Abstract
The Ramsey number for a graph G versus a graph H, denoted by R(G,H), is the smallest positive integer n such that for any graph F of order n, either F contains G as a subgraph or \(\overline F\) contains H as a subgraph. In this paper, we investigate the Ramsey numbers for stars versus small cycle. We show that R(S 8,C 4) = 10 and R(kS 1 + p ,C 4) = k(p + 1) + 1 for k ≥ 2 and p ≥ 3.
This research was supported by the ITB International Research Grants 2007 and 2008.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baskoro, E.T., Hasmawati, Assiyatun, H.: The Ramsey numbers for disjoint unions of trees. Discrete Math. 306, 3297–3301 (2006)
Burr, S.A.: Diagonal Ramsey numbers for small graphs. J. Graph Theory 7, 67–69 (1983)
Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs, III: Small off-Diagonal Numbers. Pac. J. Math. 41, 335–345 (1972)
Hasmawati, Assiyatun, H., Baskoro, E.T., Salman, A.N.M.: The Ramsey numbers for complete bipartite graphs. In: Proceedings of the first International Conference on Mathematics and Statistics, ICOMS-1, Bandung Indonesia, June 19-21 (2006)
Hasmawati, Assiyatun, H., Baskoro, E.T., Salman, A.N.M.: Complete Bipartite Ramsey Numbers. Util. Math. (to appear)
Rosyda, I.: Ramsey numbers for a combination of stars and complete bipartite graphs, Master thesis, Department of Mathematics ITB, Indonesia (2004) (in Indonesian)
Lawrence, S.L.: Cycle-star Ramsey numbers. Notices Amer. Math. Soc. 20, 420 (1973)
Parsons, T.D.: Ramsey Graphs and Block Designs I. Trans. Amer. Math. Soc. 209, 33–34 (1975)
Parsons, T.D.: Ramsey Graphs and Block Designs. J. Combin. Theory Ser. A 20, 12–19 (1976)
Radziszowski, S.P.: Small Ramsey Numbers. Electron. J. Combin. DS1.11 (August 2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hasmawati, Assiyatun, H., Baskoro, E.T., Salman, A.N.M. (2008). Ramsey Numbers on a Union of Identical Stars Versus a Small Cycle. In: Ito, H., Kano, M., Katoh, N., Uno, Y. (eds) Computational Geometry and Graph Theory. KyotoCGGT 2007. Lecture Notes in Computer Science, vol 4535. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89550-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-89550-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89549-7
Online ISBN: 978-3-540-89550-3
eBook Packages: Computer ScienceComputer Science (R0)