Abstract
Training discriminative classifiers for a large number of classes is a challenging problem due to increased ambiguities between classes. In order to better handle the ambiguities and to improve the scalability of classifiers to larger number of categories, we learn pairwise dissimilarity profiles (functions of spatial location) between categories and adapt them into nearest neighbor classification. We introduce a dissimilarity distance measure and linearly or nonlinearly combine it with direct distances. We illustrate and demonstrate the approach mainly in the context of appearance-based person recognition.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nakajima, C., Pontil, M., Heisele, B., Poggio, T.: Full-body person recognition system. Pattern Recognition 36, 1997–2006 (2003)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: NIPS (1997)
Roth, V., Tsuda, K.: Pairwise coupling for machine recognition of handprinted japanese characters. In: CVPR (2001)
Wu, T., Lin, C., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5, 975–1005 (2004)
Dietterich, T., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 263–286 (1995)
Amit, Y., Geman, D., Wilder, K.: Joint induction of shape features and tree classifiers. IEEE Trans. PAMI 19, 1300–1305 (1997)
Moghadam, B., Jebara, T., Pentland, A.: Bayesian face recognition, MERL Technical Report, TR-2000-42 (2002)
Zhang, H., Berg, A., Maire, M., Malik, J.: SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: CVPR (2006)
Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: ICCV (2007)
Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Trans. PAMI 18, 607–616 (1996)
Domeniconi, C., Gunopulos, D.: Adaptive nearest neighbor classification using support vector machines. In: NIPS (2001)
Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning, with application to clustering with side information. In: NIPS (2002)
Shalev-Shwartz, S., Singer, Y., Ng, A.: Online and batch learning of pseudo metrics. In: ICML (2004)
Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. In: NIPS (2005)
Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: NIPS (2003)
Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance functions for shape-based image retreval and classification. In: ICCV (2007)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IJCV 25, 64–577 (2003)
Elgammal, A., Davis, L.S.: Probabilistic tracking in joint feature-spatial spaces. In: ICCV (2003)
Gheissari, N., Sebastian, T., Tu, P., Rittscher, J., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR (2006)
Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance context modeling. In: ICCV (2007)
Li, J., Zhou, S.K., Chellappa, R.: Appearance context modeling under geometric context. In: ICCV (2005)
Scott, D.: Multivariate density estimation. Wiley Interscience, Hoboken (1992)
Zhao, L., Davis, L.S.: Iterative figure-ground discrimination. In: ICPR (2004)
Yu, Y., Harwood, D., Yoon, K., Davis, L.S.: Human appearance modeling for matching across video sequences. Mach. Vis. Appl. 18, 139–149 (2007)
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.S.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11, 172–185 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, Z., Davis, L.S. (2008). Learning Pairwise Dissimilarity Profiles for Appearance Recognition in Visual Surveillance. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-89639-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89638-8
Online ISBN: 978-3-540-89639-5
eBook Packages: Computer ScienceComputer Science (R0)