Skip to main content

ΩMEGA: Resource-Adaptive Processes in an Automated Reasoning System

  • Chapter
  • First Online:
Resource-Adaptive Cognitive Processes

Part of the book series: Cognitive Technologies ((COGTECH))

  • 804 Accesses

Abstract

The ΩMEGA project and its predecessor, the MKRP-system, grew out of the principal dissatisfaction with the methodology and lack of success of the search-based “logic engines” of the 1960s and 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, P., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H. TPS: A theorem proving system for classical type theory. Journal of Automated Reasoning 16(3):321–353 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  2. Autexier, S. The CoRe calculus. In R. Nieuwenhuis, (Ed.), Proceedings of the 20th International Conference on Automated Deduction (CADE-20) (vol. 3632). LNAI, Tallinn, Estonia: Springer (2005).

    Google Scholar 

  3. Autexier, S., Dietrich, D. Synthesizing proof planning methods and oants agents from mathematical knowledge. In J. Borwein, B. Farmer, (Eds.), Proceedings of MKM’06 (vol. 4108, pp. 94–109). LNAI, London: Springer (2006).

    Google Scholar 

  4. Autexier, S., Hutter, D. Formal software development in MAYA. In D. Hutter, W. Stephan, (Eds.), Festschrift in Honor of J. Siekmann (vol. 2605). LNAI, Springer (2005).

    Google Scholar 

  5. Autexier, S., Sacerdoti-Coen, C. A formal correspondence between omdoc with alternative proofs and the lambdabarmumutilde-calculus. In J. Borwein, B. Farmer, (Eds.), Proceedings of MKM’06 (vol. 4108, pp. 67–81). LNAI, Springer (2006).

    Google Scholar 

  6. Autexier, S., Benzmüller, C., Dietrich, D., Meier, A., Wirth, C.P. A generic modular data structure for proof attempts alternating on ideas and granularity. In M. Kohlhase, (Ed.), Proceedings of the 5th International Conference on Mathematical Knowledge Management (MKM’05) (vol. 3863, pp. 126–142). LNAI, Springer (2006).

    Google Scholar 

  7. Autexier, S., Benzmüller, C., Dietrich, D., Wagner, M. Organisation, transformation, and propagation of mathematical knowledge in omega. Journal of Mathematics in Computer Science, 2(2):253–277 (2008).

    Article  MATH  Google Scholar 

  8. Avenhaus, J., Kühler, U., Schmidt-Samoa, T., Wirth, C.P. How to prove inductive theorems? \QUODLIBET! In: Proceeding of the 19th International Conference on Automated Deduction (CADE-19) (pp. 328–333). Springer, no. 2741 in LNAI (2003).

    Google Scholar 

  9. Baumgartner, P., Furbach, U. PROTEIN, a PROver with a Theory INterface. In A. Bundy, (Ed.), Proceedings of the 12th Conference on Automated Deduction (pp. 769–773). Springer, no. 814 in LNAI, (1994).

    Google Scholar 

  10. Benzmüller, C. Equality and extensionality in higher-order theorem proving. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (1999).

    Google Scholar 

  11. Benzmüller, C., Kohlhase, M. LEO – a higher-order theorem prover. In C. Kirchner, H. Kirchner, (Eds.), Proceedings of the 15th International Conference on Automated Deduction (CADE-15) (pp. 139–143). Lindau, Germany: Springer, no. 1421 in LNAI (1998).

    Google Scholar 

  12. Benzmüller, C., Sorge, V. A blackboard architecture for guiding interactive proofs. In F. Giunchiglia, (Ed.), Proceedings of 8th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA’98). Springer, no. 1480 in LNAI (1998).

    Google Scholar 

  13. Benzmüller, C., Sorge, V. Critical agents supporting interactive theorem proving. In P. Borahona, J.J. Alferes, (Eds.), Proceedings of the 9th Portuguese Conference on Artificial Intelligence (EPIA’99) (pp. 208–221). Springer, Evora, Portugal, no. 1695 in LNAI (1999).

    Google Scholar 

  14. Benzmüller, C., Sorge, V. Ωants – An open approach at combining Interactive and Automated Theorem Proving. In M. Kerber, M. Kohlhase, (Eds.), 8th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus-2000), AK Peters (2000).

    Google Scholar 

  15. Benzmüller, C., Vo, Q. Mathematical domain reasoning tasks in natural language tutorial dialog on proofs. In M. Veloso, S. Kambhampati, (Eds.), Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05) (pp. 516–522). Pittsburgh, Pennsylvania, USA: AAAI Press/The MIT Press, (2005).

    Google Scholar 

  16. Benzmüller, C., Bishop, M., Sorge, V. Integrating TPS and ΩMEGA. Journal of Universal Computer Science, 5:188–207 (1999).

    Google Scholar 

  17. Benzmüller, C., Jamnik, M., Kerber, M., Sorge, V. Agent based mathematical reasoning. Electronic Notes in Theoretical Computer Science, Elsevier, 23(3):21–33 (1999).

    Google Scholar 

  18. Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I., Pinkal, M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M. Tutorial dialogs on mathematical proofs. In: Proceedings of IJCAI-03 Workshop on Knowledge Representation and Automated Reasoning for E-Learning Systems (pp. 12–22). Acapulco, Mexico (2003).

    Google Scholar 

  19. Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M. Can a higher-order and a first-order theorem prover cooperate? In F. Baader, A. Voronkov, (Eds.), Proceedings of the 11th International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR) (pp. 415–431). Springer, no. 3452 in LNAI (2005).

    Google Scholar 

  20. Benzmüller, C., Horacek, H., Lesourd, H., Kruijff-Korbayová, I., Schiller, M., Wolska, M. A corpus of tutorial dialogs on theorem proving; the influence of the presentation of the study-material. In: Proceedings of International Conference on Language Resources and Evaluation (LREC 2006). ELDA, Genova, Italy (2006).

    Google Scholar 

  21. Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M. Combined reasoning by automated cooperation. Journal of Applied Logic, 6(3):318–342 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  22. Bledsoe, W. Challenge problems in elementary calculus. Journal of Automated Reasoning, 6:341–359 (1990).

    Article  MATH  Google Scholar 

  23. Buckley, M., Dietrich, D. Integrating task information into the dialogue context for natural language mathematics tutoring. In B. Medlock, D. Ó Séaghdha, (Eds.), Proceedings of the 10th Annual CLUK Research Colloquium, Cambridge, UK (2007).

    Google Scholar 

  24. Bundy, A. The use of explicit plans to guide inductive proofs. In E. Lusk, R.A. Overbeek (Ed.), Proceeding of the 9th conference on Automated Deducation no. 310 in LNCS (pp. 111–120). Argonne, Illinois, USA: Springer (1988).

    Chapter  Google Scholar 

  25. Bundy, A. A science of reasoning. In J.-L. Lasser, G. Plotkin (Eds.), Computational Logic: Essays in Honor of Alan Robinson (pp. 178–199). Cambridge, MA: MIT Press (1991).

    Google Scholar 

  26. Bundy, A. A critique of proof planning. In: Computational Logic: Logic Programming and Beyond (Kowalski Festschrift) (vol. 2408, pp. 160–177). LNAI, Springer (2002).

    Google Scholar 

  27. Bundy, A., van Harmelen, F., Horn, C., Smaill, A. The oyster-clam system. In M.E. Stickel, (Ed.), Proceedings of the 10th Conference on Automated Deduction (vol. 449, pp. 647–648). Springer Verlag, LNAI (1990).

    Google Scholar 

  28. Carbonell, J., Blythe, J., Etzioni, O., Gil, Y., Joseph, R., Kahn, D., Knoblock, C., Minton, S., Pérez, M.A., Reilly, S., Veloso, M., Wang, X. PRODIGY 4.0: The Manual and Tutorial. CMU Tech. Rep. CMU-CS-92-150, Carnegie Mellon University (1992).

    Google Scholar 

  29. Char, B., Geddes, K., Gonnet, G., Leong, B., Monagan, M., Watt, S. First Leaves: A Tutorial Introduction to Maple V. Springer, New York (1992).

    MATH  Google Scholar 

  30. Cheikhrouhou, L., Sorge, V. PDS – a three-dimensional data structure for proof plans. In: Proceedings of the International Conference on Artificial and Computational Intelligence for Decision, Control and Automation in Engineering and Industrial Applications (ACIDCA’2000) (2000).

    Google Scholar 

  31. Colton, S. Automated Theory Formation in Pure Mathematics. Distinguished Dissertations, Springer (2002).

    Google Scholar 

  32. de Nivelle, H. Bliksem 1.10 user manual. Tech. Rep., Max-Planck-Institut für Informatik (1999).

    Google Scholar 

  33. Dietrich, D. The task-layer of the ΩMEGA system. Diploma thesis, FR 6.2 Informatik, Universität des Saarlandes, Saarbrücken, Germany (2006).

    Google Scholar 

  34. Dietrich, D., Buckley, M. Verification of proof steps for tutoring mathematical proofs. In R. Luckin, K.R. Koedinger, J. Greer, (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (vol. 158, pp. 560–562). Los Angeles, USA: IOS Press (2007).

    Google Scholar 

  35. Dijkstra, E.W. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  36. Eisinger, N., Siekmann, J., Smolka, G., Unvericht, E., Walther, C. The markgraf karl refutation procedure. In: Proceedings of the Conference of the European Society for Artificial Intelligence and Simulation of Behavior. Amsterdam, Netherlands (1980).

    Google Scholar 

  37. Erol, K., Hendler, J., Nau, D. Semantics for hierarchical task network planning. Tech. Rep. CS-TR-3239, UMIACS-TR-94-31, Computer Science Department, University of Maryland (1994).

    Google Scholar 

  38. Fiedler, A. Using a cognitive architecture to plan dialogs for the adaptive explanation of proofs. In Dean, T. (Ed.), Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 358–363). Morgan Kaufmann, Stockholm, Sweden (1999).

    Google Scholar 

  39. Fiedler, A. Dialog-driven adaptation of explanations of proofs. In B. Nebel, (Ed.), Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 1259–1300). Morgan Kaufmann, Seattle, WA (2001).

    Google Scholar 

  40. Fiedler, A. User-adaptive proof explanation. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (2001).

    Google Scholar 

  41. Franke, A., Kohlhase, M. System description: MathWeb, an agent-based communication layer for distributed automated theorem proving. In H. Ganzinger, (Ed.), Proceedings of the 16th conference on Automated Deduction, no. 1632 in LNAI, Springer (1999).

    Google Scholar 

  42. Ganzinger, H. (Ed.), Proceedings of the 16th Conference on Automated Deduction, no. 1632 in LNAI, Springer (1999).

    Google Scholar 

  43. Gentzen, G. The Collected Papers of Gerhard Gentzen (1934–1938). In: Szabo, M. E (ed), North Holland, Amsterdam (1969).

    Google Scholar 

  44. Hayes, P., Anderson, D.B. An arraignment of theorem-proving; or, the logician’s folly. Tech. Rep. Memo 54, Dept. Computational Logic. Edinburgh University (1972).

    Google Scholar 

  45. Hewitt, C. Description and theoretical analysis (using schemata) of planner: A language for proving theorems and manipulating models in a robot. Tech. Rep. AITR-258, MIT (1972).

    Google Scholar 

  46. Hillenbrand, T., Jaeger, A., Löchner, B. System description: Waldmeister — improvements in performance and ease of use. In Ganzinger, H. (Ed.), Proceedings of the 16th conference on Automated Deduction (pp. 232–236). no. 1632 in LNAI, Springer (1999).

    Chapter  Google Scholar 

  47. Huang, X. Human Oriented Proof Presentation: A Reconstructive Approach. No. 112 in DISKI, Infix, Sankt Augustin, Germany (1996).

    Google Scholar 

  48. Hutter, D. Management of change in structured verification. In: Proceedings of Automated Software Engineering, ASE-2000, IEEE (2000).

    Google Scholar 

  49. Hutter, D., Stephan, W. (Eds.). Festschrift in Honor of J. Siekmann, LNAI, vol. 2605, Springer (2005).

    Google Scholar 

  50. Jamnik, M., Kerber, M., Pollet, M., Benzmüller, C. Automatic learning of proof methods in proof planning. The Logic Journal of the IGPL, 11(6):647–674 (2003).

    Article  MATH  Google Scholar 

  51. Kirchner, H., Ringeissen, C. (Eds.). Frontiers of combining systems: Third International Workshop, FroCoS 2000 (vol. 1794). LNAI, Springer (2000).

    Google Scholar 

  52. Kohlhase, M. OMDOC – An Open Markup Format for Mathematical Documents [Version 1.2] (vol. 4180). LNAI, Springer (2006).

    Google Scholar 

  53. Lingenfelder, C. Structuring computer generated proofs. In: Proceedings of the International Joint Conference on AI (IJCAI’89) (pp. 378–383) (1989).

    Google Scholar 

  54. Lingenfelder, C. Transformation and structuring of computer generated proofs. Doctoral thesis, University of Kaiserslautern, Department of Computer Science (1990).

    Google Scholar 

  55. Lusk, E., Overbeek, R. (Eds.). Proceedings of the 9th Conference on Automated Deduction, no. 310 in LNCS, Springer, Argonne, Illinois, USA (1988).

    Google Scholar 

  56. Manthey, R., Bry, F. SATCHMO: A theorem prover implemented in Prolog. In E. Lusk, R. Overbreek, (Eds.), Proceedings of the 9th conference on Automated Deduction (pp. 415–434), no. 310 in LNCS, Springer, Argonne, Illinois, USA (1988).

    Chapter  Google Scholar 

  57. McCasland, R., Bundy, A. MATHsAiD: a mathematical theorem discovery tool. In: Proceedings of SYNASC’06 (pp. 17–22). IEEE Computer Society Press (2006).

    Google Scholar 

  58. McCasland, R., Bundy, A., Smith, P. Ascertaining mathematical theorems. Electronic Notes in Theoretical Computer Science, 151(1):21–38, Proceedings of the 12th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus 2005) (2006).

    Google Scholar 

  59. McCune, W.W. Otter 3.0 reference manual and guide. Tech. Rep. ANL-94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA (1994).

    Google Scholar 

  60. McCune, W. Solution of the Robbins problem. Journal of Automated Reasoning, 19(3):263–276 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  61. Meier, A. TRAMP: Transformation of machine-found proofs into natural deduction proofs at the assertion level. In D. McAllester, (Ed.), Proceedings of the 17th Conference on Automated Deduction, Springer, no. 1831 in LNAI (2000).

    Google Scholar 

  62. Meier, A. Proof planning with multiple strategies. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (2004).

    Google Scholar 

  63. Meier, A., Melis, E. MULTI: A multi-strategy proof planner (system description). In R. Nieuwenhuis, (Ed.), Proceedings of the 20th Conference on Automated Deduction (CADE-20) (vol. 3632, pp. 250–254). LNAI, Tallinn, Estonia: Springer (2005).

    Google Scholar 

  64. Meier, A., Melis, E., Pollet, M. Towards extending domain representations. Seki Report SR-02-01, Department of Computer Science, Saarland University, Saarbrücken, Germany (2002).

    Google Scholar 

  65. Meier, A., Pollet, M., Sorge, V. Comparing approaches to the exploration of the domain of residue classes. Journal of Symbolic Computation Special Issue on the Integration of Automated Reasoning and Computer Algebra Systems, 34:287–306 (2002).

    MathSciNet  MATH  Google Scholar 

  66. Melis, E., Meier, A. Proof planning with multiple strategies. In J. Loyd, V. Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagivand, P. Stuckey, (Eds.), First International Conference on Computational Logic (CL-2000) (pp. 644–659), no. 1861 in LNAI. London, UK: Springer (2000).

    Google Scholar 

  67. Melis, E., Siekmann, J. Knowledge-based proof planning. Artificial Intelligence, 115(1):65–105 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  68. Melis, E., Siekmann, J. Activemath: An intelligent tutoring system for mathematics. In L. Rutkowski, J. Siekmann, R. Tadeusiewicz, L. Zadeh, (Eds.), Seventh International Conference ‘Artificial Intelligence and Soft Computing’ (ICAISC) (vol. 3070, pp. 91–101), LNAI. Zakopane, Poland: Springer-Verlag (2004).

    Google Scholar 

  69. Melis, E., Zimmer, J., Müller, T. Integrating constraint solving into proof planning. In H. Kirchner, C. Ringeissen, (Eds.), Frontiers of combining systems: Third International Workshop, Frocos 2000 (vol. 1794), LNAI. Springer (2000).

    Google Scholar 

  70. Melis, E., Meier, A., Siekmann, J. Proof planning with multiple strategies. Artificial Intelligence, 172(6–7):656–684 (2007).

    MathSciNet  Google Scholar 

  71. Riazanov, A., Voronkov, A. Vampire 1.1 (system description). In R. Goré, A. Leitsch, T. Nipkow, (Eds.), Automated Reasoning — 1st International Joint Conference, IJCAR 2001, no. 2083 in LNAI, Springer (2001).

    Google Scholar 

  72. Schönert, M., et al. GAP – Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany (1995).

    Google Scholar 

  73. Siekmann, J., Hess, S., Benzmüller, C., Cheikhrouhou, L., Fiedler, A., Horacek, H., Kohlhase, M., Konrad, K., Meier, A., Melis, E., Pollet, M., Sorge, V. LOUI: Lovely Ωmega User Interface. Formal Aspects of Computing, 11:326–342 (1999).

    Article  Google Scholar 

  74. Siekmann, J., Benzmüller, C., Brezhnev, V., Cheikhrouhou, L., Fiedler, A., Franke, A., Horacek, H., Kohlhase, M., Meier, A., Melis, E., Moschner, M., Normann, I., Pollet, M., Sorge, V., Ullrich, C., Wirth, C.P., Zimmer, J. Proof development with ΩMEGA. In A. Voronkov, (Ed.), Proceedings of the 18th International conference on Automated Deduction (pp. 143–148), no. 2392 in LNAI, Springer (2002).

    Google Scholar 

  75. Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Pollet, M. Proof development with OMEGA: Sqrt(2) is irrational. In M. Baaz, A. Voronkov, (Eds.), Logic for Programming, Artificial Intelligence, and Reasoning, 9th International Conference, LPAR 2002 (pp. 367–387) no. 2514 in LNAI Springer (2002).

    Chapter  Google Scholar 

  76. Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M. Proof development in OMEGA: The irrationality of square root of 2. In F. Kamareddine, (Ed.), Thirty Five Years of Automating Mathematics (pp. 271–314), Kluwer Applied Logic series (28), Dordrecht, Boston: Kluwer Academic Publishers, ISBN 1-4020-1656-5 (2003).

    Google Scholar 

  77. Siekmann, J., Autexier, S., Fiedler, A., Gabbay, D., Huang, X. (to appear) Proof presentation, In: Principia Mathematica Mechanico

    Google Scholar 

  78. Sorge, V. Non-Trivial Computations in Proof Planning. In H. Kirchner, C. Ringeissen, (Eds.), Frontiers of Combining Systems: Third International Workshop, Frocos 2000 (vol. 1794), LNAI, Springer (2000).

    Google Scholar 

  79. Sorge, V. ΩANTS — a blackboard architecture for the integration of reasoning techniques into proof planning. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany (2001).

    Google Scholar 

  80. Sutcliffe, G., Zimmer, J., Schulz, S. Tstp data-exchange formats for automated Theorem proving tools. In W. Zhang, V. Sorge, (Eds.), Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems (pp. 201–215) Amsterdam: IOS press (2004).

    Google Scholar 

  81. van der Hoeven, J. GNU TeXmacs: A free, structured, wysiwyg and technical text editor. In: Actes du congrès Gutenberg, Metz, no. 39–40 in Actes du congrès Gutenberg (pp. 39–50) (2001).

    Google Scholar 

  82. Voronkov, A. (Ed.). Proceedings of the 18th International Conference on Automated Deduction, no. 2392 in LNAI, Springer (2002).

    Google Scholar 

  83. Wagner, M. Mediation between text-editors and proof assistance systems. Diploma thesis, Saarland University, Saarbrücken, Germany (2006).

    Google Scholar 

  84. Wagner, M., Autexier, S., Benzmüller, C. Plato: A mediator between text-editors and proof assistance systems. In Autexier, S., Benzmüller, C. (Eds.), 7th Workshop on User Interfaces for Theorem Provers (UITP’06), Elsevier, ENTCS (2006).

    Google Scholar 

  85. Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobalt, C., Topic, D. System description: SPASS version 1.0.0. In H. Ganzinger, (Ed.), Proceedings of the 16th conference on Automated Deduction pp. 378–382, no. 1632 in LNAI, Springer, (1999).

    Chapter  Google Scholar 

  86. Wiedijk, F. Formal proof sketches. In S. Berardi, M. Coppo, F. Damiani, (Eds.), Types for Proofs and Programs: Third International Workshop, TYPES 2003 (pp. 378–393), LNCS 3085. Torino, Italy: Springer (2004).

    Google Scholar 

  87. Wirth, C.P. Descente infinie + Deduction. Logic Journal of the IGPL, 12(1):1–96 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  88. Zhang, J., Zhang, H. SEM: A system for enumerating models. In C.S. Mellish, (Ed.), Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 298–303). San Mateo, California, USA, Montreal, Canada: Morgan Kaufmann (1995).

    Google Scholar 

  89. Zimmer, J. MATHSERVE – a framework for semantic reasoning services. PhD thesis, FR 6.2 Informatik, Universität des Saarlandes, Saarbrücken, Germany (2008).

    Google Scholar 

  90. Zimmer, J., Autexier, S. The mathserve framework for semantic reasoning web services. In U. Furbach, N. Shankar, (Eds.), Proceedings of IJCAR’06 (pp. 140–144), LNAI. Seattle, USA: Springer (2006).

    Google Scholar 

  91. Zimmer, J., Kohlhase, M. System description: The mathweb software bus for distributed mathematical reasoning. In A. Voronkov, (Ed.), Proceedings of the 18th International conference on Automated Deduction (pp. 138–142), no. 2392 in LNAI, Springer (2002).

    Google Scholar 

  92. Zimmer, J., Melis, E. Constraint solving for proof planning. Journal of Automated Reasoning, 33:51–88 (2004).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The mathematical assistant system ΩMEGA (and its predecessor MKRP) evolved over a time span of more than 25 years: from its original conception at Karlsruhe in the years 1976 and after, the MKRP system became one of the strongest deduction systems at the time, racing against the succession of systems of Larry Wos and his associates for more than a decade with Christoph Walther at the helm of MKRP and later, when Christoph obtained his professorship, Norbert Eisinger took over. The paradigm shift to knowledge-based proof planning was carried out with Manfred Kerber as project leader to be succeeded by Michael Kohlhase, when Manfred became a lecturer in Britain.

The new ΩMEGA system was developed with Christoph Benzmüller as the last captain at the steering wheel before Serge Autexier now became the current project leader. All in all more than 50 research assistants worked with us on these developments over the time and their contributions are greatly acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Autexier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Autexier, S., Benzmüller, C., Dietrich, D., Siekmann, J. (2010). ΩMEGA: Resource-Adaptive Processes in an Automated Reasoning System. In: Crocker, M., Siekmann, J. (eds) Resource-Adaptive Cognitive Processes. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89408-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89408-7_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89407-0

  • Online ISBN: 978-3-540-89408-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics