Abstract
The on-board requirements for small, light, low-power sensors, and electronics on autonomous micro-aerial vehicles limit the computational power and speed available for processing sensory signals. The sensory processing on these platforms is usually inspired by the sensory information extracted by insects from their world, in particular optic flow. This information is also useful for distance estimation of the vehicle from objects in its path. Custom Very Large Scale Integrated (VLSI) sensor chips which perform focal-plane motion estimation are beneficial for such platforms because of properties including compactness, continuous-time operation, and low-power dissipation. This chapter gives an overview of the various monolithic analog VLSI motion detection/optic flow chips that have been designed over the last 2 decades. We contrast the pros and cons of the different algorithms that have been implemented and we identify promising chip architectures that are suitable for flying platforms.
Similar content being viewed by others
References
Adelson, E., Bergen, J.: Spatio-temporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284–299 (1985)
Andreou, A., Strohbehn, K., Jenkins, R.: Silicon retina for motion computation. IEEE International Symposium on Circuits and Systems pp. 1373–1376 (1991)
Barlow, H.B., Levick, W.R.: The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology 178, 477–504 (1965)
Benson, R., Delbruck, T.: Direction selective silicon retina that uses null inhibition. Advances in Neural Information Processing Systems 4, 756–763 (1992)
Blanes, C.: Appareil visuel pour la navigation vue d’un robot mobile. Ms thesis in neuroscience, Univ. of Aix-Marseille II, Marseille, France (1986)
Debruck, T.: Silicon retina with correlation-based, velocity tuned pixels. IEEE Transactions on Neural Networks 4, 529–541 (1993)
Delbruck, T., Mead, C.: Adaptive photoreceptor circuit with wide dynamic range. IEEE International Symposium on Circuits and Systems IV, 339–342 (1994)
Deutschmann, R.A., Koch, C.: Compact analog VLSI 2-D velocity sensor. IEEE International Conference on Intelligent Vehicles 1, 359–364 (1998)
Deutschmann, R.A., Koch, C.: Compact real-time 2-D gradient based analog VLSI motion sensor. Proceedings of SPIE International Conference on Advanced Focal Plan Array and Electronic Cameras II 3410, 98–108 (1998)
Egelhaaf, M., Borst, A.: Motion computation and visual orientation in flies. Comparative Biochemistry and Physiology 104A, 659–673 (1993)
Etienne-Cummings, R., Fernando, S., Takahashi, N., Shtonov, V., Van der Spiegel, J., Mueller, P.: A new temporal domain optical flow measurement technique for focal plane VLSI implementation. IEEE Proceedings on Computer Architectures for Machine Perception pp. 241–250 (1993)
Franceschini, N., Blanes, C., Oufar, L.: Appareil de mesure passif et sans contact de la vitesse d’un objet quelconque. Dossier technique Nb 51549, ANVAR/DVAR, Paris (1986)
Franceschini, N., Pichon, J.M., Blanes, C.: From insect vision to robot vision. Philosophical Transactions of the Royal Society of London. Series B 337, 238–294 (1992)
Gottardi, M., Yang, W.: A CCD/CMOS image motion sensor. International Solid State Circuits Conference pp. 194–195 (1993)
Gruev, V., Etienne-Cummings, R.: Active pixel sensor with on-chip normal flow computation on the read out. IEEE International Conference on Electronics, Circuits, and Systems pp. 215–218 (2004)
Harrison, R.R.: A biologically-inspired analog IC for visual collision detection. IEEE Transactions on Circuits and Systems I 52, 2308–2318 (2005)
Harrison, R.R., Koch, C.: A robust analog VLSI motion sensor. Autonomous Robots 7, 211–224 (1999)
Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Russelkafers Chlorophanus. Zeitschrift fur Naturforschung 11b, 513–524 (1956)
Hausen, K.: Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells – Receptive-field organization and response characteristics. Biological Cybernetics 46(1), 67–79 (1982)
Higgins, C., Korrapti, S.: An analog VLSI motion energy sensor based on the Adelson-Bergen algorithm. International ICSC Symposium on Biologically-Inspired Systems (2000)
Higgins, C.M., Pant, V., Deutschmann, R.: Analog VLSI implementation of spatio-temporal frequency tuned visual motion algorithms. IEEE Transactions on Circuits and Systems – I 52(3), 489–502 (2005)
Horiuchi, T., Lazzaro, J., Moore, A., Koch, C.: A delay line based motion detection chip. Advances in Neural Information Processing Systems 3, 406–412 (1991)
Horn, B., Schunk, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)
Kramer, J.: Compact integrated motion sensor with three-pixel interaction. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 455–460 (1996)
Kramer, J., Sarpeshkar, R., Koch, C.: An analog VLSI velocity sensor. IEEE International Symposium on Circuits and Systems pp. 413–416 (1995)
Kramer, J., Sarpeshkar, R., Koch, C.: Pulse-based analog VLSI velocity sensors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44 (2), 86–101 (1997)
Krapp, H., Hengstenberg, R.: Estimation of self-motion by optic flow processing in single visual interneurons. Letters to Nature 384, 463–466 (1996)
Liu, S.C.: Silicon photoreceptors with controllable adaptive filtering properties. In: C. G, M. Bayoumi (eds.) Learning on Silicon, pp. 67–78. Kluwer Academic Publishers, Norwell, MA (1999)
Liu, S.C.: A neuromorphic aVLSI model of global motion processing in the fly. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 47(12), 1458–1467 (2000)
Lyon, R.: The optical mouse, and an architectural methodology for smart digital sensors. CMU Conference on VLSI Structures and Computations pp. 1–19 (1981)
Mehta, S., Etienne-Cummings, R.: Normal optical flow chip. IEEE International Symposium on Circuits and Systems 4, 784–787 (2003)
Mehta, S., Etienne-Cummings, R.: A simplified normal optical flow CMOS camera. IEEE Transactions on Circuits and Systems I 53(6), 1223–1234 (2006)
Meitzler, R.C., Strohbehn, K., Andreou, A.G.: A silicon retina for 2-D position and motion computation. IEEE International Symposium on Circuits and Systems III, 2096–2099 (1995)
Moeckel, R., Liu, S.C.: Motion detection circuits for a time-to-travel algorithm. IEEE International Symposium on Circuits and Systems pp. 3079–3082 (2007)
Pant, V., Higgins, C.M.: A biomimetic focal plane speed computation architecture. Proceedings of the Computational Optical Sensing and Imaging Conference (2007)
Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Sensory Communication pp. 303–317 (1961)
Reichel, L., Liechti, D., Presser, K., Liu, S.C.: Range estimation on a robot using neuromorphic motion sensors. Robotics and Autonomous Systems 51(2–3), 167–174 (2005)
Santen, v.J., Sperling, G.: A temporal covariance model of motion perception. Journal of the Optical Society of America A 1, 451–473 (1984)
Sarpeshkar, R., Bair, W., Koch, C.: Visual motion computation in analog VLSI using pulses. Advances in Neural Information Processing Systems 5, 781–788 (1993)
Schiller, P.H., Finlay, B.L., Volman, S.F.: Qualitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. Journal of Neurophysiology 39, 1288–1319 (1976)
Serrano-Gotarredona, T., Linares-Barranco, B.: A new 5-parameter MOS transistor mismatch model. IEEE Electron Device Letters 21(1), 37–39 (2000)
Srinivasan, M.V.: Generalized gradient schemes for the measurement of two dimensional image motion. Biological Cybernetics 63, 421–431 (1990)
Srinivasan, M.V.: An image-interpolation technique for the computation of optic flow and egomotion. Biological Cybernetics 71, 401–416 (1994)
Stocker, A., Douglas, R.: Computation of smooth optical flow in a feedback connected analog network. Advances in Neural Information Processing Systems 11, 706–712 (1999)
Stocker, A.A.: An improved 2D optical flow sensor for motion segmentation. IEEE International Symposium on Circuits and Systems 2, 332–335 (2002)
Tanner, J., Mead, C.: An integrated analog optical motion sensor. VLSI Signal Processing 2, 59–76 (1986)
Ullman, S.: Analysis of visual motion by biological and computer systems. IEEE Computer 14, 57–69 (1981)
Zufferey, J., Klaptocz, A., Beyeler, A., Nicoud, J., Floreano, D.: A 10-gram microflyer for vision-based indoor navigation. IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 3267–3272 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Moeckel, R., Liu, SC. (2009). Motion Detection Chips for Robotic Platforms. In: Floreano, D., Zufferey, JC., Srinivasan, M., Ellington, C. (eds) Flying Insects and Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89393-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-89393-6_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89392-9
Online ISBN: 978-3-540-89393-6
eBook Packages: EngineeringEngineering (R0)