Abstract
Recently, content based 3D shape retrieval has been an active area of research. Benchmarking allows researchers to evaluate the quality of results of different 3D shape retrieval approaches. Here, we propose a new publicly available 3D shape benchmark to advance the state of art in 3D shape retrieval. We provide a review of previous and recent benchmarking efforts and then discuss some of the issues and problems involved in developing a benchmark. A detailed description of the new shape benchmark is provided including some of the salient features of this benchmark. In this benchmark, the 3D models are classified mainly according to visual shape similarity but in contrast to other benchmarks, the geometric structure of each model is modified and normalized, with each class in the benchmark sharing the equal number of models to reduce the possible bias in evaluation results. In the end we evaluate several representative algorithms for 3D shape searching on the new benchmark, and a comparison experiment between different shape benchmarks is also conducted to show the reliability of the new benchmark.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
http://www.rcsb.org/pdb/home /pdb/home
http://www.cs.uu.nl/centers/give/multimedia/3Drecog/3Dmatching.html
http://www.3d-search.iti.gr /3DSearch
Min, P., Kazhdan, M., Funkhouser, T.: A comparison of text and shape matching for retrieval of online 3d models. In: Proc. European conference on digital libraries, pp. 209–220 (2004)
Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. In: Proceedings of the Shape Modeling International, pp. 145–156 (2004)
Bustos, B., Keim, A.D., Saupe, D., Schreck, T., Vranic, V.D.: Feature-based similarity search in 3d object databases. ACM Computing Surveys 37(4), 345–387 (2005)
Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Three-dimensional shape searching: state-of-the-art review and future trends. Computer-Aided Design 37(5), 509–530 (2005)
http://www.eureka.vu.edu.au /~grubinger/IAPR/TC12_Benchmark.html
Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 321–330 (2006)
Orio, N.: Music retrieval: A tutorial and review. Foundations and Trends in Information Retrieval 1, 1–90 (2006)
Typke, R., Wiering, F., Veltkamp, R.C.: A survey of music information retrieval systems. In: Proceedings of the 6th International Conference on Music Information Retrieval, pp. 153–160 (2005)
http://www.aimatshape.net /event/SHREC
Veltkamp, R.C., Ruijsenaars, R., Spagnuolo, M., van Zwol, R., ter Haar, F.: Shrec2006 3d shape retrieval contest, technical report uu-cs-2006-030. Technical report, Department of Information and Computing Science, Utrecht University (2006)
Veltkamp, R.C., ter Haar, F.B.: Shrec2007 3d shape retrieval contest, technical report uu-cs-2007-015. Technical report, Department of Information and Computing Science, Utrecht University (2007)
Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of the Shape Modeling International, pp. 167–178 (2004)
Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Developing an engineering shape benchmark for cad models. Computer-Aided Design 38(9), 939–953 (2006)
Zhang, J., Siddiqi, K., Macrini, D., Shokouf, A., Dickinson, S.: Retrieving articulated 3-d models using medial surfaces and their graph spectra. In: International Workshop On Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 285–300 (2005)
Voorhees, E.M.: Variations in relevance judgments and the measurement of retrieval effectiveness. In: Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, pp. 315–323 (1998)
Papadakis, P., Pratikakis, I., Perantonis, S., Theoharis, T.: Efficient 3d shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recognition 40, 2437–2452 (2007)
Laga, H., Takahashi, H., Nakajima, M.: Spherical wavelet descriptors for content-based 3d model retrieval. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, pp. 15 (2006)
http://www.bithack.se /methabot/start
Veleba, D., Felkel, P.: Detection and correction of errors in surface representation. In: The 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (2007)
Jones, S., Van Rijsbergen, C.J.: Information retrieval test collections. Journal of Documentation 32, 59–75 (1976)
Leung, C.: Benchmarking for content-based visual information search. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 442–456. Springer, Heidelberg (2000)
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In: Proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 33–40 (2000)
Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Butterworths (1979)
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw Hill Book Co., New York (1983)
Jarvelin, K., Kekalainen, J.: Ir evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 41–48 (2000)
Chen, D., Tian, X., Shen, Y., Ouhyoung, M.: On Visual Similarity Based 3 D Model Retrieval. Computer Graphics Forum 22, 223–232 (2003)
Vranic, D.V.: 3d model retrieval. PH.D thesis, University of Leipzig, German (2004)
Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics (TOG) 21, 807–832 (2002)
Ohbuchi, R., Minamitani, T., Takei, T.: Shape-similarity search of 3d models by using enhanced shape functions. International Journal of Computer Applications in Technology 23, 70–85 (2005)
Ohbuchi, R., Otagiri, T., Ibato, M., Takei, T.: Shape-similarity search of three-dimensional models using parameterized statistics. In: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, pp. 265–274 (2002)
Vranic, D.V.: Desire: a composite 3d-shape descriptor. In: Proceedings of the IEEE International Conference on Multimedia and Expo. (2005)
Ohbuchi, R., Hata, Y.: Combining multiresolution shape descriptors for 3d model retrieval. In: Proc. WSCG 2006 (2006)
Voorhees, E.M., Buckley, C.: The effect of topic set size on retrieval experiment error. In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 316–323 (2002)
Lin, W.H., Hauptmann, A.: Revisiting the effect of topic set size on retrieval error. In: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 637–638 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fang, R., Godil, A., Li, X., Wagan, A. (2008). A New Shape Benchmark for 3D Object Retrieval. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-540-89639-5_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89638-8
Online ISBN: 978-3-540-89639-5
eBook Packages: Computer ScienceComputer Science (R0)