Abstract
We present a novel automated method for assessment of image alignment, applied to non-rigid registration of brain Magnetic Resonance Imaging data (MRI) for image-guided neurosurgery. We propose a number of robust modifications to the Hausdorff distance (HD) metric, and apply it to the edges recovered from the brain MRI to evaluate the accuracy of image alignment. The evaluation results on synthetic images, simulated tumor growth MRI and real neurosurgery data with expert-identified anatomical landmarks, confirm that the accuracy of alignment error estimation is improved compared to the conventional HD. The proposed approach can be used to increase confidence in the registration results, assist in registration parameter selection, and provide local estimates and visual assessment of the registration error.
This work was supported in part by NSF grants CSI-0719929 and CNS-0312980, and by John Simon Guggenheim Memorial Foundation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Physics in Medicine and Biology 46, R1–R45 (2001)
Archip, N., Clatz, O., Whalen, S., Kacher, D., Fedorov, A., Kot, A., Chrisochoides, N., Jolesz, F., Golby, A., Black, P., Warfield, S.: Non-rigid alignment of preoperative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage 35, 609–624 (2007)
Ferrant, M.: Physics-based Deformable Modeling of Volumes and Surfaces for Medical Image Registration, Segmentation and Visualization. PhD thesis, Universite Catholique de Louvain (2001)
Clatz, O., Delingette, H., Talos, I.F., Golby, A., Kikinis, R., Jolesz, F., Ayache, N., Warfield, S.: Robust non-rigid registration to capture brain shift from intra-operative MRI. IEEE Trans. Med. Imag. 24, 1417–1427 (2005)
Christensen, G.E., Geng, X., Kuhl, J.G., Bruss, J., Grabowski, T.J., Pirwani, I.A., Vannier, M.W., Allen, J.S., Damasio, H.: Introduction to the non-rigid image registration evaluation project (NIREP). In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 128–135. Springer, Heidelberg (2006)
Archip, N., Tatli, S., Morrison, P., Jolesz, F., Warfield, S.K., Silverman, S.: Non-rigid registration of pre-procedural MR images with intra-procedural unenhanced CT images for improved targeting of tumors during liver radiofrequency ablations. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 969–977. Springer, Heidelberg (2007)
Huttenlocher, D., Klanderman, D., Rucklidge, W.: Comparing images using the Hausdorff distance. IEEE Trans. Pat. Anal. and Mach. Intel. 15, 850–863 (1993)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)
Lloyd, B., Szekely, G., Kikinis, R., Warfield, S.K.: Comparison of salient point detection methods for 3d medical images. In: 2005 MICCAI Open Source Workshop (2005)
Zhao, C., Shi, W., Deng, Y.: A new Hausdorff distance for image matching. Pattern Recognition Letters 26, 581–586 (2005)
Baudrier, E., Nicolier, F., Millon, G., Ruan, S.: Binary-image comparison with local-dissimilarity classification. Pattern Recognition 41, 1461–1478 (2008)
Peng, X., Chen, W., Ma, Q.: Feature-based nonrigid image registration using a Hausdorff distance matching measure. Optical Engineering 46, 057201 (2007)
Morain-Nicolier, F., Lebonvallet, S., Baudrier, E., Ruan, S.: Hausdorff distance based 3d quantification of brain tumor evolution from MRI images. In: Proc. 29th Annual Intl Conf of the IEEE EMBS, pp. 5597–5600 (2007)
Billet, E., Fedorov, A., Chrisochoides, N.: The use of robust local Hausdorff distances in accuracy assessment for image alignment of brain MRI. Insight Journal (January-June 2008), http://www.hdl.handle.net /1926/1354
Rousseeuw, P., Leroy, A.: Robust Regression and Outlier Detection. John Wiley & Sons, Chichester (1987)
Ibanez, L., Schroeder, W.: The ITK Software Guide 2.4. Kitware, Inc. (2005)
Rogelj, P., Kovačič, S., Gee, J.C.: Point similarity measures for non-rigid registration of multi-modal data. Comp. Vis. and Image Underst. 92, 112–140 (2003)
Prastawa, M., Bullitt, E., Gerig, G.: Synthetic ground truth for validation of brain tumor MRI segmentation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 26–33. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fedorov, A. et al. (2008). Evaluation of Brain MRI Alignment with the Robust Hausdorff Distance Measures. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-540-89639-5_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89638-8
Online ISBN: 978-3-540-89639-5
eBook Packages: Computer ScienceComputer Science (R0)