Abstract
The ΩMEGA project and its predecessor, the MKRP-system, grew out of the principal dissatisfaction with the methodology and lack of success of the search-based “logic engines” of the 1960s and 1970s.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrews, P., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H. TPS: A theorem proving system for classical type theory. Journal of Automated Reasoning 16(3):321–353 (1996).
Autexier, S. The CoRe calculus. In R. Nieuwenhuis, (Ed.), Proceedings of the 20th International Conference on Automated Deduction (CADE-20) (vol. 3632). LNAI, Tallinn, Estonia: Springer (2005).
Autexier, S., Dietrich, D. Synthesizing proof planning methods and oants agents from mathematical knowledge. In J. Borwein, B. Farmer, (Eds.), Proceedings of MKM’06 (vol. 4108, pp. 94–109). LNAI, London: Springer (2006).
Autexier, S., Hutter, D. Formal software development in MAYA. In D. Hutter, W. Stephan, (Eds.), Festschrift in Honor of J. Siekmann (vol. 2605). LNAI, Springer (2005).
Autexier, S., Sacerdoti-Coen, C. A formal correspondence between omdoc with alternative proofs and the lambdabarmumutilde-calculus. In J. Borwein, B. Farmer, (Eds.), Proceedings of MKM’06 (vol. 4108, pp. 67–81). LNAI, Springer (2006).
Autexier, S., Benzmüller, C., Dietrich, D., Meier, A., Wirth, C.P. A generic modular data structure for proof attempts alternating on ideas and granularity. In M. Kohlhase, (Ed.), Proceedings of the 5th International Conference on Mathematical Knowledge Management (MKM’05) (vol. 3863, pp. 126–142). LNAI, Springer (2006).
Autexier, S., Benzmüller, C., Dietrich, D., Wagner, M. Organisation, transformation, and propagation of mathematical knowledge in omega. Journal of Mathematics in Computer Science, 2(2):253–277 (2008).
Avenhaus, J., Kühler, U., Schmidt-Samoa, T., Wirth, C.P. How to prove inductive theorems? \QUODLIBET! In: Proceeding of the 19th International Conference on Automated Deduction (CADE-19) (pp. 328–333). Springer, no. 2741 in LNAI (2003).
Baumgartner, P., Furbach, U. PROTEIN, a PROver with a Theory INterface. In A. Bundy, (Ed.), Proceedings of the 12th Conference on Automated Deduction (pp. 769–773). Springer, no. 814 in LNAI, (1994).
Benzmüller, C. Equality and extensionality in higher-order theorem proving. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (1999).
Benzmüller, C., Kohlhase, M. LEO – a higher-order theorem prover. In C. Kirchner, H. Kirchner, (Eds.), Proceedings of the 15th International Conference on Automated Deduction (CADE-15) (pp. 139–143). Lindau, Germany: Springer, no. 1421 in LNAI (1998).
Benzmüller, C., Sorge, V. A blackboard architecture for guiding interactive proofs. In F. Giunchiglia, (Ed.), Proceedings of 8th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA’98). Springer, no. 1480 in LNAI (1998).
Benzmüller, C., Sorge, V. Critical agents supporting interactive theorem proving. In P. Borahona, J.J. Alferes, (Eds.), Proceedings of the 9th Portuguese Conference on Artificial Intelligence (EPIA’99) (pp. 208–221). Springer, Evora, Portugal, no. 1695 in LNAI (1999).
Benzmüller, C., Sorge, V. Ωants – An open approach at combining Interactive and Automated Theorem Proving. In M. Kerber, M. Kohlhase, (Eds.), 8th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus-2000), AK Peters (2000).
Benzmüller, C., Vo, Q. Mathematical domain reasoning tasks in natural language tutorial dialog on proofs. In M. Veloso, S. Kambhampati, (Eds.), Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05) (pp. 516–522). Pittsburgh, Pennsylvania, USA: AAAI Press/The MIT Press, (2005).
Benzmüller, C., Bishop, M., Sorge, V. Integrating TPS and ΩMEGA. Journal of Universal Computer Science, 5:188–207 (1999).
Benzmüller, C., Jamnik, M., Kerber, M., Sorge, V. Agent based mathematical reasoning. Electronic Notes in Theoretical Computer Science, Elsevier, 23(3):21–33 (1999).
Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I., Pinkal, M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M. Tutorial dialogs on mathematical proofs. In: Proceedings of IJCAI-03 Workshop on Knowledge Representation and Automated Reasoning for E-Learning Systems (pp. 12–22). Acapulco, Mexico (2003).
Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M. Can a higher-order and a first-order theorem prover cooperate? In F. Baader, A. Voronkov, (Eds.), Proceedings of the 11th International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR) (pp. 415–431). Springer, no. 3452 in LNAI (2005).
Benzmüller, C., Horacek, H., Lesourd, H., Kruijff-Korbayová, I., Schiller, M., Wolska, M. A corpus of tutorial dialogs on theorem proving; the influence of the presentation of the study-material. In: Proceedings of International Conference on Language Resources and Evaluation (LREC 2006). ELDA, Genova, Italy (2006).
Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M. Combined reasoning by automated cooperation. Journal of Applied Logic, 6(3):318–342 (2008).
Bledsoe, W. Challenge problems in elementary calculus. Journal of Automated Reasoning, 6:341–359 (1990).
Buckley, M., Dietrich, D. Integrating task information into the dialogue context for natural language mathematics tutoring. In B. Medlock, D. Ó Séaghdha, (Eds.), Proceedings of the 10th Annual CLUK Research Colloquium, Cambridge, UK (2007).
Bundy, A. The use of explicit plans to guide inductive proofs. In E. Lusk, R.A. Overbeek (Ed.), Proceeding of the 9th conference on Automated Deducation no. 310 in LNCS (pp. 111–120). Argonne, Illinois, USA: Springer (1988).
Bundy, A. A science of reasoning. In J.-L. Lasser, G. Plotkin (Eds.), Computational Logic: Essays in Honor of Alan Robinson (pp. 178–199). Cambridge, MA: MIT Press (1991).
Bundy, A. A critique of proof planning. In: Computational Logic: Logic Programming and Beyond (Kowalski Festschrift) (vol. 2408, pp. 160–177). LNAI, Springer (2002).
Bundy, A., van Harmelen, F., Horn, C., Smaill, A. The oyster-clam system. In M.E. Stickel, (Ed.), Proceedings of the 10th Conference on Automated Deduction (vol. 449, pp. 647–648). Springer Verlag, LNAI (1990).
Carbonell, J., Blythe, J., Etzioni, O., Gil, Y., Joseph, R., Kahn, D., Knoblock, C., Minton, S., Pérez, M.A., Reilly, S., Veloso, M., Wang, X. PRODIGY 4.0: The Manual and Tutorial. CMU Tech. Rep. CMU-CS-92-150, Carnegie Mellon University (1992).
Char, B., Geddes, K., Gonnet, G., Leong, B., Monagan, M., Watt, S. First Leaves: A Tutorial Introduction to Maple V. Springer, New York (1992).
Cheikhrouhou, L., Sorge, V. PDS – a three-dimensional data structure for proof plans. In: Proceedings of the International Conference on Artificial and Computational Intelligence for Decision, Control and Automation in Engineering and Industrial Applications (ACIDCA’2000) (2000).
Colton, S. Automated Theory Formation in Pure Mathematics. Distinguished Dissertations, Springer (2002).
de Nivelle, H. Bliksem 1.10 user manual. Tech. Rep., Max-Planck-Institut für Informatik (1999).
Dietrich, D. The task-layer of the ΩMEGA system. Diploma thesis, FR 6.2 Informatik, Universität des Saarlandes, Saarbrücken, Germany (2006).
Dietrich, D., Buckley, M. Verification of proof steps for tutoring mathematical proofs. In R. Luckin, K.R. Koedinger, J. Greer, (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (vol. 158, pp. 560–562). Los Angeles, USA: IOS Press (2007).
Dijkstra, E.W. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271 (1959).
Eisinger, N., Siekmann, J., Smolka, G., Unvericht, E., Walther, C. The markgraf karl refutation procedure. In: Proceedings of the Conference of the European Society for Artificial Intelligence and Simulation of Behavior. Amsterdam, Netherlands (1980).
Erol, K., Hendler, J., Nau, D. Semantics for hierarchical task network planning. Tech. Rep. CS-TR-3239, UMIACS-TR-94-31, Computer Science Department, University of Maryland (1994).
Fiedler, A. Using a cognitive architecture to plan dialogs for the adaptive explanation of proofs. In Dean, T. (Ed.), Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 358–363). Morgan Kaufmann, Stockholm, Sweden (1999).
Fiedler, A. Dialog-driven adaptation of explanations of proofs. In B. Nebel, (Ed.), Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 1259–1300). Morgan Kaufmann, Seattle, WA (2001).
Fiedler, A. User-adaptive proof explanation. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (2001).
Franke, A., Kohlhase, M. System description: MathWeb, an agent-based communication layer for distributed automated theorem proving. In H. Ganzinger, (Ed.), Proceedings of the 16th conference on Automated Deduction, no. 1632 in LNAI, Springer (1999).
Ganzinger, H. (Ed.), Proceedings of the 16th Conference on Automated Deduction, no. 1632 in LNAI, Springer (1999).
Gentzen, G. The Collected Papers of Gerhard Gentzen (1934–1938). In: Szabo, M. E (ed), North Holland, Amsterdam (1969).
Hayes, P., Anderson, D.B. An arraignment of theorem-proving; or, the logician’s folly. Tech. Rep. Memo 54, Dept. Computational Logic. Edinburgh University (1972).
Hewitt, C. Description and theoretical analysis (using schemata) of planner: A language for proving theorems and manipulating models in a robot. Tech. Rep. AITR-258, MIT (1972).
Hillenbrand, T., Jaeger, A., Löchner, B. System description: Waldmeister — improvements in performance and ease of use. In Ganzinger, H. (Ed.), Proceedings of the 16th conference on Automated Deduction (pp. 232–236). no. 1632 in LNAI, Springer (1999).
Huang, X. Human Oriented Proof Presentation: A Reconstructive Approach. No. 112 in DISKI, Infix, Sankt Augustin, Germany (1996).
Hutter, D. Management of change in structured verification. In: Proceedings of Automated Software Engineering, ASE-2000, IEEE (2000).
Hutter, D., Stephan, W. (Eds.). Festschrift in Honor of J. Siekmann, LNAI, vol. 2605, Springer (2005).
Jamnik, M., Kerber, M., Pollet, M., Benzmüller, C. Automatic learning of proof methods in proof planning. The Logic Journal of the IGPL, 11(6):647–674 (2003).
Kirchner, H., Ringeissen, C. (Eds.). Frontiers of combining systems: Third International Workshop, FroCoS 2000 (vol. 1794). LNAI, Springer (2000).
Kohlhase, M. OMDOC – An Open Markup Format for Mathematical Documents [Version 1.2] (vol. 4180). LNAI, Springer (2006).
Lingenfelder, C. Structuring computer generated proofs. In: Proceedings of the International Joint Conference on AI (IJCAI’89) (pp. 378–383) (1989).
Lingenfelder, C. Transformation and structuring of computer generated proofs. Doctoral thesis, University of Kaiserslautern, Department of Computer Science (1990).
Lusk, E., Overbeek, R. (Eds.). Proceedings of the 9th Conference on Automated Deduction, no. 310 in LNCS, Springer, Argonne, Illinois, USA (1988).
Manthey, R., Bry, F. SATCHMO: A theorem prover implemented in Prolog. In E. Lusk, R. Overbreek, (Eds.), Proceedings of the 9th conference on Automated Deduction (pp. 415–434), no. 310 in LNCS, Springer, Argonne, Illinois, USA (1988).
McCasland, R., Bundy, A. MATHsAiD: a mathematical theorem discovery tool. In: Proceedings of SYNASC’06 (pp. 17–22). IEEE Computer Society Press (2006).
McCasland, R., Bundy, A., Smith, P. Ascertaining mathematical theorems. Electronic Notes in Theoretical Computer Science, 151(1):21–38, Proceedings of the 12th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus 2005) (2006).
McCune, W.W. Otter 3.0 reference manual and guide. Tech. Rep. ANL-94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA (1994).
McCune, W. Solution of the Robbins problem. Journal of Automated Reasoning, 19(3):263–276 (1997).
Meier, A. TRAMP: Transformation of machine-found proofs into natural deduction proofs at the assertion level. In D. McAllester, (Ed.), Proceedings of the 17th Conference on Automated Deduction, Springer, no. 1831 in LNAI (2000).
Meier, A. Proof planning with multiple strategies. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (2004).
Meier, A., Melis, E. MULTI: A multi-strategy proof planner (system description). In R. Nieuwenhuis, (Ed.), Proceedings of the 20th Conference on Automated Deduction (CADE-20) (vol. 3632, pp. 250–254). LNAI, Tallinn, Estonia: Springer (2005).
Meier, A., Melis, E., Pollet, M. Towards extending domain representations. Seki Report SR-02-01, Department of Computer Science, Saarland University, Saarbrücken, Germany (2002).
Meier, A., Pollet, M., Sorge, V. Comparing approaches to the exploration of the domain of residue classes. Journal of Symbolic Computation Special Issue on the Integration of Automated Reasoning and Computer Algebra Systems, 34:287–306 (2002).
Melis, E., Meier, A. Proof planning with multiple strategies. In J. Loyd, V. Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagivand, P. Stuckey, (Eds.), First International Conference on Computational Logic (CL-2000) (pp. 644–659), no. 1861 in LNAI. London, UK: Springer (2000).
Melis, E., Siekmann, J. Knowledge-based proof planning. Artificial Intelligence, 115(1):65–105 (1999).
Melis, E., Siekmann, J. Activemath: An intelligent tutoring system for mathematics. In L. Rutkowski, J. Siekmann, R. Tadeusiewicz, L. Zadeh, (Eds.), Seventh International Conference ‘Artificial Intelligence and Soft Computing’ (ICAISC) (vol. 3070, pp. 91–101), LNAI. Zakopane, Poland: Springer-Verlag (2004).
Melis, E., Zimmer, J., Müller, T. Integrating constraint solving into proof planning. In H. Kirchner, C. Ringeissen, (Eds.), Frontiers of combining systems: Third International Workshop, Frocos 2000 (vol. 1794), LNAI. Springer (2000).
Melis, E., Meier, A., Siekmann, J. Proof planning with multiple strategies. Artificial Intelligence, 172(6–7):656–684 (2007).
Riazanov, A., Voronkov, A. Vampire 1.1 (system description). In R. Goré, A. Leitsch, T. Nipkow, (Eds.), Automated Reasoning — 1st International Joint Conference, IJCAR 2001, no. 2083 in LNAI, Springer (2001).
Schönert, M., et al. GAP – Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1995).
Siekmann, J., Hess, S., Benzmüller, C., Cheikhrouhou, L., Fiedler, A., Horacek, H., Kohlhase, M., Konrad, K., Meier, A., Melis, E., Pollet, M., Sorge, V. LOUI: Lovely Ωmega User Interface. Formal Aspects of Computing, 11:326–342 (1999).
Siekmann, J., Benzmüller, C., Brezhnev, V., Cheikhrouhou, L., Fiedler, A., Franke, A., Horacek, H., Kohlhase, M., Meier, A., Melis, E., Moschner, M., Normann, I., Pollet, M., Sorge, V., Ullrich, C., Wirth, C.P., Zimmer, J. Proof development with ΩMEGA. In A. Voronkov, (Ed.), Proceedings of the 18th International conference on Automated Deduction (pp. 143–148), no. 2392 in LNAI, Springer (2002).
Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Pollet, M. Proof development with OMEGA: Sqrt(2) is irrational. In M. Baaz, A. Voronkov, (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning, 9th International Conference, LPAR 2002 (pp. 367–387) no. 2514 in LNAI Springer (2002).
Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M. Proof development in OMEGA: The irrationality of square root of 2. In F. Kamareddine, (Ed.), Thirty Five Years of Automating Mathematics (pp. 271–314), Kluwer Applied Logic series (28), Dordrecht, Boston: Kluwer Academic Publishers, ISBN 1-4020-1656-5 (2003).
Siekmann, J., Autexier, S., Fiedler, A., Gabbay, D., Huang, X. (to appear) Proof presentation, In: Principia Mathematica Mechanico
Sorge, V. Non-Trivial Computations in Proof Planning. In H. Kirchner, C. Ringeissen, (Eds.), Frontiers of Combining Systems: Third International Workshop, Frocos 2000 (vol. 1794), LNAI, Springer (2000).
