Skip to main content

Implantable Computing

  • Chapter
Digital Human Modeling

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4650))

Abstract

In this chapter an attempt has been made to take a look at how the use of implant technology is now being employed both for human enhancement and to diminish the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the recipients. An indication is given of a number of areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. An overview of some of the latest developments in the field of Brain to Computer Interfacing is given in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that have been undertaken and reported on, as opposed to those speculated, simulated or proposed as future projects. Related areas are discussed briefly only in the context of their contribution to the studies being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is made directly with the cerebral cortex and/or nervous system.

Tests and experimentation which do not involve human subjects are invariably carried out a priori to indicate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies from this area are discussed. The paper goes on to describe human experimentation, in which neural implants have linked the human nervous system bi-directionally with technology and the Internet. A view is taken as to the prospects for the future for this implantable computing in terms of both therapy and enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Branner, A., Normann, R.: A multielectrode array for intrafascicular recording and stimulation in the sciatic nerve of a cat. Brain Research Bulletin 51, 293–306 (2000)

    Article  Google Scholar 

  2. Chapin, J.K.: Using multi-neuron population recordings for neural prosthetics. Nature Neuroscience 7, 452–454 (2004)

    Article  Google Scholar 

  3. Carmena, J., Lebedev, M., Crist, R., O’Doherty, J., Santucci, D., Dimitrov, D., Patil, P., Henriquez, C., Nicolelis, M.: Learning to control a brain-machine interface for reaching and grasping by primates. Plos Biology 1(2), article no: e2 (2003)

    Google Scholar 

  4. Dobelle, W.: Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO. J. 46, 3–9 (2000)

    Article  Google Scholar 

  5. Donoghue, J.: Connecting cortex to machines: recent advances in brain interfaces. Nature Neuroscience Supplement 5, 1085–1088 (2002)

    Article  Google Scholar 

  6. Donoghue, J., Nurmikko, A., Friehs, G., Black, M.: Development of a neuromotor prosthesis for humans. In: Advances in Clinical Neurophysiology, Supplements to Clinical Neurophysiology, ch.63, vol. 57, pp. 588–602 (2004)

    Google Scholar 

  7. Finn, W., LoPresti, P. (eds.): Handbook of Neuroprosthetic methods. CRC Press, Boca Raton (2003)

    Google Scholar 

  8. Friehs, G., Zerris, V., Ojakangas, C., Fellows, M., Donoghue, J.: Brain-machine and brain-computer interfaces. Stroke 35(11), 2702–2705 (2004)

    Article  Google Scholar 

  9. Gasson, M., Hutt, B., Goodhew, I., Kyberd, P., Warwick, K.: Invasive neural prosthesis for neural signal detection and nerve stimulation. Proc. International Journal of Adaptive Control and Signal Processing 19(5), 365–375 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Gasson, M., Wang, S., Aziz, T., Stein, J., Warwick, K.: Towards a demand driven deep brain stimulator for the treatment of movement disorders. In: Proc. 3rd IEE International Seminar on Medical Applications of Signal Processing, pp.16/1-16/4 (2005)

    Google Scholar 

  11. Grill, W., Kirsch, R.: Neuroprosthetic applications of electrical stimulation. Assistive Technology 12(1), 6–16 (2000)

    Article  Google Scholar 

  12. Hinterberger, T., Veit, R., Wilhelm, B., Weiscopf, N., Vatine, J., Birbaumer, N.: Neuronal mechanisms underlying control of a brain-computer interface. European Journal of Neuroscience 21(11), 3169–3181 (2005)

    Article  Google Scholar 

  13. Kennedy, P., Bakay, R., Moore, M., Adams, K., Goldwaith, J.: Direct control of a computer from the human central nervous system. IEEE Transactions on Rehabilitation Engineering 8, 198–202 (2000)

    Article  Google Scholar 

  14. Kennedy, P., Andreasen, D., Ehirim, P., King, B., Kirby, T., Mao, H., Moore, M.: Using human extra-cortical local field potentials to control a switch. Journal of Neural Engineering 1(2), 72–77 (2004)

    Article  Google Scholar 

  15. Mann, S.: Wearable Computing: A first step towards personal imaging. Computer 30(2), 25–32 (1997)

    Article  MathSciNet  Google Scholar 

  16. Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., Wise, S.: Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. National Academy of the USA 100(19), 11041–11046 (2003)

