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Abstract. Module checking is a well investigated technique for verifying
the correctness of open systems, which are systems characterized by an
ongoing interaction with an external environment. In the classical module
checking framework, in order to check whether an open system satisfies
a required property, we first translate the entire system into an open
model (module) that collects all possible behaviors of the environment
and then check it with respect to a formal specification of the property.
Recently, in the case of closed system, Alur and Yannakakis have consid-
ered hierarchical structure models in order to have models exponentially
more succinct. A hierarchical model uses as nodes both ordinary nodes
and supernodes, which are hierarchical models themselves. ForCTL spec-
ifications, it has been shown that for the simple case of models having
only single-exit supernodes, the hierarchical model checking problem is
not harder than the classical one. On the contrary, for the more general
multiple-exit case, the problem becomes Pspace-complete.
In this paper, we investigate the program complexity of theCTL hierar-
chical module checking problem, that is, we consider the module checking
problem for a fixed CTL formula and modules having also supernodes
that are modules themselves. By exploiting an automata-theoretic ap-
proach through the introduction of hierarchical Büchi tree automata,
we show that, in the single-exit case, the addressed problem remains in
Ptime, while in the multiple-exit case, it becomes Pspace-complete.

1 Introduction

Module checking is a useful technique that allows to verify the correctness of open
systems [KVW01]. While the behavior of a closed system is fully characterized
by internal states, an open system maintains an ongoing interaction with an
external environment, and its behavior is fully affected by this interaction.

Classically, in order to check whether an open system satisfies a required
property, we translate the entire system into a module, that is in a labeled state-
transition graph whose set of states is partitioned into a set of system states
(where the system makes a transition) and a set of environment states (where
the environment makes a transition). Given a module M, describing the system
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to be verified, and a temporal logic formula ϕ, specifying the desired behavior
of the system, module checking asks whether, for all possible environments, M
satisfies ϕ. Therefore, while in model checking it is sufficient to check whether the
full computation tree obtained by unwinding M satisfies ϕ, in module checking
it is necessary to verify that all trees obtained from the full computation tree by
pruning some subtrees rooted in nodes corresponding to choices disabled by the
environment (those trees represent the interactions of M with all the possible
environments) satisfy ϕ. We collect all such trees in a set named exec(M).

As a classic example of closed and open systems, we can think of two drink-
dispensing machines. One machine, which is a closed system, repeatedly boils
water, makes an internal nondeterministic choice, and serves either coffee or tea.
The second machine, which is an open system, repeatedly boils water, asks the
environment to choose between coffee and tea, and deterministically serves a
drink according to the external choice. Both machines induce the same infinite
tree of possible executions. Nevertheless, while the behavior of the first machine
is determined by internal choices solely, the behavior of the second machine
is determined also by external choices, made by its environment. Formally, in
a closed system, the environment cannot modify any of the system variables.
In contrast, in an open system, the environment can modify some of them. In
[KVW01,AMV07], it has been shown that for systems modeled as single modules
and specifications as branching time temporal logic formulas, module checking
is exponentially harder than model checking.

In formal verification a very interesting question is how complex is to check
for system correctness in the case we fix the specification. This question is usually
addressed as the program complexity and in more details concerns the complexity
of the verification question for the set {M | M satisfies ϕ}, for a fixed formula
ϕ[VW86]. Program complexity is receiving great attention in formal verification
due to the fact that often the size of the system widely exceeds that of the
formula, which is usually very small and therefore considered constant. This
allows us to use in practice formal verification techniques whenever they result
tractable with respect to the system. For example, we recall that for finite-state
systems and specifications given as formulas of the branching-time temporal logic
CTL ([CE81]), module checking is Exptime-complete, but the corresponding
problem with a constant size formula is only Ptime-complete [KVW01].

Recently, in the case of complex closed systems, hierarchical structure mod-
els have been usefully considered, in order to have models exponentially more
succinct. A hierarchical model uses as nodes both ordinary nodes or supernodes,
which are models themselves [AY01,ABE+05,LNPP08]. The straightforward way
to analyze a hierarchical closed machine is to flatten it (thus, incurring an ex-
ponential blow up) and apply a model checking tool on the resulting ordinary
model. In [AY01], it has been shown that for linear-time specifications such as
LTL, the cost of flattening can be avoided by showing that the LTL hierarchical
model checking problem is not harder than the classical one. The same happens
for CTL specifications, for models having one exit node. In the general case,
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instead,CTL hierarchical model checking becomes exponentially harder and, in
particular, the program complexity is Pspace-complete.

In this paper, we investigate the program complexity of the module checking
problem forCTL in the case of modules expressed by hierarchical modules, that
is nodes of the module can be ordinary nodes or supernodes which are modules
themselves. As a simple example, consider again the above drink-dispensing
machine. Now suppose that both in the cases the environment makes a coffee or
tea choice, the system allows the environment to have an extra choice between
regular sugar or diet sugar. In both cases, we can remand the choice to another
module. As for non-hierarchical open systems, in case we want to check whether
it is possible for the designed hierarchical open machine to serve coffee with
regular sugar, a straightforward way is to flatten it and then, by using the
classical module checking technique, check whether the flatten module satisfies
the CTL formula AGEF coffe with regular sugar . Unfortunately, by flattening
the hierarchical module, we increase exponentially the size of the module and we
immediately get thatCTL hierarchical module checking is Exptime w.r.t. both
the sizes of the hierarchical module and the formula.

In this paper, we show that for the addressed problem the cost of flattening
can be avoided. In particular, we show that for single-exit hierarchical modules,
the program complexity of the CTL hierarchical module checking problem is
not harder than the classical one, while in the case of multiple-exit hierarchical
modules, the addressed problem becomes Pspace-complete.

For the upper bounds, we use an automata-theoretic approach via tree au-
tomata. In particular, we introduce hierarchical nondeterministic Büchi tree au-
tomata (HNBT) and use a reduction to the emptiness problem for this automata.
In more details, given a hierarchical module M and a CTL formula ϕ, we first
construct in polynomial time an HNBT AM accepting exec(M). The construc-
tion of AM we propose here extends that used in [KVW01] by also taking into
account that M is in a hierarchical shape. Thus, AM will have, for each su-
pernode in the hierarchical module (which is a hierarchical module itself) a cor-
responding supernode (which is a hierarchical automaton itself) with the same
number of exit nodes. From the formula side, accordingly to [KVW00], we con-
struct in exponential time a nondeterministic Büchi tree automaton (NBT) A¬ϕ

accepting all models that do not satisfy ϕ, with the intent to check that none
of them are in exec(M). Thus, we check that M models ϕ for every possible
choice of the environment by checking whether L(AM) ∩ L(A¬ϕ) is empty. To
obtain the result, we first show that the product of the HNBT AM with the
NBT A¬ϕ can be performed in polynomial time, turning into an HNBT having
a number of exit nodes that depends on the number of states of A¬ϕ, which in
turn depends on the size of ϕ. Since we are interested on the program complex-
ity of the hierarchical module checking problem, we assume the formula to be
fixed. Therefore, the obtained HNBT will have multiple exits if AM does, and
a constant number of exit-nodes otherwise. Then, we show that the emptiness
problem for an HNBT can be solved in Ptime if it only admits constant (and in
particular single-) exits, while it is Pspace-complete in the case of multiple ex-
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its. Thus, we get the desired upper bounds. To show matching lower bounds, for
the single-exit case, we recall that the program complexity of the classical mod-
ule checking problem is Ptime-hard and that, for multiple exits, the program
complexity ofCTL hierarchical model checking closed system is Pspace-hard.

The paper is self-contained and is organized as follows. In the next section,
we give basic definitions, introduce open hierarchical state machines, and define
the hierarchical module checking problem forCTL. In Section 3, we briefly recall
NBT and introduce HNBT. Then, we solve the emptiness problem for HNBT.
Finally, in Section 4, we solve the hierarchical module checking problem forCTL.

2 Preliminary

In this section, we introduce the hierarchical module checking problem forCTL.
Let N be the set of positive integers. A tree T is a prefix closed subset of N∗.

The elements of T are called nodes and the empty word ε is the root of T . For
x ∈ T , the set of children of x (in T ) is children(T, x) = {x · i ∈ T | i ∈ N}.
For k ≥ 1, the complete k-ary tree is the tree {1, . . . , k}∗. For x ∈ T , a path
π of T from x is a set π ⊆ T such that x ∈ π and for each y ∈ π such that
children(T, y) 6= ∅, there is exactly one node in children(T, y) belonging to π.
In the following, for a path of T , we mean a path of T from the root ε. For an
alphabet Σ, a Σ-labeled tree is a pair (T, V ), where T is a tree and V : T → Σ
maps each node of T to a symbol in Σ.

In this paper, we consider open systems, i.e. systems that interact with their
environment and whose behavior depends on this interaction. The global behav-
ior of such a system is described by a finite state machine (also called module
[KVW01]) M = (AP, S,E, R, in, L), where AP is a finite set of atomic proposi-
tions, S∪E is a finite set of states partitioned into a set S of system states and a
set E of environment states (we use W to denote S ∪E), R ⊆ W ×W is a total
transition relation, in ∈ W is an initial state, and L : W → 2AP maps each state
w to the set of atomic propositions that hold in w. For (w, w′) ∈ R, we say that
w′ is a successor of w. For each state w ∈ W , we denote by succ(w) the ordered
tuple of w’s successors. When the module M is in a system state ws, then all
the states in succ(ws) are possible next states. On the other hand, when M is
in an environment state we, then the possible next states (that are in succ(we))
depend on the current environment. Since the behavior of the environment is
not predictable, we have to consider all the possible sub-tuples of succ(we). The
only constraint, since we consider environments that cannot block the system, is
that at least one transition from we exists leading into a next state in succ (not
all these transitions may be disabled by the environment).

The set of all the maximal computations of M starting from the initial state
in is described by a W -labeled tree (TM, VM), called computation tree, which is
obtained by unwinding M in the usual way. The problem of deciding, for a given
branching-time formula ψ over AP , whether (TM, L ◦ VM) satisfies ψ, denoted
M |= ψ, is the usual model-checking problem [CE81,QS81]. On the other hand,
for an open system, (TM, VM) corresponds to a very specific environment, i.e. a
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maximal environment that never restricts the set of its next states. Therefore,
when we examine a branching-time specification ψ w.r.t. a module M, ψ should
hold not only in (TM, VM), but also in all the trees obtained by pruning from
(TM, VM) subtrees whose root is a child (successor) of a node corresponding to
an environment state. The set of these labeled trees is denoted by exec(M), and
is formally defined as follows. (T, V ) ∈ exec(M) iff T ⊆ TM, V is the restriction
of VM to the tree T , and for all x ∈ T the following holds:

– if VM(x) = w ∈ S and succ(w) = 〈w1, . . . , wn〉, then children(T, x) =
{x · 1, . . . , x · n} (note that for 1 ≤ i ≤ n, V (x · i) = VM(x · i) = wi);

– if VM(x) = w ∈ E and succ(w) = 〈w1, . . . , wn〉, then there is a sub-
tuple 〈wi1 , . . . , wip〉 of succ(w), with p ≥ 1, such that children(T, x) =
{x · i1, . . . , x · ip} (note that for 1 ≤ j ≤ p, V (x · ij) = VM(x · ij) = wij

).

Intuitively, each labeled tree (T, V ) in exec(M) corresponds to a different
behavior of the environment. In the following, we consider the trees in exec(M)
as 2AP -labeled trees, i.e. taking the label of a node x to be L(V (x)).

In this paper, we consider the branching-time temporal logic CTL as sys-
tem specification. CTL was introduced by Emerson and Clarke in 1981 [CE81]
as a tool for specifying and verifying concurrent programs. CTL formulas are
built from a set AP of atomic propositions using boolean operators, the linear-
temporal operators X (“next time”) and U (“until”), coupled with the path
quantifiers A (“for all paths”) or E (“for some path”). For a formal definition
ofCTL see [CGP99]. The closure cl(ϕ) of aCTL formula ϕ is the set of all sub-
formulas of ϕ, including ϕ. The size |ϕ| of ϕ is defined as the number of elements
in cl(ϕ). Given aCTL formula ϕ, we say that (T, V ) satisfies ϕ if ((T, V ), ε) |= ϕ.

For a module M and a CTL formula ψ, we say that M satisfies ψ, denoted
M |=r ψ, if all the trees in exec(M) satisfy ψ. The problem of deciding whether
M satisfies ψ is called module checking [KVW01]. Note that M |=r ψ implies
M |= ψ (since (TM, VM) ∈ exec(M)), but the converse in general does not hold.
Also, note that M 6|=r ψ is not equivalent to M |=r ¬ψ. Indeed, M 6|=r ψ just
states that there is some tree (T, V ) ∈ exec(M) satisfying ¬ψ.

Open Hierarchical State Machines. An open hierarchical state machine,
or hierarchical module M over a set AP of atomic propositions is a tuple
(M1, . . . ,Mn) of components, where eachMi = (AP ,Si,Ei,Ri, Boxi, Oi, ini, Li,
Yi), 1 ≤ i ≤ n, has the following elements:

– A finite set Si of system nodes;
– A finite set Ei of environment nodes. We assume Si∩Ei = ∅, and Wi = Si∪Ei;
– A finite set Box of boxes (or supernodes). We assume Wi ∩Boxi = ∅;
– An initial node ini of Wi;
– A subset Oi of Wi, called exit-nodes.
– A labeling function Li : Wi → 2AP labeling each node with a subset of AP .
– An indexing function Yi : Boxi → {i + 1, . . . , n} that maps each box of the

i-th component to an index greater than i. That is, if Yi(b) = j, for a box b
of Mi, then b can be viewed as a reference to the component Mj .
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– An edge relation Ri. Each edge in Ri is a pair (u, v) with source u and sink
v: source u either is a node of Mi, or is a pair (u1, u2), where u1 is a box of
Mi with Yi(u1) = j and u2 is an exit-node of Mj , and the sink v is either
a node or a box of Mi.

The edges connect nodes and boxes with one another. Edges entering a box
implicitly connect to the unique initial node of the component associated with
that box. On the other hand, edges exiting a box explicitly specify an exit-
node among the possible exit-nodes of the component associated with that box.
A hierarchical module is closed (called hierarchical model in [AY01]) if for all
components Mi, we have Ei = ∅.

By extending an idea used for closed hierarchical models, we can associate
to a hierarchical module an ordinary flat module, by recursively substituting
each box with the component indexed by the box. Since different boxes can be
associated with the same component, each node can appear in different contexts.
The expanded flat module will be denoted Mf . Its states are tuples 〈u1, . . . , uh〉,
h ≥ 1, whose last component uh is a node, while all the other are boxes. More-
over, each uj belongs to the Mi which the box uj−1 refers to. A state in the flat
module is either a system or environment state depending on whether uh is a
system or an environment node, and also the propositional labeling of the state
is determined by the labeling of uh.

Now we proceed to a formal definition of expansion of a hierarchical module
M = 〈M1, . . . ,Mn〉. For each component Mi, we define the module Mf

i =
(AP, Sf

i , Ef
i , Rf

i , inf
i , Lf

i ) as the expanded structure of Mi obtained as follows:

– inf
i = 〈ini〉;

– The set Sf
i (resp., Ef

i ) of system (resp., environment) nodes ofMf
i is defined

inductively:
• if u is a system (resp., environment) node of Mi then 〈u〉 belongs to Sf

i

(resp., Ef
i );

• if u is a box of Mi with Yi(u) = j, and 〈u1, . . . , uh〉 is a system (resp.,
environment) state of Mf

j , where h ≥ 1, then 〈u, u1, . . . , uh〉 belongs to
Sf

i (resp., Ef
i ).

– The transition relation Rf
i of Mf

i is defined inductively as follows:
• for (u, v) ∈ Ri, if the sink v is a node then (〈u〉, 〈v〉) ∈ Rf

i , and if v is a
box with Yi(v) = j then (〈u〉, 〈v, inj〉) ∈ Rf

i ;
• if w is a box of Mi with Yi(w) = j, and (〈u1, . . . , uh〉, 〈v1, . . . , vh′〉) is

a transition of Mf
j , for h, h′ ≥ 1, then (〈w, u1, . . . , uh〉, 〈w, v1, . . . , vh′〉)

belongs to Rf
i .

– The labeling function Lf
i : W f

i → 2AP of Mf
i (where W f

i = Sf
i ∪ Ef

i ) is
defined inductively as follows:
• if w is a node of Mi, then Lf

i (〈w〉) = Li(w);
• if w = 〈u, u1, . . . , uh〉, where h ≥ 1, and u is a box of Mi with Yi(u) = j,

then Lf
i (w) = Lf

j (〈u1, . . . , uh〉).
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The module Mf
1 is the expanded structure of M and therefore we just indi-

cate it as Mf in the following.
The size |Mi| of Mi is the sum of |Wi|, |Boxi|, and |Ri|. The size of the

hierarchical moduleM is the sum of the sizes of allMi. The nesting depth ofM,
denoted nd(M), is the length of the longest chain i1, i2, . . . , ij of indices such that
a box ofMil

is mapped to il+1. Observe that each state of the expanded structure
is a vector of length at most the nesting depth, and the size of the expanded
module Mf can be exponential in the nesting depth, and is O(|M|nd(M)).

The hierarchical module checking problem for CTL is to decide for a given
hierarchical module M and aCTL formula ϕ, whether Mf |=r ϕ.

As noted above, the last component of every state is a node (all the others
being boxes), and the system or environment nature of the last component as
well as its propositional labeling determines the nature and the propositional
labeling of the entire state, respectively.

In the following sections we will consider the cases of hierarchical module
single-exit (all the Oi contain just element), or multiple-exit and the special case
of hierarchical module with a constant number of exit-nodes (constant-exit).

3 Tree automata

In order to solve the program complexity of the hierarchical module check-
ing problem for CTL, we use an automata theoretic approach; in particular,
we exploit the formalisms of Nondeterministic Büchi Tree Automata (NBT)
[Rab70,VW86] and introduce Hierarchical Nondeterministic Büchi Tree Automata
(HNBT), that is NBT where states can be either ordinary node states or box
states, which are tree automata themselves. Analogously to hierarchical mod-
ules, we consider both the cases single- or multiple-exit HNBT. HNBT extend
to infinite trees the notion of hierarchical automata introduced in [ABE+05] on
infinite words.
Nondeterministic Büchi Tree Automata (NBT). Here, we briefly recall
the definition of NBT over complete k-ary trees, for a given k ≥ 1. Formally, a
NBT is a tuple A = (Σ, Q, in, δ,F), where Σ is a finite input alphabet, Q and
in are as in modules and they represent a finite set of states, and an initial state,
respectively; δ : Q × Σ → 2Qk

is a transition function, and F ⊆ Q is a Büchi
acceptance condition.

Intuitively, when the automaton is in state q, reading an input node x labeled
by σ ∈ Σ, then the automaton chooses a tuple (q1, . . . , qk) ∈ δ(q, σ) and splits
in k copies such that for each 1 ≤ i ≤ k, a copy in state qi is sent to the node
x · i in the input tree.

A run of A on a Σ-labeled k-ary tree (T, V ) (where T = {1, . . . , k}∗) is a
Q-labeled tree (T, r) such that r(ε) = in and for each x ∈ T , we have that
(r(x · 1), . . . , r(x · k)) ∈ δ(r(x), V (x)). For a path π ⊆ T , let inf r(π) ⊆ Q be the
set of states that appear as the labels of infinitely many nodes in π. For a Büchi
condition F ⊆ Q, π is accepting if inf r(π)∩F 6= ∅. A run (T, r) is accepting if all
its paths are accepting. The automaton A accepts an input tree (T, V ) iff there
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is an accepting run of A over (T, V ). The language of A, denoted L(A), is the
set of Σ-labeled (complete) k-ary trees accepted by A. The emptiness problem
for A is to check whether L(A) = ∅. The size |A| of an NBT A is |Q|+ |δ|, note
that |δ| is at most |Σ| · |Q|k+1.

It is well-known that formulas ofCTL can be translated into equivalent tree
automata (accepting the models of the given formula). In particular, given aCTL
formula ϕ one can construct an NBT over k-ary trees, for some degree k ≥ 1,
having as number of states (independent from k) 2O(|ϕ| log(|ϕ|)), as stated in the
following lemma.

Lemma 1 ([KVW00,Var98]).
Given a CTL formula ϕ over AP and k ≥ 1, one can construct a NBT Aϕ with
number of states 2O(|ϕ| log |ϕ|) (independent from k) that accepts exactly the set
of 2AP -labeled complete k-ary trees that satisfy ϕ.

Hierarchical Nondeterministic Büchi Tree Automata(HNBT). We now
introduce HNBT over complete k-ary trees (for a given k ≥ 1), as a hierarchical
extension of NBT. An HNBT A over an alphabet Σ is a tuple 〈A1, . . . ,An〉,
with each Ai such that Ai = (Σ,Wi, δi, Boxi, ini, Oi, Yi,Fi) where Wi, Boxi,
ini, Oi, and Yi are as in the components of hierarchical modules, Fi ⊆ Wi is a
set of accepting states, and δi : (Wi ∪ (Boxi ×

⋃
j>i Oj))×Σ → 2(Wi∪Boxi)

k

. A
tuple (q1, . . . , qk) is in δi(q, σ) only if either q ∈ Wi or q is a pair (b, s), where
b ∈ Boxi with Yi(b) = j and s is an exit-node of Aj . Moreover, each qi can be
either a node state or a box state of Ai.

The size |Ai| is |Wi| + |Boxi| + |δi|, note that |δi| is at most |Σ| · (|Wi| +
|Boxi|)k+2. The size ofA is the sum of the sizes of allAi. Similarly to hierarchical
modules, we can flat a HNBT A into an NBT Af by defining the NBT’s Af

i

similarly to what has been done for Mf
i . Thus a state of Af

i is a tuple consisting
of all box states and having necessarily as last component a node state. A state
of Af

i is final if its last component is in Fj , with j ≥ i. A tree (T, V ) is accepted
by a HNBT A if there is an accepting run of Af on (T, V ). The language L(A)
accepted by A is the set of the accepted trees.

To exploit the automata theoretic approach for the module checking problem
for hierarchical module, we solve the emptiness problem for HNBT.

Lemma 2. The emptiness problem for a single-exit HNBT is in Ptime. The
emptiness problem for a multiple-exit HNBT is in Pspace.

Proof (sketch). For an NBT A, one can check in polynomial time its emptiness
by simply checking whether there exists in A a set G of “good” final states which
is reachable by itself (i.e., for each state w of G there is a run that contains a
subtree starting from w and whose frontier is contained in G) and that from the
initial state of A it is possible to reach G [Rab70,VW86].

We now prove that also in the case of single-exit HNBT we can check empti-
ness in polynomial time, by opportunely embedding a component-wise explo-
ration of the hierarchical automaton into the above NBT’s emptiness algorithm.
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In fact, for a single-exit HNBT A = 〈A1, . . . ,An〉 instead of checking empti-
ness for the flat Af

1 we will use a simple property (checkable in polynomial
time) on suitable NBTs Âi and sets B̂oxi, constructed from Ai. Let us for
the moment give a non-constructive definition of these latter sets: for each i,
let B̂oxi = {b ∈ Boxi | Yi(b) = j, L(Af

j ) 6= ∅}. Moreover, let each Ai =
(Σ, Wi, δi, Boxi, inii, Oi, Yi,Fi), the NBT Âi is a tuple (Σ, Q̂i, îni, δ̂i, F̂i), where

– Q̂i ⊆ Wi ∪Boxi and Wi ⊆ Q̂i;
– F̂i ⊆ Fi ∪Boxi and Fi ⊆ F̂i;

To each Âi can be associated a set of non complete k-ary trees, possibly
having some finite paths, which can be seen, roughly speaking, as accepted by a
Tree Automaton (not a NBT) with the following acceptance conditions: on the
finite paths the acceptance is obtained considering the states of B̂oxi as final
states, while the infinite paths are accepted with the usual Büchi condition F̂i.
To check the emptiness for the given HNBT, we will check whether such set of
trees for Â1 is empty. For each Âi we distinguish three different kinds of paths
π of its runs, all starting from îni:

A. π either is infinite and goes through a state of F̂i infinitely often or is finite
and its last state belongs to B̂oxi.

B. π is a finite path whose last state is in Oi (recall that Oi ⊆ Q̂i, since Wi ⊆ Q̂i)
and π does not contain any state of F̂i.

C. π is a finite path whose last state is in Oi and it does contain at least one
state of F̂i.

Let us now define inductively and bottom-up all Âi and the B̂oxi. For the
base, let Ân = An and B̂oxn = ∅. Suppose now that for 1 ≤ i ≤ n we have
already defined all Âj , for j > i. The sets Q̂i and F̂i contain Wi and Fi, respec-
tively and, given a box b ∈ Boxi such that Yi(b) = j, we have that:

– if there exists a run of Âj containing at least a type-B path and all the
others are either type-A paths or type-C paths, then b ∈ Q̂i.

– if there exists a run of Âj containing at least a type-C path and all the
remaining are of type-A paths, then b ∈ Q̂i and b ∈ F̂i.

– if there exists a run of Âj whose all paths are of type-A paths, then b ∈ B̂oxi

and b ∈ Q̂i.

Moreover îni = ini and

– for q ∈ Wi, δ̂i(q, σ) = δi(q, σ) and
– for q ∈ Boxi ∩ Q̂i, δ̂i(q, σ) = δi((q, s), σ) with s ∈ Oi.

Observe that the set B̂oxi contains a box b ∈ Boxi if it appears in an
accepting run of Af

i . Moreover if there exists a run of Âj containing a type-C
path π, then this run can be taken infinitely often in an accepting run (T, r) of
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Af
i : in this way, in fact, the final state of Âj occurring in π, appears infinitely

often in some paths of (T, r). Thus we consider b as a final state of Âi.
Now it is easy to see that a tree (T, V ) is accepted by Af

i if and only if there
exists a run of Âi whose paths are all of type-A . Observe that the set B̂oxi is
now defined constructively and is consistent with the previous definition.

Now since L(A) 6= ∅ if and only if there exists a tree (T, V ) accepted by Af
1 ,

we have that an algorithm to solve the emptiness problem can be easily given,
based on the construction of Âi’s. Actually it remains to be convinced that the
existence of the runs required in those constructions can be done in polynomial
time. This can be accomplished by using a fixed-point algorithm which resembles
the one given by Rabin in [Rab70] for NBT. In an extended version of the paper
we will give the full details of such algorithm.

Consider now a multiple-exit HNBTA. We now sketch a nondeterministic
algorithm running in polynomial space, and from Savitch’s theorem, we get our
result. As in the single-exit case, we will construct some NBT Âi’s, but now
the construction is accomplished nondeterministically and in a top-down way,
starting from i = 1. To obtain each Âi, the algorithm, for each box b ∈ Boxi

with Yi(b) = j, either guesses that L(Af
j ) 6= ∅ or chooses two (possibly empty)

sets X ⊆ Oj and Y ⊆ Oj and guesses, for some s ∈ Oj , that there exists a run in
Âj having type-B paths from înj to s ∈ X and type-C paths from înj to s ∈ Y .
According to these choices, the NBT Âi is constructed, similarly as in the case
of single-exit. Then the algorithm proceeds by checking the guessed property of
ÂYi(b), for each b ∈ Boxi. In this step ÂYi(b) is constructed, and this obviously,
implies other guesses for the boxes belonging to AYi(b). This chain of guesses
naturally ends when Ân has to be constructed, since Boxn is empty. Observe
that the overall space necessary during the execution of the algorithm does not
exceed the size of A and this concludes the proof. ut

We now conclude this section by showing that the above results are also
tight. For the single-exit case, notice that NBT are a special case of HNBT and
for NBT the emptiness problem is already known to be Ptime-hard.

For the multiple-exit case, we use a polynomial reduction from the model-
checking problem for multiple-exit hierarchical state machines w.r.t constant
CTL formulas, which is known to be Pspace-hard [AY01]. In order to apply this
reduction, we have first to define a cross product between an HNBT A′ and an
NBT A′′, say it A′ ⊗A′′, that allows to construct in polynomial time an HNBT
whose flattening is equivalent to the Cartesian product of the NBT’s A′f and
A′′. We now formally show how to construct A′ ⊗A′′.

LetA′ = 〈A1, . . . ,An〉 be an HNBT, withAi = (Σ, Wi, δi, Boxi, ini, Oi, Yi,Fi),
and A′′ = (Σ, Q, in, δ,F ′′) with Q = {q1, . . . , qm} and in = q1. The product
A′ ⊗A′′ is the HNBT A = 〈A11, . . . ,A1m, . . . ,An1, . . . ,Anm〉, where each com-
ponent Aij = (Σ,Wi × Q, δij , Boxi × Q, (ini, qj), Oi × Q,Yij ,Fij), 1 ≤ i ≤ m
and 1 ≤ j ≤ n, is such that

– Fij = Fi ×F ′′
– Yij(b, q) = m(i′ − 1) + j′ if Yi(b) = i′ and q = qj′ ,
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– if (q′′1 , . . . , q′′k ) ∈ δ(q′′, σ) and (q′1, . . . , q
′
k) ∈ δi(q′, σ) then

• if q′ ∈ Wi then ((q′1, q
′′
1 ), . . . , (q′k, q′′k )) ∈ δij((q′, q′′), σ)

• if q′ = (b, s), with b ∈ Boxi and s ∈ OYi(b), then ((q′1, q
′′
1 ), . . . , (q′k, q′′k )) ∈

δij((b′, s′), σ), where b′ = (b, q), for some q ∈ Q, and s′ = (s, q′′))

Lemma 3. Given an HNBT A′ and an NBT A′′, the HNBT A = A′ ⊗ A′′
accepts the language L(A) = L(A′) ∩ L(A′′) and has size O(|Q|2 · |A′| · |A′′|).

Proof. Let A′ be an HNBT, A′′ be an NBT and A = A′⊗A′′, as described above,
with components Aij . Since Af is not isomorphic to A′f × A′′, we prove the
lemma by showing an isomorphism among the run of Af and those of A′f ×A′′.

Given a run (T, r) of Af , we can define a run (T, r′) of A′f and a run
(T, r′′) of A′′ as follows. The run (T, r′) is obtained by projecting for each
state 〈(q′1, q′′1 ), . . . , (q′h, q′′h)〉 in (T, r) the first components, thus getting the state
〈q′1, . . . , q′h〉 of A′f . The run (T, r′′) of A′′ is obtained by projecting the sec-
ond component of the node in each state (recall that only (q′h, q′′h) is a node,
while all the other are boxes). Symmetrically, given the two runs, we can define
(T, r) of Af . Now it immediately follows that (T, r) is accepting if and only
if (T, r′) and (T, r′′) are both accepting runs. Thus the accepted languages is
L(A) = L(A′) ∩ L(A′′).

Consider now the size of each component Aij : from the definition of the cross
product ⊗, each component Aij is obtained by pairing the initial node ini of Ai

with qj . The number of the states is |Wi| · |Q| and the number of superstates is
|Boxi| · |Q|. The size |δij | of the transition function is bounded by |δi| · |δ| · |Q|,
since when the transition is defined on a pair (b, s) then b can be paired with
any state q ∈ Q. Thus the overall size of A = A′⊗A′′ is O(|Q|2 · |A′| · |A′′|). ut

Let us now turn back to the desired reduction. Let ϕ be a fixedCTL formula
and M be a hierarchical closed state machine with multiple exits. Let AM
be an HNBT obtained from M by considering all its states as accepting and
collecting all its relations in “tree-like” transitions (observe that AM suffices
to be deterministic). More formally, for each Mi = (AP ,Si,Ei,Ri, Boxi, Oi,
ini, Li, Yi), in M we add to AM the component Ai = (2AP ,Wi, δi, Boxi, ini, Oi,
Yi,Fi), where Wi = Si ∪ Ei, Fi = Wi, and δi(w,Li(w)) = {(wi, . . . , wd)} iff,
for each 1 ≤ j ≤ d, (w, wd) ∈ Ri. By Lemma 1, we can construct an NBT Aϕ

accepting all models of ϕ. Note that Aϕ has a fixed size, since ϕ is also fixed.
By Lemma 3, we can construct in polynomial time an HNBT AM⊗ϕ accepting
the intersection1 of AK and Aϕ. Clearly, K satisfies ϕ iff L(AK⊗ϕ) 6= ∅. This,
together with Lemma 2 leads to the desired result.

Theorem 1. ( i) The emptiness problem for a single-exit HNBT is Ptime-
complete. ( ii) The emptiness problem for a multiple-exit HNBT is Pspace-
complete.

1 One can observe that AM may not be complete and that AM and Aϕ may disagree
on the number of node successors. It is not hard to see that, by duplicating successor
states, we can adapt the previous constructions in order to obtain AM and Aϕ as
k-ary complete automata.
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4 Deciding hierarchical Module Checking

In this section, we solve the program complexity of theCTL hierarchical module
checking problem. In particular, we show that this problem is in Ptime for
single-exit modules and in Pspace in the multiple-exit case. By recalling that
the program complexity for the classical CTL module checking is Ptime-hard
and the program complexity for theCTL hierarchical model checking is Pspace-
hard, we get that our results are also tight.

Our solution to both problems is based on an automata–theoretic approach,
by extending an idea of [KVW01]. In practice, we take into account that the
input module is hierarchical. Therefore, we extend [KVW01]’s idea to each com-
ponent of the module and use the automata product⊗ introduced in the previous
section, instead of a classical Cartesian product. In more details, let M be a hi-
erarchial module and ϕ a fixed CTL formula. We decide the module checking
problem for M against ϕ by building an HNBT AM⊗¬ϕ as AM ⊗A¬ϕ. Essen-
tially, the first automaton, AM, is an HNBT that accepts trees of exec(Mf ), and
the second automaton is an NBT A¬ϕ that accepts all trees that do not satisfy
ϕ. Thus, M |=r ϕ iff L(AM⊗¬ϕ) is empty. Now, recall from Lemma 3 that the
cross product between AM and A¬ϕ corresponds to an HNBT (which can be
constructed in polynomial time) whose flattening is equivalent to the Cartesian
product of the NBT’s Af

M and A¬ϕ. The component automata of the obtained
HNBT will have a number of exit nodes that depends on the number of states
of A¬ϕ, which in turn depends, by Lemma 1, on the size of the formula ϕ. Since
here we are interested on the program complexity of the hierarchical module
checking problem, we assume the formula to be fixed. Therefore, AM⊗¬ϕ will
have multiple exits iff AM does, and a constant number of exit nodes, otherwise.

Let us now discuss about the emptiness problem for HNBT’s with a constant
number of exits. That is, we are interested in determining the complexity of the
emptiness problem for the set {A | A is an HNBT with at most d-exit nodes}, for
a fixed natural number d. First observe that in the algorithm we have proposed
in Lemma 2 for checking the emptiness of HNBT’s with single exits, each box
either contributes to check the existence of an accepting run or not at all. On
the opposite, in the multiple-exit case, we have to remember for each box which
exit node ensures acceptance and which does not. Therefore, for each box some
splitting may be required. For instance consider a component Ai with two exit
nodes w1 and w2. It may be that a run exits in w1 trough paths all visiting at
least a final state and in w2 trough a path that does not. Thus, we need to split
Ai into four copies, depending whether both, only w1, only w2, or none can be
considered in the extended set of final states. In general, if we start in Lemma 2
with an HNBT having at most d exit nodes, we need to generate 2d copies of
each component automaton, in the worst case. Since d is a fixed parameter, it
turns out that the emptiness problem also for this automata remains in Ptime
as reported in the following proposition.

Proposition 1. The emptiness problem for a constant-exit HNBT is in Ptime.
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To conclude with our idea of solving the program complexity forCTL hierar-
chical module checking let us give some details on how to construct AM for a hi-
erarchical moduleM = 〈M1, . . . ,Mn〉, with eachMi = (AP ,Si,Ei,Ri, Boxi, Oi,
ini, Li, Yi). First, we recall that each component automaton ofAM can only work
on complete k-ary trees, while trees in exec(Mf ) may be not. To overcome this
problem, we consider an equivalent representation of exec(Mf ) in which all nodes
have degree k = max{bd(w) | w ∈ ⋃

i Si ∪Ei}, where bd(w) denotes the branch-
ing degree of w (i.e. the number of its successors). Now, recall that each tree in
exec(Mf ) is a 2AP -labeled tree that is obtained from (TMf , VMf ) by suitably
pruning some of its subtrees. We can encode the tree (TMf , VMf ) as a 2AP ∪{⊥}-
labeled complete k-ary tree (where ⊥ is a fresh atomic proposition not belonging
to AP ) in the following way: for each node x ∈ TM with d children (x·1, . . . , x·d)
(note that 1 ≤ d ≤ k as Ri is total), we add the children (x ·(d+1), . . . , x ·k) and
label these new nodes with ⊥; finally, for each node x labeled by ⊥ we add recur-
sively k-children labeled by ⊥. Let ({1, . . . , k}∗, V ′) be the tree thus obtained.
Then, we can encode a tree (T, V ) ∈ exec(Mf ) as the 2AP ∪ {⊥}-labeled com-
plete k-ary tree obtained from ({1, . . . , k}∗, V ′) preserving all the labels of nodes
of ({1, . . . , k}∗, V ′) that either are labeled by ⊥ or belong to T , and replacing
all the labels of nodes (together with the labels of the corresponding subtrees)
pruned in (T, V ) with the label ⊥. In this way, all the trees in exec(Mf ) have
the same structure (they all coincide with {1, . . . , k}∗), and they differ only in
their labeling. Thus, the proposition ⊥ is used to denote both “disabled” nodes
and “completion” nodes2. Moreover, since we consider environments that do
not block the system, for each node associated with an enabled environment
node, at least one successor is not labeled by ⊥. Let us denote by êxec(M) the
set of all 2AP ∪ {⊥}-labeled k-ary trees obtained from ({1, . . . , k}∗, V ′) in the
above described manner. We now show an HNBT AM accepting êxec(M). AM
is the tuple 〈A(1,>),A(2,>),A(2,⊥),A(2,`), . . . ,A(n,>),A(n,⊥),A(n,`)〉, where for
1 ≤ i ≤ n and x ∈ {⊥,>,`}, each A(i,x) = 〈Σ,W ′

i , δi, Box′i, (ini, x), O′
i, Y

′
i ,Wi〉

is defined as follows (recall Wi = Si ∪ Ei):

– Σ = 2AP ∪ {⊥};
– W ′

i = Wi×{⊥,>,`}. The automatonA(i,x) starts from (ini, x). For example,
the computation starts from (ini,⊥) whenever a box corresponding to Ai has
been disabled. From states of the form (w,⊥), A(i,x) can read only the letter
⊥, from states of the form (w,>), it can read only letters in 2AP . Finally,
when A(i,x) is in state (w,`), then it can read both letters in 2AP and the
letter ⊥. In this last case, it is left to the environment to decide whether the
transition to a state of the form (w,`) is enabled. The three types of states
are used to ensure that the environment enables all transitions from enabled
system nodes, enables at least one transition from each enabled environment
node, and disables transitions from disabled nodes.

– O′i = Oi × {⊥,>,`}. Clearly, we can have three types of exit nodes.
2 As stated in [KVW01], the use of the atomic proposition ⊥ must be taken into

account while building A¬ϕ. This can be easily handled by opportunely modifying
the formula ϕ by exploiting an argument similar to that used in [KVW01].
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– Box′i = Boxi × {⊥,>,`}. As for states, we can have three types of boxes,
which are used to ensure that, regarding the initial node w of the component
automaton corresponding to a box, the environment can enable all transi-
tions from w whenever w is an enabled system node, enable at least one
transition from w whenever w is an enabled environment node, and disables
transitions from w whenever w is a disabled node.

– Y ′
i is such that Y ′

i (b, x) = Yi(b), x. That is, from a box (b, x), Ai calls the
automaton A(Yi(b),x). Then the computation continues from (inYi(b), x) as
described above.

– The transition function δi : (W ′
i ∪ (Box′i ×

⋃
j>i O′j))×Σ → 2(W ′

i∪Box′i)
k

is
defined as follows. Let z = w ∈ Wi or w ∈ Oj such that z = (b, w) ∈ (Boxi×⋃

j>i Oj) and Yi(b) = j. Let succ(z) = (z1, . . . , zd), with 1 ≤ d ≤ k, and for
m,m′ ∈ {>,`,⊥}, let z′ be either (w, m), if z = w, or z′ = ((b,m′), (w, m)),
if z = (b, w). Then, δi is as follows:
• For w ∈ Wi ∪Oj and m ∈ {`,⊥}, we have

δi(z′,⊥) = {( (z1,⊥), . . . , (zd,⊥), (z,⊥), . . . , (z,⊥)︸ ︷︷ ︸
k pairs

)}

That is, δi(z′,⊥) contains exactly one k-tuple. In this case all the suc-
cessors of the current node are disabled.

• For w ∈ Si ∪ (Sj ∩Oj) and m ∈ {>,`} we have

δi(z′, Li(w)) = {( (z1,>), . . . , (zd,>), (z,⊥), . . . , (z,⊥)︸ ︷︷ ︸
k pairs

)}

• For m ∈ {>,`} and either w ∈ Ei and g = w or w ∈ (Ej ∩ Oj) and
g = b we have δi(z′, Li(w)) =

{ ((z1,>), (z2,`), . . . , (zd,`), (g,⊥), . . . , (g,⊥)),
((z1,`), (z2,>), . . . , (zd,`), (g,⊥), . . . , (g,⊥)),

...
...

((z1,`), (z2,`), . . . , (zd,>), (g,⊥), . . . , (g,⊥) )}.
That is, δi(z′, Li(w)) contains d k-tuples. When the automaton proceeds
according to the i-th tuple, the environment can disable the transitions
to all successors of the current state, except the transition associated
with zi, which must be enabled.

One can be convinced on the fact that A is polynomial in the size of M, by
noting that each A(i,x) has 3·|Mi| states, and |δi| is bounded by O(k·|Ri|). Thus,
by summing up our idea trough the above polynomial construction of AM, the
exponential-constant time construction given by Lemma 1 for A¬ϕ, Lemma 3,
Proposition 1, and Lemma 2 the following result holds.

Theorem 2. The program complexity for the CTL hierarchical module check-
ing problem is Ptime-complete in the case of single-exit modules and Pspace-
complete in in the case of multiple-exit modules.
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5 Conclusions

In this paper, we have introduced and solved the program complexity for the
hierarchical module checking problem for CTL, both in the case of single-exit
and multiple-exit modules. An immediate exponential solution can be obtained
by flattening the hierarchical module and then apply the classical algorithm. By
avoiding the flattening, we have shown algorithms having a better performance
and, in particular, working not harder than those used in the closed hierarchical
system case. As future directions, it would be worth to consider more involved
scenarios both on the module checking side (e.g., pushdown module checking
[BMP05], systems with incomplete information [AMV07]) and on the hierarchi-
cal side (e.g., recursive state machine [ABE+05], with both nodes and boxes
labeled with atomic propositions [LNPP08]).
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