Sorge, V. ΩANTS — a blackboard architecture for the integration of reasoning techniques into proof planning. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (2001).
Sutcliffe, G., Zimmer, J., Schulz, S. Tstp data-exchange formats for automated Theorem proving tools. In W. Zhang, V. Sorge, (Eds.), Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems (pp. 201–215) Amsterdam: IOS press (2004).
van der Hoeven, J. GNU TeXmacs: A free, structured, wysiwyg and technical text editor. In: Actes du congrès Gutenberg, Metz, no. 39–40 in Actes du congrès Gutenberg (pp. 39–50) (2001).
Voronkov, A. (Ed.). Proceedings of the 18th International Conference on Automated Deduction, no. 2392 in LNAI, Springer (2002).
Wagner, M. Mediation between text-editors and proof assistance systems. Diploma thesis, Saarland University, Saarbrücken, Germany (2006).
Wagner, M., Autexier, S., Benzmüller, C. Plato: A mediator between text-editors and proof assistance systems. In Autexier, S., Benzmüller, C. (Eds.), 7th Workshop on User Interfaces for Theorem Provers (UITP’06), Elsevier, ENTCS (2006).
Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobalt, C., Topic, D. System description: SPASS version 1.0.0. In H. Ganzinger, (Ed.), Proceedings of the 16th conference on Automated Deduction pp. 378–382, no. 1632 in LNAI, Springer, (1999).
Wiedijk, F. Formal proof sketches. In S. Berardi, M. Coppo, F. Damiani, (Eds.), Types for Proofs and Programs: Third International Workshop, TYPES 2003 (pp. 378–393), LNCS 3085. Torino, Italy: Springer (2004).
Wirth, C.P. Descente infinie + Deduction. Logic Journal of the IGPL, 12(1):1–96 (2004).
Zhang, J., Zhang, H. SEM: A system for enumerating models. In C.S. Mellish, (Ed.), Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 298–303). San Mateo, California, USA, Montreal, Canada: Morgan Kaufmann (1995).
Zimmer, J. MATHSERVE – a framework for semantic reasoning services. PhD thesis, FR 6.2 Informatik, Universität des Saarlandes, Saarbrücken, Germany (2008).
Zimmer, J., Autexier, S. The mathserve framework for semantic reasoning web services. In U. Furbach, N. Shankar, (Eds.), Proceedings of IJCAR’06 (pp. 140–144), LNAI. Seattle, USA: Springer (2006).
Zimmer, J., Kohlhase, M. System description: The mathweb software bus for distributed mathematical reasoning. In A. Voronkov, (Ed.), Proceedings of the 18th International conference on Automated Deduction (pp. 138–142), no. 2392 in LNAI, Springer (2002).
Zimmer, J., Melis, E. Constraint solving for proof planning. Journal of Automated Reasoning, 33:51–88 (2004).
Acknowledgments
The mathematical assistant system ΩMEGA (and its predecessor MKRP) evolved over a time span of more than 25 years: from its original conception at Karlsruhe in the years 1976 and after, the MKRP system became one of the strongest deduction systems at the time, racing against the succession of systems of Larry Wos and his associates for more than a decade with Christoph Walther at the helm of MKRP and later, when Christoph obtained his professorship, Norbert Eisinger took over. The paradigm shift to knowledge-based proof planning was carried out with Manfred Kerber as project leader to be succeeded by Michael Kohlhase, when Manfred became a lecturer in Britain.
The new ΩMEGA system was developed with Christoph Benzmüller as the last captain at the steering wheel before Serge Autexier now became the current project leader. All in all more than 50 research assistants worked with us on these developments over the time and their contributions are greatly acknowledged
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Autexier, S., Benzmüller, C., Dietrich, D., Siekmann, J. (2010). ΩMEGA: Resource-Adaptive Processes in an Automated Reasoning System. In: Crocker, M., Siekmann, J. (eds) Resource-Adaptive Cognitive Processes. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89408-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-89408-7_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89407-0
Online ISBN: 978-3-540-89408-7
eBook Packages: Computer ScienceComputer Science (R0)