    Article  Google Scholar 

  17. Penny, W., Roberts, S., Curran, E., Stokes, M.: EEG-based communication: A pattern recognition approach. IEEE Transactions on Rehabilitation Engineering 8(2), 214–215 (2000)

    Article  Google Scholar 

  18. Pinter, M., Murg, M., Alesch, F., Freundl, B., Helscher, R., Binder, H.: Does deep brain stimulation of the nucleus ventralis intermedius affect postural control and locomotion in Parkinson’s disease? Movement Disorders 14(6), 958–963 (1999)

    Article  Google Scholar 

  19. Reger, B., Fleming, K., Sanguineti, V., Simon Alford, S., Mussa-Ivaldi, F.: Connecting Brains to Robots: an artificial body for studying computational properties of neural tissues. Artificial life 6(4), 307–324 (2000)

    Article  Google Scholar 

  20. Rizzo, J., Wyatt, J., Humayun, M., DeJuan, E., Liu, W., Chow, A., Eckmiller, R., Zrenner, E., Yagi, T., Abrams, G.: Retinal Prosthesis: An encouraging first decade with major challenges ahead. Opthalmology 108(1) (2001)

    Google Scholar 

  21. Roitberg, B.: Noninvasive brain-computer interface. Surgical Neurology 63(3), 195 (2005)

    Article  Google Scholar 

  22. Warwick, K.: I Cyborg. University of Illinois Press (2004)

    Google Scholar 

  23. Warwick, K., Gasson, M., Hutt, B., Goodhew, I., Kyberd, P., Andrews, B., Teddy, P., Shad, A.: The application of implant technology for cybernetic systems. Archives of Neurology 60(10), 1369–1373 (2003)

    Article  Google Scholar 

  24. Warwick, K., Gasson, M., Hutt, B., Goodhew, I., Kyberd, P., Schulzrinne, H., Wu, X.: Thought Communication and Control: A First Step Using Radiotelegraphy. IEE Proceedings on Communications 151(3), 185–189 (2004)

    Article  Google Scholar 

  25. Warwick, K., Gasson, M., Hutt, B., Goodhew, I.: An Attempt to Extend Human Sensory Capabilities by means of Implant Technology. In: Proc. IEEE Int. Conference on Systems, Man and Cybernetics, Hawaii, pp. 1663–1668 (2005)

    Google Scholar 

  26. Wolpaw, J., McFarland, D., Neat, G., Forheris, C.: An EEG based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78, 252–259 (1990)

    Article  Google Scholar 

  27. Pan, S., Warwick, K., Gasson, M., Burgess, J., Wang, S., Aziz, T., Stein, J.: Prediction of parkinson’s disease tremor onset with artificial neural networks. In: Proc. IASTED Conference BioMed 2007, Innsbruck, Austria, pp. 341–345 (2007)

    Google Scholar 

  28. Warwick, K.: The promise and threat of modern cybernetics. Southern Medical Journal 100(1), 112–115 (2007)

    Article  Google Scholar 

  29. Warwick, K., Gasson, M.N.: Practical Interface Experiments with Implant Technology. In: Sebe, N., Lew, M., Huang, T.S. (eds.) ECCV/HCI 2004. LNCS, vol. 3058, pp. 7–16. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Xie, S., Yang, Z., Yang, Y.: Brain-computer interface based on event-related potentials during imitated natural reading. International Journal of Psychology 39(5-6), 138 (2004)

    Google Scholar 

  31. Yoo, S., Fairneny, T., Chen, N., Choo, S., Panych, L., Park, H., Lee, S., Jolesz, F.: Brain-computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15(10), 1591–1595 (2004)

    Article  Google Scholar 

  32. Yu, N., Chen, J., Ju, M.: Closed-Loop Control of Quadriceps/Hamstring activation for FES-Induced Standing-Up Movement of Paraplegics. Journal of Musculoskeletal Research 5(3), 173–184 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Warwick, K., Gasson, M. (2008). Implantable Computing. In: Cai, Y. (eds) Digital Human Modeling. Lecture Notes in Computer Science(), vol 4650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89430-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89430-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89429-2

  • Online ISBN: 978-3-540-89430-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics