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Abstract. Symmetries are intrinsic to many combinatorial problendduding
Boolean Satisfiability (SAT) and Constraint Programmin@)Qn SAT, the iden-
tification of symmetry breaking predicates (SBPs) is a \Wathwn, often effec-
tive, technique for solving hard problems. The identifisatof SBPs in SAT has
been the subject of significant improvements in recent yeassilting in more
compact SBPs and more effective algorithms. The identifinaif SBPs has also
been applied to pseudo-Boolean (PB) constraints, showmatgsymmetry break-
ing can also be an effective technique for PB constraintss phper extends
further the application of SBPs, and shows that SBPs candeified and used
in Maximum Satisfiability (MaxSAT), as well as in its most Wwkhown variants,
including partial MaxSAT, weighted MaxSAT and weightedtmmMaxSAT. As
with SAT and PB, symmetry breaking predicates for MaxSAT =sadants are
shown to be effective for a representative number of proldemains, allowing
solving problem instances that current state of the art Max®lvers could not
otherwise solve.

1 Introduction

Symmetry breaking is a widely used technique for solving loimtorial problems.
Symmetries have been extensively studied in Boolean Sty (SAT) [15,4,7,
1], and are regarded as an essential technique for solviegjfepclasses of problem
instances. Symmetries have also been widely used for gpbonstraint satisfaction
problems (CSPs) [11]. More recent work has shown how to agytymetry breaking
in pseudo-Boolean (PB) constraints [2] and also in soft tairgs [24]. It should be
noted that symmetry breaking is viewed as an effective pratgolving technique, ei-
ther for SAT, PB or CP, that is often used as an optional teglmito be used when
default algorithms are unable to solve a given problem ntsta

In recent years there has been a growing interest in algositior MaxSAT and
variants [16, 17,26, 13,14, 18, 21, 20], in part because @fvitde range of potential
applications. MaxSAT and variants represent a more geffienalework than either
SAT or PB, and so can naturally be used in many practical egidins. The interest
in MaxSAT and variants motivated the development of a newegaion of MaxSAT
algorithms, remarkably more efficient than early MaxSAToaldhms [25, 5]. Despite
the observed improvements, there are many problems siiltémplex for MaxSAT

* This paper extends a preliminary technical report [19] @shme subject.
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algorithms to solve [3]. Natural lines of research for imgng MaxSAT algorithms in-
clude studying techniques known to be effective for eith&T,$B or CP. One concrete
example is symmetry breaking. Despite its success in SATamRBCP, the usefulness
of symmetry breaking for MaxSAT and variants has not beeroilnghly investigated.

This paper addresses the problem of using symmetry breakif@axSAT and in
its most well-known variants, partial MaxSAT, weighted M and weighted partial
MaxSAT. The work extends past recent work on computing sytriesefor SAT [1]
and PB constraints [2] by computing automorphisms on cdigraphs obtained from
CNF or PB formulas, and by showing how symmetry breaking ipegds [7, 1] can
be exploited. The experimental results show that symmaeteaking is an effective
technique for MaxSAT and variants, allowing solving prablenstances that state of
the art MaxSAT solvers could not otherwise solve.

The paper is organized as follows. The next section intredube notation used
throughout the paper, provides a brief overview of MaxSAd eariants, and also sum-
marizes the work on symmetry breaking for SAT and PB conssaiAfterwards, the
paper describes how to apply symmetry breaking in MaxSAT \arihnts. Experi-
mental results, obtained on representative problem instafrom the MaxSAT eval-
uation [3] and also from practical applications [1], dentosite that symmetry break-
ing allows solving problem instances that could not be sblygany of the available
state of the art MaxSAT solvers. The paper concludes by suinimgrelated work, by
overviewing the main contributions, and by outlining difens for future work.

2 Preliminaries

This section introduces the notation used through the pifgeover, this section sum-
marizes relevant results in symmetry identification andrextny breaking, and devel-
ops extensions to existing results, which will serve forlgimg symmetry breaking in
MaxSAT. Finally, this section also summarizes the MaxSAdlgpem and its variants.

2.1 Propositional Satisfiability

The usual definitions of propositional logic are assumed.Xe= {x1,x2,...,2,}
denote a set of propositional variables. A propositionahfigla, in conjunctive normal
form (CNF) is a conjunction of clauses. A clausés a disjunctions of literals. A literal
is either a variablea € X) or its complement®, with x € X). Where appropriate,
clauses are viewed as sets of literals, definedkorand CNF formulas are viewed as
set of clauses.

A truth assignment is a functiad : X — {0, 1}. The usual semantics of proposi-
tional logic is used for associating values with formulasegitruth assignments to the
variables. Assignments serve for computing the valuegertlis, clauses and the com-
plete CNF formula, respectively(l), A(w) andA(p) 3. As a result, the truth value of

3 The use ofA for describing the truth value of clauses and CNF formulasisften used abuse
of notation.
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literals, clauses and CNF formulas can be defined as follows:

Al = { 1 - Az if 1=z @
A(w) = max{A(l) |l € w} (2)
Alp) = min{A(w) |w € ¢} (3)

A clause is said to bsatisfiedf at least one of its literals assumes value 1. If all literal
of a clause assume value 0, then the clausegatisfiedA formula is satisfied if all
clauses are satisfied, otherwise it is unsatisfied. A trutigament that satisfieg is
referred to asnodel The set of models op is denoted byM (¢). The propositional
satisfiability (SAT) problem consists in deciding whetheere exists an assignment to
the variables such thatis satisfied.

2.2 Symmetries

A symmetry is an operation that preserves the constraintstrerefore also preserves
the solutions of a problem instance [6]. For a set of symmetjects, it is possible to
obtain the whole set of objects from any of the objects. Theirhtion of symmetries
has been extensively studied in CP and SAT [15, 4, 22, 7]. Wi&hgoal of developing
a solution for breaking symmetries in MaxSAT, this sectioovides a few necessary
definitions related with symmetries in propositional fotesy7].

For a setX of variables, gpermutationof X is a bijective functionr : X — X,
and the image of underr is denoted:™. The set of all permutations of is denoted
by Px, and this set is a group under the composition operatiom@tations can be
extended to literals, clauses and formulas, by replacimd éteral by its permuted
literal. As a resultyp™ = A;w], andw] = V; [T. MoreoverT = z7 if [; = z;, and
Z;T = E if lj =x;.

Permutations also map truth assignments to truth assigisnien € Py, then each
truth assignmentl is mapped into a new truth assignmédt where™(x) = A(z™).

Given a formulap andw € Px, w is asymmetryor automorphismiff ©™ = ¢.
Moreover,S, represents the set of symmetriesofA well-known result in symmetry
breaking for SAT is the following [7]:

Proposition 1 (Proposition 2.1 in [7]).Lety be a CNF formula oveX, 7 € S, and
A atruth assignment ak. ThenA € M(p) iff T4 € M(p).

Proposition 1 can be extended to account for the number atisfied clauses given
an assignment. Essentially, the number of unsatisfied etatemainsinchangedn
the presence of permutations. A permutation maps eachectausnother clause. For
each assignment, each unsatisfied clause is mapped to antzsthse which is also
unsatisfied.

Letu(p,.A) denote the number of unsatisfied clauses of formidaren assignment
A. ClearlyM(p) = {A]| u(¢, A) = 0}. Then the following holds:

Proposition 2. Let ¢ be a CNF formula oveX, 7 € S, and A a truth assignment
of X. Thenu(p, A) = u(¢™, "A).
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Proof: The proof follows from the discussion above. Symmetries rmiapses into
clauses. Unsatisfied clauses will be mapped into unsatistfedes, and the mapping is
one-to-one. ]

Proposition 2 is used in the following sections for validgtthe correctness of sym-
metry breaking for MaxSAT and extensions.

It is also known thatS,, induces an equivalence relation on the truth assignments
of X. Moreover, observe that for each equivalence class, thebauwf unsatisfied
clauses is the same. Symmetry breaking predicates (SB&s)ad for selecting a re-
duced set of representatives from each equivalence cldsall{i one representative
from each equivalence class).

2.3 Symmetry Breaking

Given the definition of symmetries, symmetry breaking pratéis target the elimination
of all but one of the equivalent objects [7, 1]. Symmetry Bieg is expected to speed
up the search as the search space gets reduced. For sp@tifenps where symmetries
may be easily found this reduction may be significant. Nogles, the elimination
of symmetries necessarily introduces overhead that isatege¢o be negligible when
compared with the benefits it may provide.

The most well-known strategy for eliminating symmetrieS&T consists in adding
symmetry breaking predicates (SBPs) to the CNF formulagBPs are added to the
formula before the search starts. The symmetries may bdifiéerfor each specific
problem, and in that case it is required that the symmetnidfsa problem are identified
when creating the encoding. Alternatively, one may giverenfda to a specialized tool
for detecting all the symmetries [1]. The resulting SBPssebne representative from
each equivalence class. In case all symmetries are brokBmee assignment, instead
of n assignments, may satisfy a set of constraintseing the number of elements in a
given equivalence class. The most often used approach fstreeting SBPs consists
in selecting the least assignment in each equivalence eagdy implementing predi-
cates that compare pairs of truth assignments. Other appeeanclude remodeling the
problem [23] and breaking symmetries during search [12ln&deling the problem im-
plies creating a different encoding, e.g. obtained by dedimi different set of variables,
in order to create a problem with less symmetries or even abak. Alternatively, the
search procedure may be adapted for adding SBPs as the peacekds to ensure that
any assignment symmetric to one assignment already coadigéll not be explored
in the future, or by performing checks that symmetric eglembassignments have not
yet been visited.

Currently available tools for detecting and breaking synmies for a given formula
are based on group theory. From each formula a group is ¢xttawhere a group
is a set of permutations. A permutation is a one-to-one spardence between a set
and itself. Each symmetry defines a permutation on a setesfil&. In practice, each
permutation is represented by a product of disjoint cy&esh cyclgl; I3 . .. I,,) with
sizem stands for the permutation that mdpsn/;; ;1 (with 1 < i <m — 1) andl,, on
l1. Applying a permutation to a formula will produce exactlyg ttame formula.
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Example 1.Consider the following CNF formula:
» = (Il V SCQ) A\ (1_71 \Y IQ) A\ (S_CQ) A\ (Ig \Y IQ) A\ (S_Cg \Y IQ)

The permutations identified fay are (x3 z3) and (x; z3)(Z1 Z3). (The permutation
(1 Z1) is implicit.) The formula resulting from the permutatidns Z3) is obtained
by replacing every occurrence of by z3 and every occurrence af by x3. Clearly,
the obtained formula is equal to the original formula. Thmsdappens when applying
the permutation(x; xz3)(Z1 Z3): replacingz; by xs3, 3 by z1, &1 by z3 andzs by
Z; produces the same formula. From [7, 1], selection of thet lassignment in each
permutation yields the symmetry breaking predicatg, = (Z3) A (T1 V x3).

2.4 Maximum Satisfiability

Given a propositional formula, the MaxSAT problem is defined as finding an assign-
ment to variables iy such that the number of satisfied clauses is maximized. (M&xS
can also be defined as finding an assignment that minimizesutinder of unsatisfied
clauses.) Well-known variants of MaxSAT include partial AT, weighted MaxSAT
and weighted partial MaxSAT.

For partial MaxSAT, a propositional formulais described by the conjunction of
two CNF formulasps andyy,, whereyp, represents theoftclauses angb, represents
thehard clauses. The partial MaxSAT problem over a propositionahiday = @5, A
s consists in finding an assignment to the problem variablels that all hard clauses
(r) are satisfied and the number of satisfied soft clausgsi§ maximized.

For weightedMaxSAT, each clause in the CNF formula is associated to a non-
negative weight. A weighted clause is a pgir, ¢) wherew is a classical clause and
¢ is a natural number corresponding to the cost of unsatigfyinGiven a weighted
CNF formulayp, theweightedMaxSAT problem consists in finding an assignment to
problem variables such that the total weight of the unsatislauses is minimized,
which implies that the total weight of the satisfied clause®aximized.

For theweighted partialMaxSAT problem, the formula is the conjunction of a
weighted CNF formula (soft clauses) and a classical CNF @itarthard clauses). The
weighted partial MaxSAT problem consists in finding an assignt to the variables
such that all hard clauses are satisfied and the total wefggdtisfied soft clauses is
maximized. Observe that, for both partial MaxSAT and weaghtartial MaxSAT, hard
clauses can also be represented as weighted clauses. Baldsses one can consider
that the weight is greater than the sum of the weights of tfteckuses. This allows a
more uniform treatment of hard and weighted soft clauses.

MaxSAT and variants find a wide range of practical appligaidhat include schedul-
ing, routing, bioinformatics, and design automation. M@, MaxSAT can be used
for solving pseudo-Boolean optimization [14]. The praatiapplications of MaxSAT
motivated recent interest in developing more efficient atgms. The most efficient
algorithms for MaxSAT and variants are based on branch anddsearch, using ded-
icated bounding and inference techniques [16, 17, 13, lal}ier bounding techniques
include, for example, the use of unit propagation for idgimg necessarily unsatisfied
clauses, whereas inference techniques can be viewed astesgsforms of resolution,
with the objective of simplifying the problem instance tdv&o
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3 Symmetry Breaking for MaxSAT

This section describes how to use symmetry breaking in Max$ist, the construc-
tion process for the graph representing a CNF formula idlignieviewed [7, 1], as it
will be modified later in this section. Afterwards, plain M&&T is considered. The
next step is to address symmetry breaking for partial, wetjland weighted partial
MaxSAT.

3.1 From CNF Formulas to Colored Graphs

Symmetry breaking for MaxSAT and variants requires a few ifications to the ap-
proach used for SAT [7, 1]. This section summarizes the tmgicoach, which is then
extended in the following sections.

Given a graph, thgraph automorphisnproblem consists in finding isomorphic
groups of edges and vertices with a one-to-one correspardbncase of graphs with
colored vertices, the correspondence is made betweere®kiith the same color. It
is well-known that symmetries in SAT can be identified by m&tthn to a graph au-
tomorphism problem [7, 1]. The propositional formula isnegented as an undirected
graph with colored vertices, such that the automorphisrhéngraph corresponds to a
symmetry in the propositional formula.

Given a propositional formul@, a colored undirected graph is created as follows:

— For each variable; € X add two vertices to represent andz;. All vertices are
associated with variables are colored with color 1;

— For each variable; ¢ X add an edge between the vertices representjramdz;;,

— For each binary clause; = (I; vV l;) € ¢, add an edge between the vertices
representing; andl;

— For each non-binary clausg € ¢ create a vertex colored with color 2;

— For each literal; in a non-binary clause;, add an edge between the vertices
representing the literal and the clause.

Example 2.Figure 1 shows the colored undirected graph associatedhgt@NF for-
mula of Example 1. Vertices with shaperepresent color 1 and vertices with shape
o represent color 2. Vertex 1 correspondseiQ 2 to o, 3 toxs, 4 toZy, 5t0 75, 6

to Z3 and 7 to unit claus€z,). Edges 1-2, 2-3, 2-4 and 2-6 represent binary clauses
and edges 1-4, 2-5 and 3-6 link complemented literals. Firedge 5-7 associates the
correct literal with the unit clause.

Observe that for binary clauses it suffices to connect thiécesrof the literals as-
sociated with the clause [1].

3.2 Plain Maximum Satisfiability

Let ¢ represent the CNF formula of a MaxSAT instance. Moreoverylg, be the
CNF formula for the symmetry-breaking predicate obtainét & CNF symmetry tool
(e.g. Shattef [1] built on top of Saucy [8]). All clauses ip are effectivelysoftclauses,

4 Available from http://www.eecs.umich.edufaloul/Tools/shatter/.
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o e VertexMapping
1 |literal z;
2 |literal z2
3 |literal z3
() - -
2 5} <7> 4 |literal z;
5 |literal
6 |literal z3
e e 7 |clause(Z2)
(a) Colored graph (b) Vertex mapping

Fig. 1. Colored graph for Example 2

for which the objective is to maximize the number of satisfaduses. In contrast,
the clauses i, arehard clauses, which must necessarily be satisfied. As a result,
the original MaxSAT problem is transformed into a partialA8AT problem, where
denotes the soft clauses apgl, denotes the hard clauses. The solution of the partial
MaxSAT problem corresponds to the solution of the original8AT problem.

Example 3.As shown earlier, for the CNF formula of Example 1, the getest&BP
(e.g. by Shatter) isps,, = (Z3) A (Z1 V x3). As a result, the resulting instance of
partial MaxSAT will bey’ = (pn A @s) = (sop A ). The addition of the clauses
associated with the SBP imply; = 0 andxz; = 0. Observe that if there exists a
MaxSAT solution forp with 3 = 1 orz; = 1, then not only it cannot have a smaller
number of unsatisfied clauses thah but also such a solution must be included in an
equivalent class for which there is at least one represeaiatthe solutions of’.

As the previous example suggests, the hard clauses repeddeyny,,, do not
change the solution of the original MaxSAT problem. Indeteé, construction of the
symmetry breaking predicate guarantees that the maximunbeau of satisfied soft
clauses remains unchanged by the addition of the hard dause

Proposition 3. The maximum number of satisfied clauses for the MaxSAT pnable
and the partial MaxSAT problefip A ¢.,) are the same.

Proof: From Proposition 2 it is known that symmetries maintain theber of unsat-
isfied clauses, and this also holds for the equivalenceesagsiuced by symmetries.
Moreover, symmetry breaking predicates allow for at leaxs uth assignment from
each equivalence class. Hence, at least one truth assigfmorarthe equivalence class
that maximizes the number of satisfied clauses will sattefysymmetry breaking pred-
icate, and so the solution of the MaxSAT problem is preserved [

3.3 Partial and Weighted Maximum Satisfiability

For partial MaxSAT, the generation of SBPs needs to be madifibe graph repre-
sentation of the CNF formula must take into account the ers® of hard and soft
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clauses, which must be distinguished by a graph automarpalgorithm. Symmetric
objects for problem instances with hard and soft clausesbbsih a correspondence
either between hard clauses or between soft clauses. Inwthrds, when applying a
permutation hard clauses can only be replaced by other taundes, and soft clauses
by other soft clauses. In order to address this issue, tleeambfraph generation needs
to be modified. In contrast to the MaxSAT case, binary claasesot handled differ-
ently from other clauses, and must be represented as \&ititiee colored graph. This
is necessary for distinguishing between hard and soft pinkuses, and in general
between binary clauses with different weights.

For the partial MaxSAT problem, clauses can now have one ofttlors. A vertex
with color 2 is associated with each soft clause, and a vevtéx color 3 is associ-
ated with each hard clause. (As before, a vertex with colarrtesponds to a literal.)
This modification ensures that any identified automorphisargntees that soft clauses
correspond only to soft clauses, and hard clauses corrdgpdyito hard clauses. More-
over, the procedure for the generation of SBPs from the gréaynd by a graph auto-
morphism tool remains unchanged, and the SBPs can be adtlezlddginal instance
asnewhard clauses. The resulting instance is also an instancartéipiMaxSAT. Cor-
rectness of this approach follows from the correctnessepthin MaxSAT case.

The solution for weighted MaxSAT and for weighted partial®8aT is similar to
the partial MaxSAT case, but now clauses with different Wedgare represented by
vertices with different colors. This guarantees that thmugs found by the graph auto-
morphism tool take into consideration the weight of eaclusta Let{c;, ca, ..., c;}
denote the distinct clause weights in the CNF formula. Edabsew; of weight¢;,
represented asv;, ¢;) is associated with a vertex of colos- 1 in the colored graph. In
case there exist hard clauses, an additional dolpr2 is used, and so each hard clause
is represented by a vertex with coler+ 2 in the colored graph. Associating distinct
clause weights with distinct colors guarantees that thplgeaitomorphism algorithm
can only make the correspondence between clauses with e waight. Moreover,
the identified SBPs result in nelard clauses that are added to the original problem.
For either weighted MaxSAT or weighted partial MaxSAT, tlesult is an instance of
weighted partial MaxSAT. As before, correctness of thisrapph follows from the
correctness of the plain MaxSAT case.

Example 4.Consider the following weighted partial MaxSAT instance:

o= (x1 Va2, 1) AN (ZT1V 22,1) A (Z2,5) A
(i‘3 \Y $2,9) A\ (,Tg \Y .%'2,9)

for which the last two clauses are hard. Figure 2 shows theredlundirected graph
associated with the formula. Clauses with different wesghre represented with differ-
ent colors (shown in the figure with different vertex shapéspraph automorphism
algorithm can then be used to generate the symmetry bregkedjcatesp.,, =
(Z1) A (Z3), consisting of two hard clauses. As a result, the assigrsngnt 0 and
x3 = 0 become necessary.
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VertexMapping
1 |literal 2
2 |literal 2
3 |literal zs
4 |literal 1
(5) A 5 |literal z2
~ 6 |literal zs
7 |clause(z: V x2,1)
3 @ 8 |[clause(Z1 V z2,1)
9 [clause(Zz,5)
10 (clause(zs V z2,9)
11 [clause(zs V 22, 9)
(a) Colored graph (b) Vertex mapping

Fig. 2. Colored graph for Example 4

Table 1. Problem transformations due to SBPs

Original MS |PMS WMS |WPMS
With Symmetrie§PMSPMSWPMSWPMS

Proposition 4. The maximum number of satisfied clauses for the weightedigpar
MaxSAT problenp and the resulting weighted partial MaxSAT problépn ¢4, ) are
the same.

Proof: (Sketch) The proof is similar to the proof of Proposition 8t moting that
weights partition the set of clauses into sets of clausdsctia be mapped into each
other. Since mappings are between clauses with the sameétgjeige previous results
(from Propositions 2 and 3) still hold. [

Table 1 summarizes the problem transformations describéis section, where
MS represents plain MaxSAT, PMS represents partial MaxSWV,S represents weigh-
ted MaxSAT, and WPMS represents weighted partial MaxSAE 0$e of SBPs intro-
duces a number of hard clauses, and so the resulting probleregther partial MaxSAT
or weighted partial MaxSAT.

3.4 Evaluating Alternative Formulations

Even though the proposed approach for breaking symmetnies ot seem amenable
to further optimizations for the MaxSAT and partial MaxSAd&ses, it is interesting
to investigate whether it is possible to optimize the apgioautlined in the previous
section for the weighted variants of MaxSAT, e.g. by reoigiag clause weights. This
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section argues that, provided some simple conditions he&dranging weights cannot
induce stronger symmetry breaking predicates.

Example 5.Consider the weighted MaxSAT formula:
o= (21 VT2 T)N(T3V 24,3) N (T3 V 24,4) (4)

The symmetries for this formula ate; Z2) and(z3Z4). Clearly, itis possible to induce
more symmetries by considering the following modification:

o= (21 VZT2,3) A (21 V T2,4) A (T3 V 24,3) A (T3 V 4,4) (5)
In addition to the previous symmetries, one now also obtaings)(z2 z4).

The previous example suggests that by rearranging weigtdsntay be able to
increase the number of identified symmetries. As the examlpte suggests, this can
only happen when a clause is associated withre than one single weight. For the
previous examplézs Vx,) is associated with weights 3 and 4. One simple way to tackle
this problem is to require that multiple occurrences of thme clause be aggregated
into a single clause, i.e. multiple occurrences of the salangse are represented by a
single clause and the multiple weights are added.

Proposition 5. If each clause has a single occurrence in formulahen splitting the
weight of a clause induces no additional symmetries.

Proof: Suppose that each clause has a single occurrence, and ditidraad symme-
tries could be identified by splitting the weightof a single clause;. Without loss of
generality assume that weightis split intoc;, andc;,. If additional symmetries can
now be identified, thew; is mapped to clause;, due toc;, and to clause;, due to
ci,. However, since each variable is mapped to some other Veyidienw;, andw;,
must be the same clause; but this is a contradiction. n

The previous result ensures that the approach outlineddatic®e3.3, for comput-
ing symmetry breaking predicates for the weighted vanegiof MaxSAT, cannot be
improved upon by rearranging clause weights, provided etelse has a single occur-
rence in the formula. Clearly, this is not the case with thiiereexample.

4 Experimental Results

The approach outlined in the previous sections for gemeg&@BPs for MaxSAT has
been implemented in MXSATSBP °. MAXSAT SBP interfaces &ucy [8], and is orga-
nized similarly to SIATTER [1] and SHATTERPB [2].

The experimental setup has been organized as follows, Bit$he instances from
the first and second MaxSAT evaluations (2006 and 2007) [3¢wen. A timeout of
1000s of CPU time was considered, and instances requiring than 1000s of CPU

5 The MaxsATSBPtool is available on request from the authors.
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time are declared aborted These results allowed selecting relevant benchmark fami-
lies, for which symmetries occur and which require a nonligédde amount of time for
being solved by both approaches (with or without SBPs). m\féeds, the instances for
which both approaches aborted were removed from the tableswlts. This resulted

in selecting thhanmi ng and theMANN instances for plain MaxSAT, thiei 32 and
again theMANN instances for partial MaxSAT, the f at 500 instances for weighted
MaxSAT and theli r andl og instances for weighted partial MaxSAT.

Besides the instances that participated in the MaxSAT ctitigpe we have in-
cluded additional plain MaxSAT problem instancksl e, Ur g andchnl ). Thehol e
instances refer to the well-known pigeon hole problemlthg instances represent ran-
domized instances based on expander graphs amdhtile instances model the routing
of wires in the channels of field-programmable integratecliiis. These instances refer
to problems that can be naturally encoded as MaxSAT probserdsare known to be
highly symmetric [1]. The approach outlined above was addloved for selecting the
instances to be included in the results.

We have run different publicly available MaxSAT solversyray MiNIMAX SAT 6,
TooLBAR " andMAXSATZ 8. (MAXSATZ accepts only plain MaxSAT instances.) Evi-
dence from the MaxSAT evaluation suggests that the behafidf INIMAX SAT is
similar to TOOLBAR andMAXSATZ, albeit being in general more robust. For this reason,
the results focus on MiIMAX SAT.

Tables 2 and 3 provide the results obtained. In the tablegléifdtes a timeout, and
so the run time is in excess of 1000s. Table 2 refers to plain9A& instances and Ta-
ble 3 refers to partial MaxSAT (PMS), weighted MaxSAT (WMS$paveighted partial
MaxSAT (WPMS) instances. For each instance, the resultsrsinclude the number
of clauses added as a result of SBPs (#ClsSbp), the timeeeldor solving the original
instances (OrigT), i.e. without SBPs, and the time requioetireaking the symmetries
plus the time required for solving the extended formularaféeds (SbpT). (The best
configuration for each instance is outlined in bold.) Momemthe SbpT column is split
into the time to run MXxsSATSBP (MXSBP) and the time to run MiIMAXSAT. In
practice, the time required for generating SBPs is nedégibhe results were obtained
on an Intel Xeon 5160 server (3.0GHz, 1333Mhz FSB, 4MB cacdhe)ing Red Hat
Enterprise Linux WS 4.

The experimental results allow establishing the followdogclusions:

— The inclusion of symmetry breaking éssentiafor solving a number of problem
instances. We should note ttedt the plain MaxSAT instances in Table 2 for which
MINIMAX SAT aborted, are also aborted bp®LBAR andMAXSATZ. After adding
SBPs all these instances become easy to solve by any of tregsdtor the aborted
partial, weighted and weighted partial MaxSAT instance§able 3 this is not
always the case, since a few instances aborted by MAX SAT could be solved by
TooLBAR without SBPs. However, the converse is also true, as thermstances
that were initially aborted by 30LBAR (although solved by M\IMAX SAT) that
are solved by DOLBAR after adding SBPs.

8 http:/iwww.lsi.upc.edutfheras/docs/m.tar.gz
7 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/Tt®arintro
8 http://www.laria.u-picardie.fricli/maxsatz.tar.gz
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Table 2. Results for MNIMAX SAT on plain MaxSAT instances

[Name [#ClsSbp OrigT| SbpTMXSBP|MiniMaxSaf
hamming10-2 81 TO| 0.19 0.00 0.178
hamming10-4 1/886.51496.79 0.01 496.777
hamming6-4 4371 0.7 0.15 0.013 0.137
hamming8-2 85 TO| 0.21 0.016 0.189
hamming8-4 25 0.3 0.1 0.011 0.102
MANN _a27 85 TO| 0.24 0.012 0.226
MANN _a45 790 TO| 0.20 0.011 0.185
MANN _a81 79 TO| 0.19 0.01 0.184
hole10 758 42.11 0.24 0.023 0.213
holell 922510.90 0.47 0.023 0.442
hole12 1102 TO| 1.7§ 0.028 1.752
hole7 362 0.10 0.1 0.007 0.103
hole8 478 0.40 0.13 0.008 0.122
hole9 610 3.68 0.17 0.016 0.15
Urg3.5 29| 83.33 0.27 0.033 0.236
urg4.5 43 TO| 50.88 0.07 50.806
chnllQ11 1954 TO| 41.79 0.053 41.737
chnl1Q12 2142 T0O|328.12 0.057 328.0643
chnl1112 2370 TO|420.19 0.075 420.111

— For several instances, breaking only a few symmetries c&e the difference. We
have observed that in some cases the symmetries are brotkenniticlauses.

— Adding SBPs is beneficial for most cases where symmetries. éxowever, for a
few examples, SBPs may degrade performance.

— There is no clear relation between the number of SBPs addEethaimpact on the
search time.

— The run time of the symmetry breaking tool is in general rigigle.

Overall, the inclusion of SBPs should be considered whené frablem instance
is known to exhibit symmetries. This does not necessarilglynthat after breaking
symmetries the instance becomes trivial to solve, and tarde cases where the new
clauses may degrade performance. However, in a signifiaanber of cases, highly
symmetric problems become much easier to solve after a&B®s. In many of these
cases the problem instances becdrivéal to solve.

5 Related Work

Symmetries are a well-known research topic, that servediddacomplexity in many
combinatorial problems. The first ideas on symmetry breg@kiere developed in the
80s and 90s [15, 4,22, 7], by relating symmetries with thelgr@automorphism prob-
lem, and by proposing the first approach for generating sytnynbeeaking predicates.
This work was later extended and optimized for propositisatisfiability [1].
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Table 3. Results for MNIMAX SAT on partial, weighted and weighted partial MaxSAT instances

[Name [MStypd#ClsSbp OrigT| SbpTMXSBP|MiniMaxSat

ii32e3 PMS 175 94.40 37.63 0.482 37.15
ii32e4 PMS 2060175.07129.06 0.787 128.27
c-fat500-10 WMS 2| 57.79 11.62 0.02§ 11.591
c-fats500-1 | WMS 112 0.03 0.09 0.016 0.0446
c-fat500-2 | WMS 12 0.1 0.11 0.011 0.049
c-fats500-5 | WMS 4| 0.1 0.11 0.014 0.091
MANN_a27 WMS 1| TO|880.58 0.047 880.533
MANN _a45 WMS 1} TO|530.84 0.048 530.807
MANN _a81 WMS 1| TO|649.13 0.042 649.084
1502.dir |WPMS| 1560 0.34 10.67 0.754 9.912
29.dir WPMS 132 TO| 28.09 0.031 28.055
54.dir WPMS 98 4.14 0.32 0.029 0.292
8.dir WPMS 58 0.03 0.0§ 0.008 0.039
1502.log |WPMS 812 0.7 0.71 0.32 0.385
29.log WPMS 54| 17.55 0.82 0.026 0.792
404.log WPMS 124 TO| 64.24 0.094 64.15]
54.log WPMS 48 2.37 0.14 0.021 0.139

Symmetries are an active research topic in CP [11]. Appresbbr breaking sym-
metries include not only adding constraints before sea?®} put also reformula-
tion [23] and dynamic symmetry breaking methods [12]. Reeerk has also shown
the application of symmetries to soft CSPs [24].

The approach proposed in this paper for using symmetry brgdér MaxSAT and
variants builds on earlier work on symmetry breaking for PRstraints [2]. Similarly
to the work for PB constraints, symmetries are identified bgstructing a colored
graph, from which graph automorphisms are obtained, whieltteen used to generate
the symmetry breaking predicates.

6 Conclusions

This paper shows how symmetry breaking can be used in Max8&Trets most well-
known variants, including partial MaxSAT, weighted MaxSAdnd weighted partial
MaxSAT. Experimental results, obtained on representaistances from the MaxSAT
evaluation [3] and practical instances [1], demonstrad sgmmetry breaking allows
solving problem instances that no state of the art MaxSAV¥esaould otherwise solve.
For all problem instances considered, the computatiotiattedf computing symme-
tries is negligible. Nevertheless, and as it is the case syithmetry breaking for SAT
and PB constraints, symmetry breaking should be considesexh optional problem
solving technique, to be used when standard techniquesnadgleuto solve a given
problem instance.

The experimental results motivate additional work on cotimgusymmetry break-
ing predicates for MaxSAT. A new more efficient version of 8ahas recently been
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developed [9] and is likely to further reduce the run time domputing symmetries.
Moreover, the use of conditional symmetries could be cansidi[10, 24].
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