Abstract
We propose Focused Page Rank (FPR) algorithm adaptation for the problem of scientific papers ranking. FPR is based on the Focused Surfer model, where the probability to follow the reference in a paper is proportional to its citation count. Evaluation on Citeseer autonomous digital library content showed that proposed model is a tradeoff between traditional citation count and basic Page Rank (PR). In contrast to basic Page Rank, proposed Focused Surfer model suffers less from the "outbound links" problem. We believe that FPR algorithm is closer to reality because highly cited papers are more visible and tend to attract more citations in future. This is in accordance with the one of the most significant principles of Scientometrics. No need for lexical analysis of the domain corpus and simplicity of implementation are among the strong points of the proposed model and make the proposed ranking technique attractive for academia digital libraries.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Page, L., Brin, S.: The anatomy of a large-scale hypertextual web search engine. In: Proceedings of the Seventh International Web Conference, pp. 107–117 (1998)
Diligenti, M., Gori, M., Maggini, M.: Web Page Scoring Systems for Horizontal and Vertical Search. In: WWW 2002, pp. 84–89. ACM Press, New York (2002)
Chen, P., Xie, H., Maslov, S., Redner, S.: Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics 1(1), 8–15 (2007)
Haveliwala, T.: Efficient Computation of PageRank. Techical report, pp. 84–89 (1999), http://dbpubs.stanford.edu/pub/1999-31
Langville, A.N., Meyer, C.D.: Deeper Inside PageRank. J. Internet Mathematics 15(5), 335–380 (2004)
Kamvar, S., Haveliwala, T., Manning, C., Golub, G.: Extrapolation Methods for Accelerating PageRank Computations. In: WWW 2003. ACM, New York (2003)
Abou-Assaleh, T., Das, T., Weizheng, G., Yingbo, M., O’Brien, P., Zhen, Z.: A Link-Based Ranking Scheme for Focused Search. In: WWW 2007. ACM Press, New York (2007)
Fuyong, Y., Chunxia, Y., Jian, L.: WImprovement of PageRank for Focused Crawler. In: Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, pp. 797–802 (2007)
Glänzel, W.: Bibliometrics as a research field, A course on theory and application of bibliometric indicators, Magyar Tudományos Akadémia, Course Handouts (2003), http://www.norslis.net/2004/Bib_Module_KUL.pdf
Sun, Y., Giles, C.L.: Popularity Weighted Ranking for Academic Digital Libraries (2007)
de Solla Price, D.J.: Little Science - Big Science. Columbia Univ. Press, New York (1963)
Bollen, J., Van de Sompel, H., Balakireva, L., Chute, R.: A ranking and exploration service based on large-scale usage data. In: JCDL, ACM/IEEE, poster. IEEE Computer Society Press, Los Alamitos (2008)
Sobek, M.: The effect of outbound links (2003), http://pr.efactory.de/e-outbound-links.shtml
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krapivin, M., Marchese, M. (2008). Focused Page Rank in Scientific Papers Ranking. In: Buchanan, G., Masoodian, M., Cunningham, S.J. (eds) Digital Libraries: Universal and Ubiquitous Access to Information. ICADL 2008. Lecture Notes in Computer Science, vol 5362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89533-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-89533-6_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89532-9
Online ISBN: 978-3-540-89533-6
eBook Packages: Computer ScienceComputer Science (R0)