman, A., Dickinson, M.H.: A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. The Journal of Experimental Biology 206, 295–302 (2003)

    Article  Google Scholar 

  68. Hengstenberg, R., Sandeman, D.C.: Compensatory head roll in the blowfly Calliphora during flight. Proceedings of the Royal Society of London. Series B 227, 455–482 (1986)

    Google Scholar 

  69. Land, M.F., Collett, T.S.: Chasing Behaviour of houseflies (Fannia canicularis). Journal of Comparative Physiology A 89, 331–357 (1974)

    Article  Google Scholar 

  70. Howard, J., Dubs, A., Payne, R.: The dynamics of phototransduction in insects: A comparative study. Journal of Comparative Physiology A 154, 707–718 (1984)

    Article  Google Scholar 

  71. Hardie, C.R., Raghu, P.: Visual transduction in Drosophila. Nature 413, 186–193 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz-Olaf Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lehmann, FO. (2009). The Limits of Turning Control in Flying Insects. In: Floreano, D., Zufferey, JC., Srinivasan, M., Ellington, C. (eds) Flying Insects and Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89393-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89393-6_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89392-9

  • Online ISBN: 978-3-540-89393-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics